Optimization of ultrasound-assisted extraction of bioactive compounds from Carthamus caeruleus L. rhizome: Integrating central composite design, Gaussian process regression, and multi-objective Grey Wolf optimization approaches
Phenolic extraction efficiency Design of experiments, Predictive modeling Process optimization strategies Metaheuristic optimization Ultrasound assistance
Abstract :
[en] The prediction of ultrasound-assisted extraction (UAE) for total phenolic content (TPC) and total flavonoid content (TFC) from Carthamus caeruleus L. rhizomes was conducted using a Gaussian process regression model (GPR) with a multi-objective Grey Wolf optimization approach (MOGWO). A central composite design (CCD) was employed first, examining ethanol concentration, temperature, time, and solvent-to-solid ratio as independent variables. TPC and TFC responses were analyzed under various conditions, revealing significant quadratic and interaction effects (p < 0.05). The GPR was then utilized to predict TPC and TFC, showing high accuracy with correlation coefficients near 1 and minimal root mean square error (RMSE) values. To simultaneously maximize TPC and TFC, the MOGWO was used in a multi-objective framework. Validation through CCD and GPR highlighted GPR's superior predictive accuracy. Optimal conditions (10 % ethanol, 40°C, 20 minutes sonication, and 50 mL g−1 solvent to solid ratio) showed significant discrepancies in CCD predictions but high accuracy in GPR predictions. An interactive tool predicts TPC and TFC using CCD and GPR models. Users input extraction parameters and receive predictions, with a GWO-based optimization module for optimal conditions. The interface enables model comparison, improves process understanding, and optimizes bioactive compound extraction.
Disciplines :
Biotechnology
Author, co-author :
Moussa, Hamza
Dahmoune, Farid
Lekmine, Sabrina
Mameri, Amal
Tahraoui, Hichem
Hamid, Sarah
Benzitoune, Nourelimane
Moula, Nassim ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Méthodes expérimentales des animaux de laboratoire et éthique en expérimentation animale
Zhang, Jie
Amrane, Abdeltif
Language :
English
Title :
Optimization of ultrasound-assisted extraction of bioactive compounds from Carthamus caeruleus L. rhizome: Integrating central composite design, Gaussian process regression, and multi-objective Grey Wolf optimization approaches
Toubane, A., Rezzoug, S.A., Besombes, C., Daoud, K., Optimization of accelerated solvent extraction of Carthamus Caeruleus L. evaluation of antioxidant and anti-inflammatory activity of extracts. Ind. Crops Prod. 97 (2017), 620–631.
Dahmani, M.M., Laoufi, R., Selama, O., Arab, K., Gas chromatography coupled to mass spectrometry characterization, anti-inflammatory effect, wound-healing potential, and hair growth-promoting activity of Algerian Carthamus caeruleus L (Asteraceae). Indian J. Pharmacol., 50(3), 2018, 123.
Baghiani, A., Boumerfeg, S., Belkhiri, F., Khennouf, S., Charef, N., Harzallah, D., Arrar, L., Abdel-Wahhab, M.A., Antioxidant and radical scavenging properties of Carthamus caeruleus L extracts grow wild in Algeria flora. Comun. Sci., 1(2), 2010, 128.
Ekezie, F.-G.C., Sun, D.-W., Cheng, J.-H., Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: a review of latest developments. Trends Food Sci. Technol. 67 (2017), 160–172.
Alonso-Carrillo, N., Aguilar-Santamaría, MdlÁ., Vernon-Carter, E.J., Jiménez-Alvarado, R., Cruz-Sosa, F., Román-Guerrero, A., Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Ind. Crops Prod. 103 (2017), 213–221.
Das, A.K., Dewanjee, S., Optimization of extraction using mathematical models and computation. Comput. Phytochem., 2018, 75–106.
Sujatha, S., Rajamohan, N., Anbazhagan, S., Vanithasri, M., Rajasimman, M., Extraction of nickel using a green emulsion liquid membrane – process intensification, parameter optimization and artificial neural network modeling. Chem. Eng. Process. Process. Intensif., 165, 2021, 108444.
Ebrahimzadeh, H., Tavassoli, N., Sadeghi, O., Amini, M.M., Optimization of solid-phase extraction using artificial neural networks and response surface methodology in combination with experimental design for determination of gold by atomic absorption spectrometry in industrial wastewater samples. Talanta 97 (2012), 211–217.
Sinha, K., Saha, P.D., Datta, S., Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Ind. Crops Prod. 37:1 (2012), 408–414.
