Network for the detection of atmospheric composition change (NDACC); FTIR remote sensing; Montreal Protocol; atmospheric composition and trends
Abstract :
[en] HCFC-22 is an ozone-depleting substance with a greenhouse effect. The atmospheric mole fractions of HCFC-22 have been increasing since the 1950s. Within the NDACC-IRWG network, HCFC-22 mol fractions can be retrieved from solar absorption spectra measured by ground-based FTIR. However, only a few sites have provided HCFC-22 data sets. Here, we demonstrate a harmonized FTIR HCFC-22 retrieval strategy and generate a new global NDACC-IRWG HCFC-22 data set at 16 FTIR sites. The systematic and random uncertainties are 5.3%-8.7% and 3.2%-8.0%, respectively. A maximum HCFC-22 column annual growth rate was observed in 2009 with a mean of 7.65 ± 1.39 ppt/year, and the HCFC-22 annual growth rate decreased to 3.57 ± 1.39 ppt/year (2016-2020) and 2.15 ± 2.09 ppt/year (2021-2023). The annual growth rates derived from the FTIR measurements are compared to the ones derived from NOAA surface flask samplings and ACE-FTS satellite measurements, and the three independent data sets show a good agreement. Plain Language Summary Monitoring the atmospheric HCFC-22 mol fraction and its long-term trend is important to the stratospheric ozone layer and climate change. Ground-based FTIR measurements within the NDACC-IWRG community provide a powerful technique for observing atmospheric trace gases. However, due to different retrieval software and procedures among the sites, the record was too heterogeneous for monitoring the global evolution of HCFC-22 over time. In this study, we propose a harmonized FTIR HCFC-22 retrieval strategy and generate a global NDACC-IRWG HCFC-22 data set at 16 FTIR sites. The retrieval uncertainty of the FTIR HCFC-22 is well presented and discussed. Based on the new FTIR HCFC-22 measurements, the HCFC-22 annual growth rates between 1990 and 2023 are evaluated. The results are compared with two independent data sets: NOAA flask samplings and ACE-FTS satellite measurements. Good agreement among the three data sets is found, with a clear decrease in the growth rate of atmospheric HCFC-22 in recent years. According to the latest Montreal Protocol, HCFC-22 should be phased out within the next 5-6 years. The global FTIR observations will assure continuity into the next years and decades when HCFC-22 mol fractions should start decreasing after the official phase-out.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Zhou, Minqiang; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China ; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Langerock, Bavo; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Vigouroux, Corinne; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Smale, Dan; National Institute of Water and Atmospheric Research, Lauder
Toon, Geoff; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Polyakov, Alexander; Department of Atmospheric Physics, St. Petersburg State University, Sankt-Peterburg, Russia
Hannigan, James; Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, USA
Mellqvist, Johan; Chalmers University of Technology, Gothenburg, Sweden
Robinson, John; National Institute of Water and Atmospheric Research, Lauder
Notholt, Justus; Institute of Environmental Physics, University of Bremen, Bremen, Germany
Strong, Kimberly; Department of Physics, University of Toronto, Toronto, Canada
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Groupe infra-rouge de physique atmosphérique et solaire (GIRPAS)
Palm, Mathias; Institute of Environmental Physics, University of Bremen, Bremen, Germany
Prignon, Maxime; Chalmers University of Technology, Gothenburg, Sweden
Jones, Nicolas; Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia
García, Omaira; State Meteorological Agency of Spain (AEMet), Izaña Atmospheric Research Centre (IARC), Santa Cruz de Tenerife, Spain
Morino, Isamu; Satellite Remote Sensing Section and Satellite Observation Center, Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
Murata, Isao; Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
Ortega, Ivan; Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, USA
Nagahama, Tomoo; Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Wizenberg, Tyler; Department of Physics, University of Toronto, Toronto, Canada
Flood, Victoria; Department of Physics, University of Toronto, Toronto, Canada
Walker, Kaley; Department of Physics, University of Toronto, Toronto, Canada
De Mazière, Martine; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Bernath, P. F. (2017). The atmospheric Chemistry experiment (ACE). Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 3–16. https://doi.org/10.1016/j.jqsrt.2016.04.006
Boone, C. D., Bernath, P. F., & Lecours, M. (2023). Version 5 retrievals for ACE-FTS and ACE-imagers. Journal of Quantitative Spectroscopy and Radiative Transfer, 310, 108749. https://doi.org/10.1016/j.jqsrt.2023.108749
Chirkov, M., Stiller, G. P., Laeng, A., Kellmann, S., von Clarmann, T., Boone, C. D., et al. (2016). Global HCFC-22 measurements with MIPAS: Retrieval, validation, global distribution and its evolution over 2005–2012. Atmospheric Chemistry and Physics, 16(5), 3345–3368. https://doi.org/10.5194/acp-16-3345-2016
Clerbaux, C., Colin, R., Simon, P. C., & Granier, C. (1993). Infrared cross sections and global warming potentials of 10 alternative hydrohalocarbons. Journal of Geophysical Research, 98(D6), 10491–10497. https://doi.org/10.1029/93JD00390
