[en] Otoliths of actinopterygians are calcified structures playing a key role in hearing and equilibrium functions. To understand their morphological diversification, we quantified the shape of otoliths in both lateral and dorsal view from 697 and 323 species, respectively, using geometric morphometrics. We then combined form (i.e. size and shape) information with ecological data and phylogenetically informed comparative methods to test our hypotheses. Initially, the exploration of morphospaces revealed that the main variations are related to sulcus acusticus shape, elongation and lateral curvature. We also found strong integration between otolith and sulcus shape, suggesting that they are closely mirroring each other, reinforcing a shape-dependent mechanism crucial for otolith motion relative to its epithelium and validating the functional significance of otolith morphology in auditory and vestibular processes. After revealing that otolith shape and size retained a low phylogenetic signal, we showed that the disparity of otolith size and shape is decoupled from order age and from the level of functional diversity across clades. Finally, some traits in otolith disparity are correlated with their morphological evolutionary rate and the order speciation rate. Overall, we observed that the pattern of diversification of otoliths across the fish tree of life is highly complex and likely to be multifactorial.
Van Damme, Arthur ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Tuset, Victor M.; Universidad de Las Palmas de Gran Canaria (ULPGC) > Instituto de Oceanografía y Cambio Global
Frederich, Bruno ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Parmentier, Eric ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Fatira, Effrosyni; Universidad de Las Palmas de Gran Canaria (ULPGC) > Instituto de Oceanografía y Cambio Global
Schulz-Mirbach, Tanja; Ludwig Maximilians Universitaet Muenchen > Department Biologie II
Paiva M. Medeiros, Aline; Universidade Federal de Paraíba
Betancur-R, Ricardo; UCSD - University of California, San Diego [US-CA] > Scripps Institution of Oceanography
Lombarte, Antoni; Institut de Ciències del Mar (ICM-CSIC)
Language :
English
Title :
The multifaceted diversification of the sagitta otolith across the fish tree of life
Original title :
[en] The multifaceted diversification of the sagitta otolith across the fish tree of life
Publication date :
07 October 2024
Journal title :
Biological Journal of the Linnean Society
ISSN :
0024-4066
eISSN :
1095-8312
Publisher :
Oxford University Press, Oxford, United Kingdom
Volume :
143
Issue :
2
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
HE - 101090322 - PLEASE - Impact of climate change on twilight zone fishes during early-stage development
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique La Caixa Foundation European Union. Marie Skłodowska-Curie Actions CAPES - Coordenação de Aperfeicoamento de Pessoal de Nível Superior the Fundação de Apoio à Pesquisa do Estado da Paraíba (Fapesq-PB) PADI Foundation NSF - National Science Foundation
Funding text :
This study was supported by CajaCanaria-La Caixa Fundación project 2022CLISA15. A.V.D. was funded by a Research-Fellow grant from the Fonds De La Recherche Scientifique - FNRS of Belgium (grant no. 40001905). E.F. was funded from the HORIZON EUROPE Marie Sklodowska-Curie Actions of the European Union’s research and innovation program (grant agreement no. 101090322 PLEASE). A.P.M.d.M. received scholarship support by the Programa Institucional de Internacionalização (PrInt) of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazilian Federal Agency for Support and Evaluation of Graduate Education, Ministry of Education of Brazil), the Fundação de Apoio à Pesquisa do Estado da Paraíba (Fapesq-PB), and the PADI Foundation (application no. 32777). R.B.R. received funding from the U.S. National Science Foundation (NSF DEB-2225130)
Adams DC. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 2014a;68:2675–88. https://doi.org/10.1111/evo.12463
Adams DC. Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Systematic Biology 2014b;63:166–77. https://doi.org/10.1093/sysbio/syt105
Adams DC. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology 2014c;63:685–97. https://doi.org/10.1093/sysbio/syu030
Adams DC, Berns CM, Kozak KH et al. Are rates of species diversification correlated with rates of morphological evolution? Proceedings of the Royal Society B: Biological Sciences 2009;276:2729–38. https://doi.org/10.1098/rspb.2009.0543
Adams DC, Collyer ML. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 2016;70:2623–31. https://doi.org/10.1111/evo.13045
Adams DC, Collyer M, Kaliontzopoulou A et al. 2023. Geomorph: Geometric Morphometric Analyses of 2D and 3D Landmark Data. https://cran.r-project.org/web/packages/geomorph/index.html
Adams DC, Felice RN. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS One 2014;9:e94335. https://doi.org/10.1371/journal.pone.0094335
Adams DC, Otárola-Castillo E. Geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 2013;4:393–9.
