Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models.
Sadeghian Dehkord, Ehsan; DE CARVALHO, Bruno; Ernst, Marieet al.
Animal study; Biomaterials; Bone defect; Bone regeneration; Bone scaffold; Calcium phosphate; Cranio-maxillofacial; Intra-oral bone formation; Physicochemical; Preclinical; Animal studies; Bone formation; Bone scaffolds; Physico-chemicals; Physicochemical characteristics; Biotechnology; Bioengineering; Biomedical Engineering; Molecular Biology; Cell Biology
Abstract :
[en] [en] OBJECTIVES: Calcium phosphate-based biomaterials (CaP) are the most widely used biomaterials to enhance bone regeneration in the treatment of alveolar bone deficiencies, cranio-maxillofacial and periodontal infrabony defects, with positive preclinical and clinical results reported. This systematic review aimed to assess the influence of the physicochemical properties of CaP biomaterials on the performance of bone regeneration in preclinical animal models.
METHODS: The PubMed, EMBASE and Web of Science databases were searched to retrieve the preclinical studies investigating physicochemical characteristics of CaP biomaterials. The studies were screened for inclusion based on intervention (physicochemical characterization and in vivo evaluation) and reported measurable outcomes.
RESULTS: A total of 1532 articles were retrieved and 58 studies were ultimately included in the systematic review. A wide range of physicochemical characteristics of CaP biomaterials was found to be assessed in the included studies. Despite a high degree of heterogeneity, the meta-analysis was performed on 39 studies and evidenced significant effects of biomaterial characteristics on their bone regeneration outcomes. The study specifically showed that macropore size, Ca/P ratio, and compressive strength exerted significant influence on the formation of newly regenerated bone. Moreover, factors such as particle size, Ca/P ratio, and surface area were found to impact bone-to-material contact during the regeneration process. In terms of biodegradability, the amount of residual graft was determined by macropore size, particle size, and compressive strength.
CONCLUSION: The systematic review showed that the physicochemical characteristics of CaP biomaterials are highly determining for scaffold's performance, emphasizing its usefulness in designing the next generation of bone scaffolds to target higher rates of regeneration.
Research Center/Unit :
d‐BRU - Dental Biomaterials Research Unit - ULiège
Disciplines :
Dentistry & oral medicine
Author, co-author :
Sadeghian Dehkord, Ehsan ; Université de Liège - ULiège > GIGA ; Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
DE CARVALHO, Bruno ; Centre Hospitalier Universitaire de Liège - CHU > > Service de parodontologie, chirurgie bucco-dentaire et chirurgie implantaire
Ernst, Marie ; Centre Hospitalier Universitaire de Liège - CHU > > Service des informations médico économiques (SIME)
Albert, Adelin ; Université de Liège - ULiège > Département des sciences de la santé publique
Lambert, France ; Université de Liège - ULiège > Département des sciences dentaires > Chirurgie bucco-dentaire et parodontologie
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium ; Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Belgium
Language :
English
Title :
Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models.
This project received funding from the European Research Council under the European Union\u2019s Horizon Europe programme / ERC Consolidator Grant No. 101088919, and from the Walloon Region via the BIOWIN-BIOPTOS and Win2Wal-B2Bone project. We are grateful to Dr. Bert Avau (Centre for Evidence-Based Practice (CEBaP)) for his skillful support and assistance. We also acknowledge the kind support from Dr. Krizia Tuand and Dr. Kristel Paque (KU Leuven Bibliotheken).The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:Liesbet Geris reports financial support was provided by European Research Council under the European Union's Horizon Europe programme/ERC Consolidator Grant No. 101088919. Liesbet Geris and France Lambert report financial support was provided by Walloon Region via the BIOWIN-BIOPTOS and Win2Wal-B2Bone projects. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.This project received funding from the European Research Council under the European Union's Horizon Europe programme/ERC Consolidator Grant No. 101088919, and from the Walloon Region via the BIOWIN-BIOPTOS and Win2Wal-B2Bone project. We are grateful to Dr. Bert Avau (Centre for Evidence-Based Practice (CEBaP)) for his skillful support and assistance. We also acknowledge the kind support from Dr. Krizia Tuand and Dr. Kristel Paque (KU Leuven Bibliotheken).
Kinoshita, Y., Maeda, H., Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci. World J. 2013 (2013), 1–21, 10.1155/2013/863157.
Fitzpatrick, V., Martín-Moldes, Z., Deck, A., Torres-Sanchez, R., Valat, A., Cairns, D., Li, C., Kaplan, D.L., Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials, 276, 2021, 120995, 10.1016/j.biomaterials.2021.120995.
Aghaloo, T.L., Moy, P.K., Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement?. Int. J. Oral Maxillofac. Implants 22:Suppl (2007), 49–70.