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., et al. (2018). The network for the detection of atmospheric composition change (NDACC): History, status and perspectives. Atmospheric Chemistry and Physics, 18(7), 4935–4964. https://doi.org/10.5194/acp-18-4935-2018
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., et al. (2021). The Earth’s energy budget, climate feedbacks, and climate sensitivity. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. https://doi.org/10.1017/9781009157896.009
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., et al. (2019). The whole atmosphere community climate model version 6 (WACCM6). Journal of Geophysical Research: Atmospheres, 124(23), 12380–12403. https://doi.org/10.1029/2019JD030943
Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E. V., Skinner, F. M., et al. (2022). The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949. https://doi.org/10.1016/j.jqsrt.2021.107949
Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Kuijpers, L. J. M., Montzka, S. A., et al. (2015). European emissions of HCFC-22 based on eleven years of high frequency atmospheric measurements and a Bayesian inversion method. Atmospheric Environment, 112, 196–207. https://doi.org/10.1016/j.atmosenv.2015.04.042
Harrison, J. J. (2016). New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22). Atmospheric Measurement Techniques, 9(6), 2593–2601. https://doi.org/10.5194/amt-9-2593-2016
Hase, F., Hannigan, J. W., Coffey, M. T., Goldman, A., Höpfner, M., Jones, N. B., et al. (2004). Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 87(1), 25–52. https://doi.org/10.1016/j.jqsrt.2003.12.008
IPCC. (2021). Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. https://doi.org/10.1017/9781009157896
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kolonjari, F., Sheese, P. E., Walker, K. A., Boone, C. D., Plummer, D. A., Engel, A., et al. (2024). Validation of atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS) chlorodifluoromethane (HCFC-22) in the upper troposphere and lower stratosphere. Atmospheric Measurement Techniques, 17(8), 2429–2449. https://doi.org/10.5194/amt-17-2429-2024
Montzka, S. A., Hall, B. D., & Elkins, J. W. (2009). Accelerated increases observed for hydrochlorofluorocarbons since 2004 in the global atmosphere. Geophysical Research Letters, 36(3). https://doi.org/10.1029/2008GL036475
Montzka, S. A., Myers, R. C., Butler, J. H., Elkins, J. W., & Cummings, S. O. (1993). Global tropospheric distribution and calibration scale of HCFC-22. Geophysical Research Letters, 20(8), 703–706. https://doi.org/10.1029/93GL00753
Moore, D. P., & Remedios, J. J. (2008). Growth rates of stratospheric HCFC-22. Atmospheric Chemistry and Physics, 8(1), 73–82. https://doi.org/10.5194/acp-8-73-2008
Murdoch, J. C., & Sandler, T. (1997). The voluntary provision of a pure public good: The case of reduced CFC emissions and the Montreal Protocol. Journal of Public Economics, 63(3), 331–349. https://doi.org/10.1016/S0047-2727(96)01598-8
Polyakov, A., Poberovsky, A., Makarova, M., Virolainen, Y., Timofeyev, Y., & Nikulina, A. (2021). Measurements of CFC-11, CFC-12, and HCFC-22 total columns in the atmosphere at the St. Petersburg site in 2009–2019. Atmospheric Measurement Techniques, 14(8), 5349–5368. https://doi.org/10.5194/amt-14-5349-2021
Prignon, M., Chabrillat, S., Minganti, D., O’Doherty, S., Servais, C., Stiller, G., et al. (2019). Improved FTIR retrieval strategy for HCFC-22 (CHClF2), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch. Atmospheric Chemistry and Physics, 19(19), 12309–12324. https://doi.org/10.5194/acp-19-12309-2019
Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L., Fraser, P. J., et al. (2018). History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data, 10(2), 985–1018. https://doi.org/10.5194/essd-10-985-2018
Rinsland, C. P., Chiou, L. S., Goldman, A., & Wood, S. W. (2005). Long-term trend in CHF2Cl (HCFC-22) from high spectral resolution infrared solar absorption measurements and comparison with in situ measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 90(3), 367–375. https://doi.org/10.1016/j.jqsrt.2004.04.008
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding – theory and practice, series on atmospheric oceanic and planetary physics (Vol. 2). World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789812813718
Saikawa, E., Rigby, M., Prinn, R. G., Montzka, S. A., Miller, B. R., Kuijpers, L. J. M., et al. (2012). Global and regional emission estimates for HCFC-22. Atmospheric Chemistry and Physics, 12(21), 10033–10050. https://doi.org/10.5194/acp-12-10033-2012
Sheese, P., & Walker, K. (2023). Data quality flags for ACE-FTS level 2 version 5.2 [Dataset]. (Version V7). https://doi.org/10.5683/SP3/NAYNFE
Solomon, S., Mills, M., Heidt, L., Pollock, W., & Tuck, A. (1992). On the evaluation of ozone depletion potentials. Journal of Geophysical Research, 97(D1), 825–842. https://doi.org/10.1029/91jd02613
Thoning, K. W., Tans, P. P., & Komhyr, W. D. (1989). Atmospheric carbon dioxide at mauna loa observatory 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical Research, 94(D6), 8549–8565. https://doi.org/10.1029/JD094iD06p08549
Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularisation method. Soviet Math Dokl, 4, 1035–1038.