Adams DC, Rohlf FJ, Slice DE. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 2004;71:5–16. https://doi.org/10.1080/11250000409356545
Albertson RC, Streelman JT, Kocher TD et al. Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proceedings of the National Academy of Sciences of the United States of America 2005;102:16287–92. https://doi.org/10.1073/pnas.0506649102
Andrews JV, Schein JP, Friedman M. An earliest Paleocene squirrel-fish (Teleostei: Beryciformes: Holocentroidea) and its bearing on the timescale of holocentroid evolution. Journal of Systematic Palaeontology2023;21:2168571.
Assis IO, da Silva VEL, Souto-Vieira D et al. Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape. Environmental Biology of Fishes 2020;103:349–61. https://doi.org/10.1007/s10641-020-00961-0
Baremore IE, Bethea DM. 2010. Guide to Otoliths from Fishes of the Gulf of Mexico. Panama City, FL: National Marine Fisheries Service, Panama City Lab.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Betancur-R R, Broughton RE, Wiley EO et al. The tree of life and a new classification of bony fishes. PLoS Currents Tree of Life 2013. 1st ed. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165 c8c26288
Betancur-R R, Wiley EO, Arratia G et al. Phylogenetic classification of bony fishes. BMC Evolutionary Biology 2017;17:162.
Bibi F, Tyler J. Evolution of the bovid cranium: morphological diversification under allometric constraint. Communications Biology 2022;5:69.
Blomberg SP Jr, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 2003;57:717–45. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Bock WJ. Explanations in konstruktionsmorphologie and evolutionary morphology. In: Schmidt-Kittler N, Vogel K (eds.), Constructional Morphology and Evolution. Berlin, Heidelberg: Springer, 1991, 9–29.
Bookstein FL (ed.). Distance measures. In: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge: Cambridge University Press, 1992, 88–124.
Braun CB, Grande T. Evolution of peripheral mechanisms for the enhancement of sound reception. In: Webb JF, Fay RR, Popper AN (eds.), FishBioacoustics. New York: Springer, 2008, 99–144.
Burress ED. Ecological diversification associated with the pharyngeal jaw diversity of Neotropical cichlid fishes. The Journal of Animal Ecology 2016;85:302–13. https://doi.org/10.1111/1365-2656.12457
Campana SE. How reliable are growth back-calculations based on otoliths? Canadian Journal of Fisheries and Aquatic Sciences 1990;47:2219–27. https://doi.org/10.1139/f90-246
Campana SE. 2004. Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. Ottawa, Ontario: NRC Research Press.
Caves EM, Sutton TT, Johnsen S. Visual acuity in ray-finned fishes correlates with eye size and habitat. The Journal of Experimental Biology 2017;220:1586–96. https://doi.org/10.1242/jeb.151183
Chollet-Villalpando JG, García-Rodríguez FJ, De Luna E et al. Geometric morphometrics for the analysis of character variation in size and shape of the sulcus acusticus of sagittae otolith in species of Gerreidae (Teleostei: Perciformes). Marine Biodiversity 2019;49:2323–32. https://doi.org/10.1007/s12526-019-00970-y
Collar DC, Wainwright PC, Alfaro ME. Integrated diversification of locomotion and feeding in labrid fishes. Biology Letters 2007;4:84–6. https://doi.org/10.1098/rsbl.2007.0509
Coombs S, Popper AN. Hearing differences among Hawaiian squirrel-fish (family Holocentridae) related to differences in the peripheral auditory system. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 1979;132:203–7. https://doi.org/10.1007/bf00614491
Cooney CR, Thomas GH. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nature Ecology & Evolution 2021;5:101–10.