Jepsen, S., Schwarz, F., Cordaro, L., Derks, J., Hämmerle, C.H.F., Heitz‐Mayfield, L.J., Hernández‐Alfaro, F., Meijer, H.J.A., Naenni, N., Ortiz‐Vigón, A., Pjetursson, B., Raghoebar, G.M., Renvert, S., Rocchietta, I., Roccuzzo, M., Sanz‐Sánchez, I., Simion, M., Tomasi, C., Trombelli, L., Urban, I., Regeneration of alveolar ridge defects. Consensus report of group 4 of the 15th European workshop on periodontology on bone regeneration. J. Clin. Periodontol., 2019, 10.1111/jcpe.13121 jcpe.13121.
Sanz, M., Dahlin, C., Apatzidou, D., Artzi, Z., Bozic, D., Calciolari, E., De Bruyn, H., Dommisch, H., Donos, N., Eickholz, P., Ellingsen, J.E., Haugen, H.J., Herrera, D., Lambert, F., Layrolle, P., Montero, E., Mustafa, K., Omar, O., Schliephake, H., Biomaterials and regenerative technologies used in bone regeneration in the craniomaxillofacial region: consensus report of group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 46 (2019), 82–91, 10.1111/jcpe.13123.
Chappuis, V., Rahman, L., Buser, R., Janner, S.F.M., Belser, U.C., Buser, D., Effectiveness of contour augmentation with guided bone regeneration: 10-year results. J. Dent. Res. 97 (2018), 266–274, 10.1177/0022034517737755.
Rogers, G.F., Greene, A.K., Autogenous bone graft: basic science and clinical implications. J. Craniofac. Surg. 23 (2012), 323–327, 10.1097/SCS.0b013e318241dcba.
Sakkas, A., Wilde, F., Heufelder, M., Winter, K., Schramm, A., Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int. J. Implant Dent., 3, 2017, 23, 10.1186/s40729-017-0084-4.
Ho-Shui-Ling, A., Bolander, J., Rustom, L.E., Johnson, A.W., Luyten, F.P., Picart, C., Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180 (2018), 143–162, 10.1016/j.biomaterials.2018.07.017.
Esposito, M., Grusovin, M.G., Rees, J., Karasoulos, D., Felice, P., Alissa, R., Worthington, H.V., Coulthard, P., Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus. The Cochrane Collaboration (Ed.), Cochrane Database Syst. Rev., 2010, John Wiley & Sons, Ltd, Chichester, UK, CD008397, 10.1002/14651858.CD008397.
Melek, L.N., Tissue engineering in oral and maxillofacial reconstruction. Tanta Dent. J. 12 (2015), 211–223, 10.1016/j.tdj.2015.05.003.
Turri, A., Elgali, I., Vazirisani, F., Johansson, A., Emanuelsson, L., Dahlin, C., Thomsen, P., Omar, O., Guided bone regeneration is promoted by the molecular events in the membrane compartment. Biomaterials 84 (2016), 167–183, 10.1016/j.biomaterials.2016.01.034.
Trajkovski, B., Jaunich, M., Müller, W.-D., Beuer, F., Zafiropoulos, G.-G., Houshmand, A., Hydrophilicity, viscoelastic, and physicochemical properties variations in dental bone grafting substitutes. Materials, 11, 2018, 215, 10.3390/ma11020215.
Kolk, A., Handschel, J., Drescher, W., Rothamel, D., Kloss, F., Blessmann, M., Heiland, M., Wolff, K.-D., Smeets, R., Current trends and future perspectives of bone substitute materials – from space holders to innovative biomaterials, J. Cranio-Maxillofac. Surgery (St Louis) 40 (2012), 706–718, 10.1016/j.jcms.2012.01.002.
Brennan, M.Á., Monahan, D.S., Brulin, B., Gallinetti, S., Humbert, P., Tringides, C., Canal, C., Ginebra, M.P., Layrolle, P., Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects. Acta Biomater. 135 (2021), 689–704, 10.1016/j.actbio.2021.09.007.
Thrivikraman, G., Athirasala, A., Twohig, C., Boda, S.K., Bertassoni, L.E., Biomaterials for craniofacial bone regeneration. Dent. Clin. 61 (2017), 835–856, 10.1016/j.cden.2017.06.003.
Yun, J., Lee, J., Ha, C.W., Park, S.J., Kim, S., Koo, K., Seol, Y., Lee, Y., The effect of 3‐D printed polylactic acid scaffold with and without hyaluronic acid on bone regeneration. J. Periodontol. 93 (2022), 1072–1082, 10.1002/JPER.21-0428.
Bhuiyan, D.B., Middleton, J.C., Tannenbaum, R., Wick, T.M., Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration. J. Biomater. Sci. Polym. Ed. 27 (2016), 1139–1154, 10.1080/09205063.2016.1184121.
Zhang, H., Zhang, H., Xiong, Y., Dong, L., Li, X., Development of hierarchical porous bioceramic scaffolds with controlled micro/nano surface topography for accelerating bone regeneration. Mater. Sci. Eng. C, 130, 2021, 112437, 10.1016/j.msec.2021.112437.
Haugen, H.J., Lyngstadaas, S.P., Rossi, F., Perale, G., Bone grafts: which is the ideal biomaterial?. J. Clin. Periodontol. 46 (2019), 92–102, 10.1111/jcpe.13058.