Yang, F., Wang, D., Xu, F., Huang, Z., Tsui, K.-L., Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model. J. Power Sources, 476, 2020, 228654.
Nie, P., Roccotelli, M., Fanti, M.P., Ming, Z., Li, Z., Prediction of home energy consumption based on gradient boosting regression tree. Energy Rep. 7 (2021), 1246–1255.
Sahin, S., Aybastier, O., Isik, E., Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem. 141:2 (2013), 1361–1368.
Xi, J., Xue, Y., Xu, Y., Shen, Y., Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols. Food Chem. 141:1 (2013), 320–326.
Simić, V.M., Rajković, K.M., Stojičević, S.S., Veličković, D.T., Nikolić, N.Č., Lazić, M.L., Karabegović, I.T., Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep. Purif. Technol. 160 (2016), 89–97.
Yingngam, B., Navabhatra, A., Rungseevijitprapa, W., Prasitpuriprecha, C., Brantner, A., Comparative study of response surface methodology and artificial neural network in the optimization of the ultrasound-assisted extraction of diarylheptanoid phytoestrogens from Curcuma comosa rhizomes. Chem. Eng. Process. Process. Intensif., 165, 2021, 108461.
Cai, H., Zhang, J., Wang, S., Liu, M., Zhang, J., Behavioral-level modelling of GaN HEMT large signal based on Pelican-Gaussian process regression algorithm. Microelectron. J., 143, 2024.
Galeazzi, A., de Fusco, F., Prifti, K., Gallo, F., Biegler, L., Manenti, F., Predicting the performance of an industrial furnace using Gaussian process and linear regression: a comparison. Comput. Chem. Eng., 2024, 181.
Mirjalili, S., Saremi, S., Mirjalili, S.M., L.d.S. Coelho, Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47 (2016), 106–119.
Liu, J., Liu, F., Wang, L., Automated, economical, and environmentally-friendly asphalt mix design based on machine learning and multi-objective grey wolf optimization. J. Traffic Transp. Eng. 11:3 (2024), 381–405.
Hamid, S., Oukil, N.F., Moussa, H., Djihad, N., Mróz, M., Kusznierewicz, B., Attia, A., Djenadi, K., Mahdjoub, M.M., Bouhenna, M.M., Chebrouk, F., Chemical and biological characterization of Ocimum basilicum L. phenolic extract and essential oil derived through ultrasound and microwave-assisted extraction techniques. Food Biosci., 60, 2024.
Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K., Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 166 (2015), 585–595.
Bouaoudia-Madi, N., Boulekbache-Makhlouf, L., Kadri, N., Dahmoune, F., Remini, H., Dairi, S., Oukhmanou-Bensidhoum, S., Madani, K., Phytochemical analysis of Myrtus communis plant: Conventional versus microwave assisted-extraction procedures. J. Complement. Integr. Med., 14(4), 2017.
Hamri, N., Imessaoudene, A., Hadadi, A., Cheikh, S., Boukerroui, A., Bollinger, J.-C., Amrane, A., Tahraoui, H., Tran, H.N., Ezzat, A.O.J.W., Enhanced adsorption capacity of methylene blue dye onto kaolin through acid treatment: batch adsorption and machine learning studies. water, 16(2), 2024, 243.
Mechati, S., Zamouche, M., Tahraoui, H., Filali, O., Mazouz, S., Bouledjemer, I.N.E., Toumi, S., Triki, Z., Amrane, A., Kebir, M.J.W., Modeling and optimization of hybrid fenton and ultrasound process for crystal violet degradation using AI techniques. water, 15(24), 2023, 4274.
Smara, M., Khalladi, R., Moulai-Mostefa, N., Madi, K., Mansour, D., Lekmine, S., Benslama, O., Tahraoui, H., Zhang, J., Amrane, A.J.P., Efficiency of hydrogen peroxide and fenton reagent for polycyclic aromatic hydrocarbon degradation in contaminated soil: insights from experimental and predictive modeling. processes, 12(3), 2024, 621.
Harizi, I., Aldahri, T., Chebli, D., Tahraoui, H., Bouguettoucha, A., Rohani, S., Zhang, J., Amrane, A.J.C.E.R., Design, gaussian process regression with levy flight optimization: advanced AR66 adsorption studies. Chem. Eng. Res. Des., 2024.
Guediri, A., Bouguettoucha, A., Tahraoui, H., Chebli, D., Zhang, J., Amrane, A., Khezami, L., Assadi, A.A.J.W., The enhanced adsorption capacity of Ziziphus jujuba stones modified with ortho-phosphoric acid for organic dye removal: a gaussian process regression approach. water, 16(9), 2024, 1208.