Corn KA, Friedman ST, Burress ED et al. The rise of biting during the Cenozoic fueled reef fish body shape diversification. Proceedings of the National Academy of Sciences of the United States of America 2022;119:e2119828119. https://doi.org/10.1073/pnas.2119828119
Cornwell WK, Schwilk LDW, Ackerly DD. A trait-based test for habitat filtering: convex hull volume. Ecology 2006;87:1465–71. https://doi.org/10.1890/0012-9658(2006)87[1465:attfhf]2.0.co;2
Costeur L, Grohé C, Aguirre-Fernández G et al. The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences. Scientific Reports 2018;8:7841. https://doi.org/10.1038/ s41598-018-26094-0
Cruz A, Lombarte A. Otolith size and its relationship with colour patterns and sound production. Journal of Fish Biology 2004;65:1512–25. https://doi.org/10.1111/j.0022-1112.2004.00558.x
Deng X, Wagner HJ, Popper AN. Interspecific variations of inner ear structure in the deep-sea fish family Melamphaidae. AnatomicalRecord (Hoboken, N. J.: 2007)2013;296:1064–82. https://doi.org/10.1002/ar.22703
Dornburg A, Near TJ. The emerging phylogenetic perspective on the evolution of actinopterygian fishes. Annual Review of Ecology, Evolution, and Systematics 2021;52:427–52. https://doi.org/10.1146/ annurev-ecolsys-122120-122554
Du TY, Tissandier SC, Larsson HCE. Integration and modularity of teleostean pectoral fin shape and its role in the diversification of acanthomorph fishes. Evolution 2019;73:401–11. https://doi.org/10.1111/evo.13669
Evans KM, Larouche O, Watson SJ et al. Integration drives rapid phenotypic evolution in flatfishes. Proceedings of the National Academy of Sciences of the United States of America 2021;118:e2101330118. https://doi.org/10.1073/pnas.2101330118
Evans KM, Larouche O, West JL et al. Burrowing constrains patterns of skull shape evolution in wrasses. Evolution & Development 2023;25:73–84. https://doi.org/10.1111/ede.12415
Evans KM, Waltz BT, Tagliacollo VA et al. Fluctuations in evolutionary integration allow for big brains and disparate faces. Scientific Reports 2017;7:40431. https://doi.org/10.1038/srep40431
FriedmanM.Themacroevolutionaryhistoryofbonyfishes:apaleontological view. Annual Review of Ecology, Evolution, and Systematics 2022;53:353–77. https://doi.org/10.1146/annurev-ecolsys-111720-010447
Friedman ST, Martinez CM, Price SA et al. The influence of size on body shape diversification across Indo-Pacific shore fishes. Evolution 2019;73:1873–84. https://doi.org/10.1111/evo.13755
Friedman ST, Price SA, Corn KA et al. Body shape diversification along the benthic–pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences 2020;287:20201053. https://doi.org/10.1098/rspb.2020.1053
Froese R, Pauly D. 2000. FishBase 2000: Concepts, Designs and Data Sources. Los Banos, Philippines: ICLARM.
Froese R, Pauly D. 2024. FishBase. Version 02.2024. (December 2023, date last accessed). https://www.fishbase.org
Furlani D, Gales R, Pemberton D. 2007. Otoliths of Common Australian Temperate Fish: a Photographic Guide. Collingwood: CSIRO Publishing.
GaemersPAM.TaxonomicpositionoftheCichlidae(Pisces,Perciformes) as demonstrated by the morphology of their otoliths. Netherlands JournalofZoology1983;34:566–95.
Gauldie RW. Function, form and time-keeping properties of fish otoliths. Comparative Biochemistry and Physiology Part A: Physiology 1988;91:395–402. https://doi.org/10.1016/0300-9629(88)90436-7
Goswami A, Polly PD. The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS One 2010;5:e9517. https://doi.org/10.1371/journal.pone.0009517
Gould SJ, Eldredge N. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 1977;3:115–51. https://doi.org/10.1017/s0094837300005224
Härkönen T. 1986. Guide to the Otoliths of the Bony Fishes of the Northeast Atlantic. Hellerup, Denmark: Danbiu ApS Biological Consultants.