Sigusch, B., Kranz, S., Von Hohenberg, A.C., Wehle, S., Guellmar, A., Steen, D., Berg, A., Rabe, U., Heyder, M., Reise, M., Histological and histomorphometric evaluation of implanted photodynamic active biomaterials for periodontal bone regeneration in an animal study. Int. J. Mol. Sci., 24, 2023, 6200, 10.3390/ijms24076200.
Pilipchuk, S.P., Plonka, A.B., Monje, A., Taut, A.D., Lanis, A., Kang, B., Giannobile, W.V., Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent. Mater. 31 (2015), 317–338, 10.1016/j.dental.2015.01.006.
Zhao, R., Yang, R., Cooper, P.R., Khurshid, Z., Shavandi, A., Ratnayake, J., Bone grafts and substitutes in dentistry: a review of current trends and developments. Molecules, 26, 2021, 3007, 10.3390/molecules26103007.
Alsahafi, R.A., Mitwalli, H.A., Balhaddad, A.A., Weir, M.D., Xu, H.H.K., Melo, M.A.S., Regenerating craniofacial dental defects with calcium phosphate cement scaffolds: current status and innovative scope review. Front. Dent. Med., 2, 2021, 743065, 10.3389/fdmed.2021.743065.
Wang, W., Yeung, K.W.K., Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2 (2017), 224–247, 10.1016/j.bioactmat.2017.05.007.
Bruyas, A., Lou, F., Stahl, A.M., Gardner, M., Maloney, W., Goodman, S., Yang, Y.P., Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity. J. Mater. Res. 33 (2018), 1948–1959, 10.1557/jmr.2018.112.
Valtanen, R.S., Yang, Y.P., Gurtner, G.C., Maloney, W.J., Lowenberg, D.W., Synthetic and Bone tissue engineering graft substitutes: what is the future?. Injury 52 (2021), S72–S77, 10.1016/j.injury.2020.07.040.
Rahmati, M., Silva, E.A., Reseland, J.E., Heyward, C.A., Haugen, H.J., Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 49 (2020), 5178–5224, 10.1039/D0CS00103A.
Hooijmans, C.R., Wever, K.E., de Vries, R.B., SYRCLE's starting guide for systematic reviews of preclinical animal interventions studies. https://www.radboudumc.nl/getmedia/4b1cbcb8-d9b6-45d5-b9fe-c92e43ab1dd4/SYRCLE-starting-guide-tool.aspx, 2016.
Bramer, W.M., Giustini, D., De Jonge, G.B., Holland, L., Bekhuis, T., De-duplication of database search results for systematic reviews in EndNote. J. Med. Libr. Assoc., 104, 2016, 10.5195/jmla.2016.24.
Hooijmans, C.R., Rovers, M.M., de Vries, R.B., Leenaars, M., Ritskes-Hoitinga, M., Langendam, M.W., SYRCLE's risk of bias tool for animal studies. BMC Med. Res. Methodol., 14, 2014, 43, 10.1186/1471-2288-14-43.
Abdel-Fattah, W.I., Osiris, W.G., Mohamed, S.S., Khalil, M.R., Reconstruction of resected mandibles using a hydroxyapatite veterinary bone graft. Biomaterials 15 (1994), 609–614, 10.1016/0142-9612(94)90211-9.
Denissen, H., Kalk, W., Van Beek, E., Löwik, C., Papapoulos, S., Van Den Hooff, A., Composites of hydroxyapatite and bisphosphonate: properties and alveolar bone response. J. Mater. Sci. Mater. Med. 6 (1995), 35–40, 10.1007/BF00121245.
Dutta Roy, T., Simon, J.L., Ricci, J.L., Rekow, E.D., Thompson, V.P., Parsons, J.R., Performance of hydroxyapatite bone repair scaffolds created via three‐dimensional fabrication techniques. J. Biomed. Mater. Res. 67A (2003), 1228–1237, 10.1002/jbm.a.20034.
Fleckenstein, K.B., Cuenin, M.F., Peacock, M.E., Billman, M.A., Swiec, G.D., Buxton, T.B., Singh, B.B., McPherson, J.C., Effect of a hydroxyapatite tricalcium phosphate alloplast on osseous repair in the rat calvarium. J. Periodontol. 77 (2006), 39–45, 10.1902/jop.2006.77.1.39.
Suzuki, O., Kamakura, S., Katagiri, T., Nakamura, M., Zhao, B., Honda, Y., Kamijo, R., Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27 (2006), 2671–2681, 10.1016/j.biomaterials.2005.12.004.
Simon, J.L., Michna, S., Lewis, J.A., Rekow, E.D., Thompson, V.P., Smay, J.E., Yampolsky, A., Parsons, J.R., Ricci, J.L., In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. J. Biomed. Mater. Res. 83A (2007), 747–758, 10.1002/jbm.a.31329.
Park, J.-W., Bae, S.-R., Suh, J.-Y., Lee, D.-H., Kim, S.-H., Kim, H., Lee, C.-S., Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J. Biomed. Mater. Res. 87A (2008), 203–214, 10.1002/jbm.a.31768.