Vanessa, J. S., Jones, N. B., Matthews, W. A., Murcray, F. J., Blatherwick, R. D., Murcray, D. G., et al. (1997). Increase in the vertical column abundance of HCFC-22 (CHClF2) above Lauder, New Zealand, between 1985 and 1994. Journal of Geophysical Research, 102(D7), 8861–8865. https://doi.org/10.1029/96JD01012
Vimont, I., Montzka, S., Crotwell, M., Andrews, A., Baier, B., Hall, B., et al. (2022). Atmospheric dry air mole fractions of hcfc22 from the NOAA GML surface and aircraft vertical profile network [Dataset]. NOAA GML. Version 2023-05-16. https://doi.org/10.15138/zgty-3423
Walker, S. J., Weiss, R. F., & Salameh, P. K. (2000). Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11 CFC-12, CFC-113, and carbon tetrachloride. Journal of Geophysical Research, 105(C6), 14285–14296. https://doi.org/10.1029/1999JC900273
Zeng, X., Wang, W., Shan, C., Xie, Y., Zhu, Q., Wu, P., et al. (2023). Detection of atmospheric hydrofluorocarbon-22 with ground-based remote high-resolution fourier transform spectroscopy over Hefei and an estimation of emissions in the yangtze river delta. Remote Sensing, 15(23), 5590. https://doi.org/10.3390/rs15235590
Zhou, M., Langerock, B., Vigouroux, C., Sha, M. K., Ramonet, M., Delmotte, M., et al. (2018). Atmospheric CO and CH4 time series and seasonal variations on Reunion Island from ground-based in situ and FTIR (NDACC and TCCON) measurements. Atmospheric Chemistry and Physics, 18(19), 13881–13901. https://doi.org/10.5194/acp-18-13881-2018
Zhou, M., Vigouroux, C., Langerock, B., Wang, P., Dutton, G., Hermans, C., et al. (2016). CFC-11, CFC-12 and HCFC-22 ground-based remote sensing FTIR measurements at Réunion Island and comparisons with MIPAS/ENVISAT data. Atmospheric Measurement Techniques, 9(11), 5621–5636. https://doi.org/10.5194/amt-9-5621-2016
Assonov, S. S., Brenninkmeijer, C. A. M., Schuck, T., & Umezawa, T. (2013). N2O as a tracer of mixing stratospheric and tropospheric air based on CARIBIC data with applications for CO2. Atmospheric Environment, 79, 769–779. https://doi.org/10.1016/j.atmosenv.2013.07.035
García, O. E., Schneider, M., Sepúlveda, E., Hase, F., Blumenstock, T., Cuevas, E., et al. (2021). Twenty years of ground-based NDACC FTIR spectrometry at Izaña Observatory – overview and long-term comparison to other techniques. Atmospheric Chemistry and Physics, 21(20), 15519–15554. https://doi.org/10.5194/acp-21-15519-2021
Ruiz, D. J., & Prather, M. J. (2022). From the middle stratosphere to the surface, using nitrous oxide to constrain the stratosphere–troposphere exchange of ozone. Atmospheric Chemistry and Physics, 22(3), 2079–2093. https://doi.org/10.5194/acp-22-2079-2022