Kasumyan A. Vestibular system and sense of equilibrium in fish. Journalof Ichthyology 2004;44:S224–68.
Kéver L, Colleye O, Herrel A et al. Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus). The Journal of Experimental Biology 2014;217:2517–25. https://doi.org/10.1242/jeb.105254
Koken E. Ueber Fisch-Otolithen, insbesondere über diejenigen der norddeutschen Oligocän-Ablagerungen. Zeitschrift der Deutschen GeologischenGesellschaft1884;36:500–65.
Ladich F, Schulz-Mirbach T. Diversity in fish auditory systems: one of the riddles of sensory biology. Frontiers in Ecology and Evolution 2016;4. https://doi.org/10.3389/fevo.2016.00028
Lin CH, Chang CW. 2012. Otolith Atlas of Taiwan Fishes. Checheng, Taiwan: National Museum of Marine Biology & Aquarium.
Lombarte A. Changes in otolith area: sensory area ratio with body size and depth. Environmental Biology of Fishes 1992;33:405–10. https://doi.org/10.1007/bf00010955
LombarteA,CastellónA.Interspecificandintraspecificotolithvariability in the genus Merluccius as determined by image analysis. Canadian Journal of Zoology 1991;69:2442–9. https://doi.org/10.1139/ z91-343
Lombarte A, Chic O, Parisi-Baradad V et al. A web-based environment for shape analysis of fish otoliths. The AFORO database. Scientia Marina 2006;70:147–52. https://doi.org/10.3989/scimar.2006.70n1147
Lombarte A, Cruz A. Otolith size trends in marine fish communities from different depth strata. Journal of Fish Biology 2007;71:53–76. https://doi.org/10.1111/j.1095-8649.2007.01465.x
Lombarte A, Fortuño JM. Differences in morphological features of the sacculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, Gadiformes) inhabits from different depth of sea. Journal of Morphology 1992;214:97–107. https://doi.org/10.1002/jmor.1052140107
Lombarte A, Palmer M, Matallanas J et al. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes 2010;89:607–18. https://doi.org/10.1007/s10641-010-9673-2
Lombarte A, Torres GJ, Morales-Nin B. Specific Merluccius otolith growth patterns related to phylogenetics and environmental factors. Journal of the Marine Biological Association of the United Kingdom 2003;83:277–81.
Lu Z, Xu Z. Effects of saccular otolith removal on hearing sensitivity of the sleeper goby (Dormitator latifrons). Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 2002;188:595–602. https://doi.org/10.1007/s00359-002-0334-6
Lu Z, Xu Z, Stadler JH. Roles of the saccule in directional hearing. Bioacoustics 2002;12:205–7. https://doi.org/10.1080/09524622.2002.9753696
Lychakov DV, Rebane YT. Otolith regularities. Hearing Research 2000;143:83–102. https://doi.org/10.1016/ s0378-5955(00)00026-5
Magneville C, Loiseau N, Albouy C, et al. 2023. mFD: Compute and Illustrate the Multiple Facets of Functional Diversity. https://cran.rproject.org/web/packages/mFD/index.html
Martinez CM, Friedman ST, Corn KA et al. The deep sea is a hot spot of fish body shape evolution. Ecology Letters 2021;24:1788–99. https://doi.org/10.1111/ele.13785
Mason NWH, Mouillot D, Lee WG et al. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 2005;111:112–8. https://doi.org/10.1111/j.0030-1299.2005.13886.x
Mennecart B, Dziomber L, Aiglstorfer M et al. Ruminant inner ear shape records 35 million years of neutral evolution. Nature Communications 2022;13:7222. https://doi.org/10.1038/s41467-022-34656-0
Michaud M, Veron G, Peignè S et al. Are phenotypic disparity and rate of morphological evolution correlated with ecological diversity in Carnivora? Biological Journal of the Linnean Society 2018;124:789–789. https://doi.org/10.1093/biolinnean/bly076
Miller EC, Martinez CM, Friedman ST et al. Alternating regimes of shallow and deep-sea diversification explain a species-richness paradox in marine fishes. Proceedings of the National Academy of Sciences of the United States of America 2022;119:e2123544119. https://doi.org/10.1073/pnas.2123544119
Mitteroecker P, Gunz P. Advances in geometric morphometrics. Evolutionary Biology 2009;36:235–47. https://doi.org/10.1007/ s11692-009-9055-x
Morales-Nin BYO. The influence of environmental factors on micro-structure of otoliths of three demersal fish species caught off Namibia. South African Journal of Marine Science 1987;5:255–62. https://doi.org/10.2989/025776187784522207
Morales-Nin B, Tores GJ, Lombarte A etal. Otolith growth and age estimation in the European hake. Journal of Fish Biology 1998;53:1155–68.