Ripamonti, U., Richter, P.W., Nilen, R.W.N., Renton, L., The induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus. J. Cell Mol. Med. 12 (2008), 2609–2621, 10.1111/j.1582-4934.2008.00312.x.
Xu, S., Lin, K., Wang, Z., Chang, J., Wang, L., Lu, J., Ning, C., Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29 (2008), 2588–2596, 10.1016/j.biomaterials.2008.03.013.
Appleford, M.R., Oh, S., Oh, N., Ong, J.L., In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J. Biomed. Mater. Res. 89A (2009), 1019–1027, 10.1002/jbm.a.32049.
Hirota, M., Matsui, Y., Mizuki, N., Kishi, T., Watanuki, K., Ozawa, T., Fukui, T., Shoji, S., Adachi, M., Monden, Y., Iwai, T., Tohnai, I., Combination with allogenic bone reduces early absorption of .BETA.-tricalcium phosphate (.BETA.-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects. Dent. Mater. J. 28 (2009), 153–161, 10.4012/dmj.28.153.
Takahashi, K., Effect of new bone substitute materials consisting of collagen and tricalcium phosphate. Bull. Tokyo Dent. Coll. 50 (2009), 1–11, 10.2209/tdcpublication.50.1.
Wang, S., Zhang, Z., Zhao, J., Zhang, X., Sun, X., Xia, L., Chang, Q., Ye, D., Jiang, X., Vertical alveolar ridge augmentation with β-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30 (2009), 2489–2498, 10.1016/j.biomaterials.2008.12.067.
Yao, J., Li, X., Bao, C., Fan, H., Zhang, X., Chen, Z., A novel technique to reconstruct a boxlike bone defect in the mandible and support dental implants with In vivo tissue‐engineered bone. J. Biomed. Mater. Res. B Appl. Biomater. 91B (2009), 805–812, 10.1002/jbm.b.31459.
Park, J.-S., Hong, S.-J., Kim, H.-Y., Yu, H.-S., Lee, Y.I., Kim, C.-H., Kwak, S.-J., Jang, J.-H., Hyun, J.K., Kim, H.-W., Evacuated calcium phosphate spherical microcarriers for bone regeneration. Tissue Eng. 16 (2010), 1681–1691, 10.1089/ten.tea.2009.0624.
Park, J.-W., Kim, E.-S., Jang, J.-H., Suh, J.-Y., Park, K.-B., Hanawa, T., Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Clin. Oral Implants Res. 21 (2010), 268–276, 10.1111/j.1600-0501.2009.01846.x.
Hung, C.-L., Yang, J.-C., Chang, W.-J., Hu, C.-Y., Lin, Y.-H., Huang, C.-H., Chen, C.-C., Lee, S.-Y., Teng, N.-C., In vivo graft performance of an improved bone substitute composed of poor crystalline hydroxyapatite based biphasic calcium phosphate. Dent. Mater. J. 30 (2011), 21–28, 10.4012/dmj.2010-060.
de Oliveira Lomelino, R., Castro-Silva, I.I., Linhares, A.B.R., Alves, G.G., de Albuquerque Santos, S.R., Gameiro, V.S., Rossi, A.M., Granjeiro, J.M., The association of human primary bone cells with biphasic calcium phosphate (βTCP/HA 70:30) granules increases bone repair. J. Mater. Sci. Mater. Med. 23 (2012), 781–788, 10.1007/s10856-011-4530-1.
Klijn, R.J., van den Beucken, J.J.J.P., Félix Lanao, R.P., Veldhuis, G., Leeuwenburgh, S.C., Wolke, J.G.C., Meijer, G.J., Jansen, J.A., Three different strategies to obtain porous calcium phosphate cements: comparison of performance in a rat skull bone augmentation model. Tissue Eng. 18 (2012), 1171–1182, 10.1089/ten.tea.2011.0444.
Lee, S.-W., Kim, S.-G., Balázsi, C., Chae, W.-S., Lee, H.-O., Comparative study of hydroxyapatite from eggshells and synthetic hydroxyapatite for bone regeneration. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 113 (2012), 348–355, 10.1016/j.tripleo.2011.03.033.
Cho, J.S., Kim, H.-S., Um, S.-H., Rhee, S.-H., Preparation of a novel anorganic bovine bone xenograft with enhanced bioactivity and osteoconductivity. J. Biomed. Mater. Res. B Appl. Biomater. 101B (2013), 855–869, 10.1002/jbm.b.32890.
Lee, J.H., Ryu, M.Y., Baek, H.-R., Lee, K.M., Seo, J.-H., Lee, H.-K., Fabrication and evaluation of porous beta-tricalcium phosphate/hydroxyapatite (60/40) composite as a bone graft extender using rat calvarial bone defect model. Sci. World J. 2013 (2013), 1–9, 10.1155/2013/481789.