Bouchelkia, N., Tahraoui, H., Amrane, A., Belkacemi, H., Bollinger, J.-C., Bouzaza, A., Zoukel, A., Zhang, J., Mouni, L.J.P.S., Protection, E., Jujube stones based highly efficient activated carbon for methylene blue adsorption: kinetics and isotherms modeling, thermodynamics and mechanism study, optimization via response surface methodology and machine learning approaches. Process Saf. Environ. Prot. 170 (2023), 513–535.
Tahraoui, H., Belhadj, A.-E., Triki, Z., Boudellal, N.R., Seder, S., Amrane, A., Zhang, J., Moula, N., Tifoura, A., Ferhat, R.J.P.S., E. Protection, Mixed coagulant-flocculant optimization for pharmaceutical effluent pretreatment using response surface methodology and Gaussian process regression. Process Saf. Environ. Prot. 169 (2023), 909–927.
Kebir, M., Benramdhan, I.-K., Nasrallah, N., Tahraoui, H., Baït, N., Benaissa, H., Ameraoui, R., Zhang, J., Assadi, A.A., Mouni, L.J.C.C., Surface response modeling of homogeneous photo Fenton Fe (III) and Fe (II) complex for sunlight degradation and mineralization of food dye. Catal. Commun., 183, 2023, 106780.
Imessaoudene, A., Cheikh, S., Hadadi, A., Hamri, N., Bollinger, J.-C., Amrane, A., Tahraoui, H., Manseri, A., Mouni, L.J.S., Adsorption performance of zeolite for the removal of congo red dye: factorial design experiments, kinetic, and equilibrium studies. separations, 10(1), 2023, 57.
Tahraoui, H., Belhadj, A.-E., Hamitouche, A.-E.J.KuiČkikiH., Prediction of the bicarbonate amount in drinking water in the region of Médéa using artificial neural network modelling. Croat. J. Chem. Chem. Eng. 69:11-12 (2020), 595–602.
Zamouche, M., Tahraoui, H., Laggoun, Z., Mechati, S., Chemchmi, R., Kanjal, M.I., Amrane, A., Hadadi, A., Mouni, L.J.P., Optimization and prediction of stability of emulsified liquid membrane (ELM): artificial neural network. processes, 11(2), 2023, 364.
Guediri, A., Bouguettoucha, A., Tahraoui, H., Chebli, D., Amrane, A., Zhang, J.J.Jo.M.L., Thermodynamic study and the development of a support vector machine model for predicting adsorption behavior of orange peel-derived beads in wastewater treatment. J. Mol. Liq., 403, 2024, 124860.
Tahraoui, H., Amrane, A., Belhadj, A.-E., Zhang, J.J.E.T., Innovation, Modeling the organic matter of water using the decision tree coupled with bootstrap aggregated and least-squares boosting. Environ. Technol. Innov., 27, 2022, 102419.
Tahraoui, H., Belhadj, A.-E., Hamitouche, A.-e, Bouhedda, M., Amraned, A., Predicting the concentration of sulfate (so24-) in drinking water using artificial neural networks: a case study: médéa-Algeria. Desalin. Water Treat., 2021.
Prakash Maran, J., Manikandan, S., Vigna Nivetha, C., Dinesh, R., Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab. J. Chem. 10 (2017), S1145–S1157.
Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X., Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 106:2 (2008), 804–810.
Ghitescu, R.E., Volf, I., Carausu, C., Buhlmann, A.M., Gilca, I.A., Popa, V.I., Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason. Sonochem. 22 (2015), 535–541.
Carrera, C., Ruiz-Rodriguez, A., Palma, M., Barroso, C.G., Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 732 (2012), 100–104.
Ghafoor, K., Choi, Y.H., Jeon, J.Y., Jo, I.H., Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 57:11 (2009), 4988–4994.
Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., Madani, K., Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod. 50 (2013), 77–87.
Teh, S.-S., Birch, E.J., Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason. Sonochem. 21:1 (2014), 346–353.
Luo, X., Cui, J., Zhang, H., Duan, Y., Zhang, D., Cai, M., Chen, G., Ultrasound assisted extraction of polyphenolic compounds from red sorghum (Sorghum bicolor L.) bran and their biological activities and polyphenolic compositions. Ind. Crops Prod. 112 (2018), 296–304.