Morinaga G, Wiens JJ, Moen DS. The radiation continuum and the evolution of frog diversity. Nature Communications 2023;14:7100. https://doi.org/10.1038/s41467-023-42745-x
Nolf D. Contribution à l’étude des otolithes des poissons II. Sur l’importance systématique des otolithes (sagittae) des Batrachoididae. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique - Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen 1975;51:1–11.
Nolf D. 1985. Otolithi Piscium. Stuttgart: G. Fischer.
Nolf D. A survey of perciform otoliths and their interest for phylogenetic analysis, with an iconographic synopsis of the Percoidei. Bulletin of Marine Science 1993;52:220–39.
Nolf D. 2013. The Diversity of Fish Otoliths, Past and Present. Steurbaut E, Brzobohaty R, Hoedemakers K (eds.). Brussels: Royal Belgian Institute of Natural Sciences.
Nolf D, Steurbaut E. Evidence from otoliths for establishing relationships between Gadiforms and other groups. In: Papers on the Systematics of Gadiform Fishes. Los Angeles, California: Natural History Museum Los Angeles County, 1989, 37–45.
Norton SF, Luczkovich JJ, Motta PJ. The role of ecomorphological studies in the comparative biology of fishes. Environmental Biology of Fishes 1995;44:287–304. https://doi.org/10.1007/bf00005921
Olson PEC, Miller RL. 1999. Morphological Integration. Chicago: University of Chicago Press.
Parker GH. 1910. Structure and Functions of the Ear of the Squeteague. Washington, DC: Government Printing Office.
Parmentier E, Chardon M, Vandewalle P. 2002. Preliminary study on the ecomorphological signification of the sound-producing complex in Carapidae. In: Topics in Functional and Ecological Vertebrate Morphology. Maastricht, Pays-Bas: Shaker, 139–51.
Parmentier E, Vandewalle P, Lagardère F. Morpho-anatomy of the otic region in carapid fishes: eco-morphological study of their otoliths. JournalofFishBiology2001;58:1046–61.
Paxton JR. Fish otoliths: do sizes correlate with taxonomic group, habitat and/or luminescence? Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 2000;355:1299–303. https://doi.org/10.1098/rstb.2000.0688
Pfaff C, Schultz JA, Schellhorn R. The vertebrate middle and inner ear: a short overview. Journal of Morphology 2019;280:1098–105. https://doi.org/10.1002/jmor.20880
Platt C, Popper AN. Fine structure and function of the ear. In: Tavolga WN, Popper AN, Fay RR (eds.). Hearing and Sound Communication in Fishes. New York: Springer, 1981, 3–38.
Popper AN, Fay RR. Rethinking sound detection by fishes. Hearing Research 2011;273:25–36. https://doi.org/10.1016/j.heares.2009.12.023
Popper AN, Platt C. Sensory surface of the saccule and lagena in the ears of ostariophysan fishes. Journal of Morphology 1983;176:121–9. https://doi.org/10.1002/jmor.1051760202
Popper ZA, Ramcharitar JU, Campana SE. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research2005;56:497–504.