Lee, J.H., Ryu, M.Y., Baek, H.-R., Lee, K.M., Seo, J.-H., Lee, H.-K., Ryu, H.-S., Effects of porous beta-tricalcium phosphate-based ceramics used as an E. coli-derived rhBMP-2 carrier for bone regeneration. J. Mater. Sci. Mater. Med. 24 (2013), 2117–2127, 10.1007/s10856-013-4967-5.
Jang, C.H., Cho, Y.B., Choi, C.H., Jang, Y.S., Jung, W.-K., Lee, J.K., Comparision of osteoconductivity of biologic and artificial synthetic hydroxyapatite in experimental mastoid obliteration. Acta Otolaryngol. 134 (2014), 255–259, 10.3109/00016489.2013.859397.
Kobayashi, K., Anada, T., Handa, T., Kanda, N., Yoshinari, M., Takahashi, T., Suzuki, O., Osteoconductive property of a mechanical mixture of octacalcium phosphate and amorphous calcium phosphate. ACS Appl. Mater. Interfaces 6 (2014), 22602–22611, 10.1021/am5067139.
Lee, S.-W., Balázsi, C., Balázsi, K., Seo, D., Kim, H.S., Kim, C.-H., Kim, S.-G., Comparative Study of hydroxyapatite prepared from seashells and eggshells as a bone graft material. Tissue Eng. Regen. Med. 11 (2014), 113–120, 10.1007/s13770-014-0056-1.
Xia, L., Lin, K., Jiang, X., Fang, B., Xu, Y., Liu, J., Zeng, D., Zhang, M., Zhang, X., Chang, J., Zhang, Z., Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells. Biomaterials 35 (2014), 8514–8527, 10.1016/j.biomaterials.2014.06.028.
Yang, C., Unursaikhan, O., Lee, J.-S., Jung, U.-W., Kim, C.-S., Choi, S.-H., Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits: bone Regeneration of Synthetic Bone Graft Material. J. Biomed. Mater. Res. B Appl. Biomater. 102 (2014), 80–88, 10.1002/jbm.b.32984.
Calasans-Maia, M.D., de Melo, B.R., Alves, A.T.N.N., Resende, R.F. de B., Louro, R.S., Sartoretto, S.C., Granjeiro, J.M., Alves, G.G., Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair. J. Appl. Oral Sci. 23 (2015), 599–608, 10.1590/1678-775720150122.
Calvo-Guirado, J.L., Garces, M., Delgado-Ruiz, R.A., Ramirez Fernandez, M.P., Ferres-Amat, E., Romanos, G.E., Biphasic β-TCP mixed with silicon increases bone formation in critical site defects in rabbit calvaria. Clin. Oral Implants Res. 26 (2015), 891–897, 10.1111/clr.12413.
Khan, R., Witek, L., Breit, M., Colon, D., Tovar, N., Janal, M.N., Jimbo, R., Coelho, P.G., Bone regenerative potential of modified biphasic graft materials. Implant Dent., 2015, 10.1097/ID.0000000000000220 Publish Ahead of Print.
Lim, H.-C., Song, K.-H., You, H., Lee, J.-S., Jung, U.-W., Kim, S.-Y., Choi, S.-H., Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects. J. Periodontal Implant Sci., 45, 2015, 46, 10.5051/jpis.2015.45.2.46.
Manchón, A., Alkhraisat, M., Rueda-Rodriguez, C., Torres, J., Prados-Frutos, J.C., Ewald, A., Gbureck, U., Cabrejos-Azama, J., Rodriguez-González, A., López-Cabarcos, E., Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone: silicon Calcium Phosphate Ceramic as Novel Biomaterial. J. Biomed. Mater. Res. 103 (2015), 479–488, 10.1002/jbm.a.35196.
Manchón, A., Hamdan Alkhraisat, M., Rueda-Rodriguez, C., Prados-Frutos, J.C., Torres, J., Lucas-Aparicio, J., Ewald, A., Gbureck, U., López-Cabarcos, E., A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria. Biomed. Mater., 10, 2015, 055012, 10.1088/1748-6041/10/5/055012.
Mangano, C., Barboni, B., Valbonetti, L., Berardinelli, P., Martelli, A., Muttini, A., Bedini, R., Tetè, S., Piattelli, A., Mattioli, M., In vivo behavior of a custom-made 3D synthetic bone substitute in sinus augmentation procedures in sheep. J. Oral Implantol. 41 (2015), 240–250, 10.1563/AAID-JOI-D-13-00053.
Lee, D., Pai, Y., Chang, S., Kim, D., Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules. Mater. Sci. Eng., C 58 (2016), 971–976, 10.1016/j.msec.2015.09.047.
Sheikh, Z., Drager, J., Zhang, Y.L., Abdallah, M.-N., Tamimi, F., Barralet, J., Controlling bone graft substitute microstructure to improve bone augmentation. Adv. Healthcare Mater. 5 (2016), 1646–1655, 10.1002/adhm.201600052.
Lambert, F., Bacevic, M., Layrolle, P., Schüpbach, P., Drion, P., Rompen, E., Impact of biomaterial microtopography on bone regeneration: comparison of three hydroxyapatites. Clin. Oral Implants Res. 28 (2017), e201–e207, 10.1111/clr.12986.