Jovanović, A.A., Đorđević, V.B., Zdunić, G.M., Pljevljakušić, D.S., Šavikin, K.P., Gođevac, D.M., Bugarski, B.M., Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 179 (2017), 369–380.
Upadhyay, R., Nachiappan, G., Mishra, H.N., Ultrasound-assisted extraction of flavonoids and phenolic compounds from Ocimum tenuiflorum leaves. Food Sci. Biotechnol. 24:6 (2015), 1951–1958.
Dent, M., Dragović-Uzelac, V., Penić, M., Bosiljkov, T., Levaj, B., The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotechnol. 51:1 (2013), 84–91.
Zhou, Y., Zheng, J., Gan, R.Y., Zhou, T., Xu, D.P., Li, H.B., Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat. Molecules, 22(4), 2017.
Uma, D., Ho, C., Aida, W.Wan, Optimization of extraction parameters of total phenolic compounds from henna (Lawsonia inermis) leaves. Sains Malays. 39:1 (2010), 119–128.
Huang, W., Xue, A., Niu, H., Jia, Z., Wang, J., Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem. 114:3 (2009), 1147–1154.
Jing, C.L., Dong, X.F., Tong, J.M., Optimization of ultrasonic-assisted extraction of flavonoid compounds and antioxidants from alfalfa using response surface method. Molecules 20:9 (2015), 15550–15571.
Teng, H., Optimization of ultrasonic-assisted extraction of phenolic compounds from Chinese Quince (Chaenomeles sinensis) by response surface methodology. J. Korean Soc. Appl. Biol. Chem. 53:5 (2010), 618–625.
Yang, Y., Zhang, F., Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrason. Sonochem. 15:4 (2008), 308–313.
Yang, L., Cao, Y.L., Jiang, J.G., Lin, Q.S., Chen, J., Zhu, L., Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl. J. Sep. Sci. 33:9 (2010), 1349–1355.
Xu, D.P., Zheng, J., Zhou, Y., Li, Y., Li, S., Li, H.B., Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem. 217 (2017), 552–559.
Wang, X., Wu, Q., Wu, Y., Chen, G., Yue, W., Liang, Q., Response surface optimized ultrasonic-assisted extraction of flavonoids from Sparganii rhizoma and evaluation of their in vitro antioxidant activities. Molecules 17:6 (2012), 6769–6783.
Ghasemzadeh, A., Jaafar, H.Z., Karimi, E., Rahmat, A., Optimization of ultrasound-assisted extraction of flavonoid compounds and their pharmaceutical activity from curry leaf (Murraya koenigii L.) using response surface methodology. BMC Complement. Altern. Med., 14(1), 2014, 318.
Zamouche, M., Chermat, M., Kermiche, Z., Tahraoui, H., Kebir, M., Bollinger, J.-C., Amrane, A., Mouni, L.J.W., Predictive model based on K-nearest neighbor coupled with the gray wolf optimizer algorithm (KNN_GWO) for estimating the amount of phenol adsorption on powdered activated carbon. water, 15(3), 2023, 493.
Mansour, D., Alblawi, E., Alsukaibi, A.K.D., Humaidi, J., Tahraoui, H., Shatat, M., Teka, S., Maisara, S., Bellakhal, N., Binous, H.J.W., Modeling and optimization of electrochemical advanced oxidation of clopidogrel using the doehlert experimental design combined with an improved grey wolf algorithm. water, 16(14), 2024, 1964.
Hadadi, A., Imessaoudene, A., Bollinger, J.-C., Bouzaza, A., Amrane, A., Tahraoui, H., Mouni, L.J.Jo.E.M., Aleppo pine seeds (Pinus halepensis Mill.) as a promising novel green coagulant for the removal of Congo red dye: optimization via machine learning algorithm. J. Environ. Manag., 331, 2023, 117286.
Tahraoui, H., Toumi, S., Hassein-Bey, A.H., Bousselma, A., Sid, A.N.E.H., Belhadj, A.-E., Triki, Z., Kebir, M., Amrane, A., Zhang, J.J.W., Advancing water quality research: k-nearest neighbor coupled with the improved grey wolf optimizer algorithm model unveils new possibilities for dry residue prediction. water, 15(14), 2023, 2631.
Nedjhioui, M., Nasrallah, N., Kebir, M., Tahraoui, H., Bouallouche, R., Assadi, A.A., Amrane, A., Jaouadi, B., Zhang, J., Mouni, L.J.P., Designing an efficient surfactant–polymer–oil–electrolyte system: a multi-objective optimization study. processes, 11(5), 2023, 1314.