PriceSA,FriedmanST,CornKAetal.Buildingabodyshapemorphospace of teleostean fishes. IntegrativeandComparativeBiology2019;59:716–30. https://doi.org/10.1093/icb/icz115
Quimbayo JP, Silva FC, Mendes TC et al. Life-history traits, geographical range, and conservation aspects of reef fishes from the Atlantic and Eastern Pacific. Ecology 2021;102:e03298. https://doi.org/10.1002/ecy.3298
Rabosky DL, Chang J, Title PO et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 2018;559:392–5. https://doi.org/10.1038/s41586-018-0273-1
Ramcharitar JU, Deng X, Ketten D et al. Form and function in the unique inner ear of a teleost: the silver perch (Bairdiella chrysoura). The Journal of Comparative Neurology 2004;475:531–9. https://doi.org/10.1002/cne.20192
Ramcharitar J, Higgs DM, Popper AN. Sciaenid inner ears: a study in diversity. Brain Behavior and Evolution 2002;58:152–62. https://doi.org/10.1159/000047269
Randau M, Goswami A. Unravelling intravertebral integration, modularity and disparity in Felidae (Mammalia). Evolution & Development 2017;19:85–95. https://doi.org/10.1111/ede.12218
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 2012;3:217–23. https://doi.org/10.1111/j.2041-210x.2011.00169.x
Revell LJ. 2023. Phytools: Phylogenetic Tools for Comparative Biology (and other things). https://cran.r-project.org/web/packages/phytools/index.html
Rice AN, Farina SC, Makowski AJ et al. Evolutionary patterns in sound production across fishes. Ichthyology & Herpetology 2022;110:1–12.
Ricklefs RE. Time, species, and the generation of trait variance in clades. Systematic Biology 2006;55:151–9. https://doi.org/10.1080/10635150500431205
Rincon-Sandoval M, Duarte-Ribeiro E, Davis AM et al. Evolutionary determinism and convergence associated with water-column transitions in marine fishes. Proceedings of the National Academy of Sciences of the United States of America 2020;117:33396–403. https://doi.org/10.1073/pnas.2006511117
Rivaton J, Bourret P. 1999. Les Otolithes des Poissons de l’Indo-Pacifique. Nouméa, Nouvelle-Calédonie: Institut de recherche pour le développement, Centre de Nouméa.
Rohlf J. 2017. tpsDig2 (Version 2.31). https://life.bio.sunysb.edu/morph/soft-dataacq.html
Rohlf FJ, Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 1990;39:40–59. https://doi.org/10.2307/2992207
Rossi-Wongtschowski CLDB, Siliprandi CC, Brenha MR et al. Atlas of marine bony fish otoliths (sagittae) of Southeastern - Southern Brazil Part I: Gadiformes (Macrouridae, Moridae, Bregmacerotidae, Phycidae and Merlucciidae); Part II: Perciformes (Carangidae, Sciaenidae, Scombridae and Serranidae). Brazilian Journal of Oceanography 2014;62:1–103.
Sadighzadeh Z, Tuset VM, Dadpour MR, et al. 2012. Otolith Atlas from the Persian Gulf and the Oman Sea Fishes. Saarbrücken: LAP Lambert Academic Publishing.
Saidel WM, Popper AN. The saccule may be the transducer for directional hearing of nonostariophysine teleosts. Experimental Brain Research 1983;50:149–52. https://doi.org/10.1007/BF00238242
Schmitz L, Wainwright PC. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evolutionary Biology 2011;11:338. https://doi.org/10.1186/1471-2148-11-338
Schulz-Mirbach T, Ladich F, Plath M et al. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biological Reviews 2019;94:457–82.
Schwarzhans W.Otolith-morphology and it sus age for higher systematical units, with special reference to the Myctophiformes s.l. Mededelingen v ande WerkgroepvoorTertiaireen Kwartaire Geologie1978;15:167–85.
Schwarzhans W. Fish otoliths from the Paleocene of Denmark. GEUS Bulletin 2003;2:1–96. https://doi.org/10.34194/geusb.v2.4696
Schwarzhans W. The otoliths from the middle Eocene of Osteroden near Bramsche, north-western Germany. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 2007;244:299–369. https://doi.org/10.1127/0077-7749/2007/0244-0299
Schwarzhans W. A review of Jurassic and Early Cretaceous otoliths and the development of early morphological diversity in otoliths. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 2018;287:75–121. https://doi.org/10.1127/njgpa/2018/0707
Schwarzhans WW, Gerringer ME. Otoliths of the deepest-living fishes. Deep Sea Research Part I: Oceanographic Research Papers 2023;198:104079. https://doi.org/10.1016/j.dsr.2023.104079
Schwarzhans W, Schulz-Mirbach T, Lombarte A, et al. The origination and rise of teleost otolith diversity during the Mesozoic. Research & Knowledge 2017;3:5–8.