Diao, J., OuYang, J., Deng, T., Liu, X., Feng, Y., Zhao, N., Mao, C., Wang, Y., 3D-Plotted beta-tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model. Adv. Healthcare Mater., 7, 2018, 1800441, 10.1002/adhm.201800441.
Fan, Y.-P., Lu, J.-F., Xu, A.-T., He, F.-M., Physiochemical characterization and biological effect of anorganic bovine bone matrix and organic-containing bovine bone matrix in comparison with Bio-Oss in rabbits. J. Biomater. Appl. 33 (2018), 566–575, 10.1177/0885328218804926.
Yao, J., Chen, H., Gao, Q., Liang, Z., Evaluation of osteoinductive calcium phosphate ceramics repairing alveolar cleft defects in dog model. Bio Med. Mater. Eng. 29 (2018), 229–240, 10.3233/BME-171725.
Madhumathi, K., Rubaiya, Y., Doble, M., Venkateswari, R., Sampath Kumar, T.S., Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers—in vitro and in vivo studies. Drug Deliv. Transl. Res. 8 (2018), 1066–1077, 10.1007/s13346-018-0532-6.
da Silva Brum, I., de Carvalho, J.J., da Silva Pires, J.L., de Carvalho, M.A.A., dos Santos, L.B.F., Elias, C.N., Nanosized hydroxyapatite and β-tricalcium phosphate composite: physico-chemical, cytotoxicity, morphological properties and in vivo trial. Sci. Rep., 9, 2019, 19602, 10.1038/s41598-019-56124-4.
De Carvalho, B., Rompen, E., Lecloux, G., Schupbach, P., Dory, E., Art, J.-F., Lambert, F., Effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite. Materials, 12, 2019, 3946, 10.3390/ma12233946.
Park, M., Lee, G., Ryu, K., Lim, W., Improvement of bone formation in rats with calvarial defects by modulating the pore size of tricalcium phosphate scaffolds. Biotechnol. Bioproc. Eng. 24 (2019), 885–892, 10.1007/s12257-019-0248-6.
Zhang, B., Sun, H., Wu, L., Ma, L., Xing, F., Kong, Q., Fan, Y., Zhou, C., Zhang, X., 3D printing of calcium phosphate bioceramic with tailored biodegradation rate for skull bone tissue reconstruction, Bio-Des. Man (Lond.) 2 (2019), 161–171, 10.1007/s42242-019-00046-7.
Hung, C., Fu, E., Chiu, H., Liang, H., Bone formation following sinus grafting with an alloplastic biphasic calcium phosphate in Lanyu Taiwanese mini‐pigs. J. Periodontol. 91 (2020), 93–101, 10.1002/JPER.17-0748.
Chi, H., Chen, G., He, Y., Chen, G., Tu, H., Liu, X., Yan, J., Wang, X., 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone repair. Int. J. NANOMEDICINE 15 (2020), 5825–5838, 10.2147/IJN.S259678.
Jensen, M.B., Slots, C., Ditzel, N., Kolstrup, S., Kassem, M., Thygesen, T., Andersen, M.Ø., Treating mouse skull defects with 3D-printed fatty acid and tricalcium phosphate implants. J. Tissue Eng. Regen. Med. 14 (2020), 1858–1868, 10.1002/term.3146.
Intapibool, P., Monmaturapoj, N., Nampuksa, K., Thongkorn, K., Khongkhunthian, P., Bone regeneration of a polymeric sponge technique-Alloplastic bone substitute materials compared with a commercial synthetic bone material (MBCP+TM technology): a histomorphometric study in porcine skull. Clin. Exp. Dent. Res. 7 (2021), 726–738, 10.1002/cre2.394.
Kiyochi Junior, H. de J., Candido, A.G., Bonadio, T.G.M., da Cruz, J.A., Baesso, M.L., Weinand, W.R., Hernandes, L., In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb(2)O(5)) nanocomposite and tissues using a rat critical-size calvarial defect model. J. Mater. Sci. Mater. Med., 31, 2020, 71, 10.1007/s10856-020-06414-5.
de Oliveira Junior, J.M., Montagner, P.G., Carrijo, R.C., Martinez, E.F., Physical characterization of biphasic bioceramic materials with different granulation sizes and their influence on bone repair and inflammation in rat calvaria. Sci. Rep., 11, 2021, 4484, 10.1038/s41598-021-84033-y.
Seo, S.-J., Kim, Y.-G., Improved bone regeneration using collagen-coated biphasic calcium phosphate with high porosity in a rabbit calvarial model. Biomed. Mater. Bristol Engl., 16, 2020, 015012, 10.1088/1748-605X/abb1fc.
Wang, F., Nakata, H., Sun, X., Maung, W.M., Sato, M., Kon, K., Ozeki, K., Ikumi, R., Kasugai, S., Kuroda, S., A novel hydroxyapatite fiber material for the regeneration of critical-sized rabbit calvaria defects. Dent. Mater. J. 40 (2021), 964–971, 10.4012/dmj.2020-327.