Simpson G. 1953. The Major Features of Evolution. Columbia and Princeton: University Presses of California.
Smale MJ, Watson G, Flecht T. Otolith atlas of Southern African marine fishes. Ichthyological Monographs of the J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, No. 1, xiv, 253 pages, 149 plates.
Teimori A, Khajooei A, Motamedi M et al. Characteristics of sagittae morphology in sixteen marine fish species collected from the Persian Gulf: demonstration of the phylogenetic influence on otolith shape. Regional Studies in Marine Science 2019;29:100661. https://doi.org/10.1016/j.rsma.2019.100661
Torres M, Giráldez F. The development of the vertebrate inner ear. Mechanisms of Development 1998;71:5–21. https://doi.org/10.1016/ s0925-4773(97)00155-x
Torres GJ,Lombarte A,Morales-Nin B.Variability of the sulcusacu sticus in the sagittal otolith of the genus Merluccius (Merlucciidae). Fisheries Research 2000;46:5–13. https://doi.org/10.1016/s0165-7836(00)00128-4
Tuset VM, Farré M, Otero-Ferrer JL, et al. Testing otolith morphology for measuring marine fish biodiversity. Research 2016b;67:1037–48.
Tuset VM, Imondi R, Aguado G et al. Otolith patterns of rockfishes from the Northeastern Pacific. Journal of Morphology 2015;276:458–69. https://doi.org/10.1002/jmor.20353
Tuset VM, Lombarte A, Assis CA. Otolith atlas for the western Mediterranean, North and central Eastern Atlantic. Scientia Marina 2008;72:7–198.
Tuset VM, Otero-Ferrer JL, Gómez-Zurita J et al. Otolith shape lends support to the sensory drive hypothesis in rockfishes. Journal of Evolutionary Biology 2016a;29:2083–97. https://doi.org/10.1111/jeb.12932
Verocai JE, Cabrera F, Lombarte A et al. Form function of sulcus acusticus of the sagittal otolith in seven Sciaenidae (Acanthuriformes) species using geometric morphometrics (southwestern Atlantic). Journal of Fish Biology 2023;103:1199–213. https://doi.org/10.1111/jfb.15521
Vignon M, Morat F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series 2010;411:231–41. https://doi.org/10.3354/ meps08651
Villéger S, Mason NWH, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 2008;89:2290–301. https://doi.org/10.1890/07-1206.1
Volpedo A, Echeverría DD. Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fisheries Research 2003;60:551–60.
Volpedo AV, Tombari AD, Echeverría DD. Eco-morphological patterns of the sagitta of Antarctic fish. Polar Biology 2008;31:635–40. https://doi.org/10.1007/s00300-007-0400-1
Volpedo A, Thompson G, Avigliano E. 2018. Atlas de Otolitos de Peces de Argentina. Buenos Aires, Argentina: CAFP-BA PIESCI.
Wagner GP, Altenberg L. Perspective: complex adaptations and the evolution of evolvability. Evolution 1996;50:967–76. https://doi.org/10.1111/j.1558-5646.1996.tb02339.x
Wainwright PC, Bellwood DR. 2002. Ecomorphology of Feeding in Coral Reef Fishes. In: Coral Reef Fishes: Dynamic and Diversity in a Complex Ecosystem. San Diego: Elsevier, 33–55.
Wainwright PC, Bellwood DR, Westneat MW. Ecomorphology of locomotion in labrid fishes. Environmental Biology of Fishes 2002;65:47–62. https://doi.org/10.1023/a:1019671131001
Wilson RR.Depth-related changes in sagit tamorphology in six macrourid fishes of the Pacific and Atlantic oceans. Copeia 1985;1985:1011–7. https://doi.org/10.2307/1445256