Ghayor, C., Bhattacharya, I., Guerrero, J., Oezcan, M., Weber, F., 3D-Printed HA-based scaffolds for bone regeneration: microporosity, osteoconduction and osteoclastic resorption. Materials, 15, 2022, 10.3390/ma15041433.
da Silva, C., Scatolim, D., Queiroz, A., de Almeida, F., Volnistem, E., Baesso, M., Weinand, W., Hernandes, L., Alveolar regeneration induced by calcium phosphate ceramics after dental avulsion: study in young rats. Mater. Chem. Phys., 295, 2023, 10.1016/j.matchemphys.2022.127082.
Wu, Y., Cao, Q., Wang, Y., Liu, Y., Xu, X., Liu, P., Li, X., Zhu, X., Zhang, X., Optimized fabrication of DLP-based 3D printing calcium phosphate ceramics with high-precision and low-defect to induce calvarial defect regeneration. Mater. Des., 233, 2023, 10.1016/j.matdes.2023.112230.
Youseflee, P., Ranjbar, F.E., Bahraminasab, M., Ghanbari, A., Faradonbeh, D.R., Arab, S., Alizadeh, A., Nooshabadi, V.T., Exosome loaded hydroxyapatite (HA) scaffold promotes bone regeneration in calvarial defect: an in vivo study. Cell Tissue Bank. 24 (2023), 389–400, 10.1007/s10561-022-10042-4.
de Misquita, M.R.D.O.F., Bentini, R., Goncalves, F., The performance of bone tissue engineering scaffolds in in vivo animal models: a systematic review. J. Biomater. Appl. 31 (2016), 625–636, 10.1177/0885328216656476.
Shanbhag, S., Pandis, N., Mustafa, K., Nyengaard, J.R., Stavropoulos, A., Alveolar bone tissue engineering in critical-size defects of experimental animal models: a systematic review and meta-analysis: alveolar bone tissue engineering in critical-size defects. J. Tissue Eng. Regen. Med. 11 (2017), 2935–2949, 10.1002/term.2198.
Muschler, G.F., Raut, V.P., Patterson, T.E., Wenke, J.C., Hollinger, J.O., The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng., Part B 16 (2010), 123–145, 10.1089/ten.teb.2009.0658.
Aerssens, J., Boonen, S., Lowet, G., Dequeker, J., Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139 (1998), 663–670, 10.1210/endo.139.2.5751.
Stavropoulos, A., Sculean, A., Bosshardt, D.D., Buser, D., Klinge, B., Pre-clinical in vivo models for the screening of bone biomaterials for oral/craniofacial indications: focus on small-animal models. Periodontol 68:2015 (2000), 55–65, 10.1111/prd.12065.
Pellegrini, G., Seol, Y.J., Gruber, R., Giannobile, W.V., Pre-clinical models for oral and periodontal reconstructive therapies. J. Dent. Res. 88 (2009), 1065–1076, 10.1177/0022034509349748.
Stübinger, S., Dard, M., The rabbit as experimental model for research in implant dentistry and related tissue regeneration. J. Invest. Surg. 26 (2013), 266–282, 10.3109/08941939.2013.778922.
Yan, X.-Z., Yang, F., Jansen, J.A., de Vries, R.B.M., van den Beucken, J.J.J.P., Cell-based approaches in periodontal regeneration: a systematic review and meta-analysis of periodontal defect models in animal experimental work. Tissue Eng., Part B 21 (2015), 411–426, 10.1089/ten.teb.2015.0049.
Tassi, S.A., Sergio, N.Z., Misawa, M.Y.O., Villar, C.C., Efficacy of stem cells on periodontal regeneration: systematic review of pre-clinical studies. J. Periodontal. Res. 52 (2017), 793–812, 10.1111/jre.12455.
Portron, S., Soueidan, A., Marsden, A.-C., Rakic, M., Verner, C., Weiss, P., Badran, Z., Struillou, X., Periodontal regenerative medicine using mesenchymal stem cells and biomaterials: a systematic review of pre-clinical studies. Dent. Mater. J. 38 (2019), 867–883, 10.4012/dmj.2018-315.
Bohner, M., Resorbable biomaterials as bone graft substitutes, Mater. Today Off. 13 (2010), 24–30, 10.1016/S1369-7021(10)70014-6.
Molly, L., Vandromme, H., Quirynen, M., Schepers, E., Adams, J.L., van Steenberghe, D., Bone Formation following implantation of bone biomaterials into extraction sites. J. Periodontol. 79 (2008), 1108–1115, 10.1902/jop.2008.070476.
Lambert, F., Leonard, A., Lecloux, G., Sourice, S., Pilet, P., Rompen, E., A comparison of three calcium phosphate–based space fillers in sinus elevation: a study in rabbits. Int. J. Oral Maxillofac. Implants 28 (2013), 393–402, 10.11607/jomi.2332.
Tavoni, M., Dapporto, M., Tampieri, A., Sprio, S., Bioactive calcium phosphate-based composites for bone regeneration. J. Compos. Sci., 5, 2021, 227, 10.3390/jcs5090227.
Samavedi, S., Whittington, A.R., Goldstein, A.S., Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 9 (2013), 8037–8045, 10.1016/j.actbio.2013.06.014.
Zhu, X.D., Zhang, H.J., Fan, H.S., Li, W., Zhang, X.D., Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 6 (2010), 1536–1541, 10.1016/j.actbio.2009.10.032.
Ma, H., Feng, C., Chang, J., Wu, C., 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater. 79 (2018), 37–59, 10.1016/j.actbio.2018.08.026.
Vu, A.A., Burke, D.A., Bandyopadhyay, A., Bose, S., Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Addit. Manuf., 39, 2021, 101870, 10.1016/j.addma.2021.101870.
Gao, C., Peng, S., Feng, P., Shuai, C., Bone biomaterials and interactions with stem cells. Bone Res, 5, 2017, 17059, 10.1038/boneres.2017.59.
Dewey, M.J., Harley, B.A.C., Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv. 11 (2021), 17809–17827, 10.1039/D1RA02557K.
Liu, Q., Lu, W.F., Zhai, W., Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: a mini-review and meta-analysis. Biomater. Adv., 134, 2022, 112578, 10.1016/j.msec.2021.112578.
Koizumi, T., Komuro, Y., Influence of mixing blood with calcium phosphate bone paste on hardening. J. Craniofac. Surg. 22 (2011), 329–332, 10.1097/SCS.0b013e3181f7df69.
Thein-Han, W., Liu, J., Xu, H.H.K., Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent. Mater. 28 (2012), 1059–1070, 10.1016/j.dental.2012.06.009.
Smith, B.T., Santoro, M., Grosfeld, E.C., Shah, S.R., Van Den Beucken, J.J.J.P., Jansen, J.A., Mikos, A.G., Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomater. 50 (2017), 68–77, 10.1016/j.actbio.2016.12.024.
Van Houdt, C.I.A., Preethanath, R.S., Van Oirschot, B.A.J.A., Zwarts, P.H.W., Ulrich, D.J.O., Anil, S., Jansen, J.A., Van Den Beucken, J.J.J.P., Toward accelerated bone regeneration by altering poly(d, l -lactic- co -glycolic) acid porogen content in calcium phosphate cement: bone Regeneration by Altering PLGA Porogen in Calcium Phosphate Cement. J. Biomed. Mater. Res. 104 (2016), 483–492, 10.1002/jbm.a.35584.
Yousefi, A.-M., A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation. J. Appl. Biomater. Funct. Mater., 17, 2019, 228080001987259, 10.1177/2280800019872594.
Sadeghian Dehkord, E., Kerckhofs, G., Compère, P., Lambert, F., Geris, L., An empirical model linking physico-chemical biomaterial characteristics to intra-oral bone formation. J. Funct. Biomater., 14, 2023, 388, 10.3390/jfb14070388.
Gaihre, B., Uswatta, S., Jayasuriya, A., Reconstruction of craniomaxillofacial bone defects using tissue-engineering strategies with injectable and non-injectable scaffolds. J. Funct. Biomater., 8, 2017, 49, 10.3390/jfb8040049.
Janicki, P., Schmidmaier, G., What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury 42 (2011), S77–S81, 10.1016/j.injury.2011.06.014.
Brunello, G., Panda, S., Schiavon, L., Sivolella, S., Biasetto, L., Del Fabbro, M., The impact of bioceramic scaffolds on bone regeneration in preclinical in vivo studies: a systematic review. Materials, 13, 2020, 1500, 10.3390/ma13071500.
Hayashi, C., Kinoshita, A., Oda, S., Mizutani, K., Shirakata, Y., Ishikawa, I., Injectable calcium phosphate bone cement provides favorable space and a scaffold for periodontal regeneration in dogs. J. Periodontol. 77 (2006), 940–946, 10.1902/jop.2006.050283.
Shirakata, Y., Yoshimoto, T., Goto, H., Yonamine, Y., Kadomatsu, H., Miyamoto, M., Nakamura, T., Hayashi, C., Izumi, Y., Favorable periodontal healing of 1‐wall infrabony defects after application of calcium phosphate cement wall alone or in combination with enamel matrix derivative: a pilot study with canine mandibles. J. Periodontol. 78 (2007), 889–898, 10.1902/jop.2007.060353.
Shirakata, Y., Setoguchi, T., Machigashira, M., Matsuyama, T., Furuichi, Y., Hasegawa, K., Yoshimoto, T., Izumi, Y., Comparison of injectable calcium phosphate bone cement grafting and open flap debridement in periodontal intrabony defects: a randomized clinical trial. J. Periodontol. 79 (2008), 25–32, 10.1902/jop.2008.070141.
Lammens, J., Maréchal, M., Delport, H., Geris, L., Oppermann, H., Vukicevic, S., Luyten, F.P., A cell-based combination product for the repair of large bone defects. Bone, 138, 2020, 115511, 10.1016/j.bone.2020.115511.