L.Y.-H. Lee J. Loscalzo Network medicine in pathobiology Am. J. Pathol. 2019 189 7 1311 1326 10.1016/j.ajpath.2019.03.009 31014954 6616999
M.L. Kuijjer M.G. Tung G. Yuan J. Quackenbush K. Glass Estimating sample-specific regulatory networks Iscience 2019 14 226 240 2019iSci..14.226K 1:CAS:528:DC%2BC1MXnsVegurY%3D 10.1016/j.isci.2019.03.021 30981959 6463816
X. Yu J. Zhang R. Yang C. Li et al. Identification of long noncoding RNA biomarkers for hepatocellular carcinoma using single-sample networks BioMed Res. Int. 2020 2020 8579651 10.1155/2020/8579651 33299877 7700720
M. Gosak R. Markovič J. Dolenšek M.S. Rupnik M. Marhl A. Stožer M. Perc Network science of biological systems at different scales: A review Phys. Life Rev. 2018 24 118 135 2018PhLRv.24.118G 10.1016/j.plrev.2017.11.003 29150402
J. Yan S.L. Risacher L. Shen A.J. Saykin Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data Brief. Bioinform. 2018 19 6 1370 1381 1:CAS:528:DC%2BC1MXhslahsr7L 28679163
K. Zhu C. Pian Q. Xiang X. Liu Y. Chen Personalized analysis of breast cancer using sample-specific networks PeerJ 2020 8 9161 10.7717/peerj.9161
Y. Huang X. Chang Y. Zhang L. Chen X. Liu Disease characterization using a partial correlation-based sample-specific network Brief. Bioinform. 2021 22 3 062 1:CAS:528:DC%2BB38XivFWlu78%3D 10.1093/bib/bbaa062
Y. Tanaka K. Higashihara M.A. Nakazawa F. Yamashita Y. Tamada Y. Okuno Dynamic changes in gene-to-gene regulatory networks in response to sars-cov-2 infection Sci. Rep. 2021 11 1 1 13
X. Liu Y. Wang H. Ji K. Aihara L. Chen Personalized characterization of diseases using sample-specific networks Nucleic Acids Res. 2016 44 22 164 164 10.1093/nar/gkw772
L. Li H. Dai Z. Fang L. Chen c-csn: Single-cell rna sequencing data analysis by conditional cell-specific network Genom. Proteom. Bioinform. 2021 19 2 319 329 10.1016/j.gpb.2020.05.005
H. Dai L. Li T. Zeng L. Chen Cell-specific network constructed by single-cell RNA sequencing data Nucleic Acids Res. 2019 47 11 62 62 10.1093/nar/gkz172
M.L. Kuijjer P.-H. Hsieh J. Quackenbush K. Glass lionessr: Single sample network inference in r BMC Cancer 2019 19 1 6 10.1186/s12885-019-6235-7
Imambi, S., Prakash, K.B., & Kanagachidambaresan, G. Pytorch. Programming with TensorFlow: Solution for Edge Computing Applications, 87–104 (2021).
K. Luck D.-K. Kim L. Lambourne K. Spirohn B.E. Begg W. Bian R. Brignall T. Cafarelli F.J. Campos-Laborie B. Charloteaux A reference map of the human binary protein interactome Nature 2020 580 7803 402 408 2020Natur.580.402L 1:CAS:528:DC%2BB3cXmslejurc%3D 10.1038/s41586-020-2188-x 32296183 7169983
C.V. Mering M. Huynen D. Jaeggi S. Schmidt P. Bork B. Snel String: A database of predicted functional associations between proteins Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034
M. Kanehisa M. Kanehisa The kegg database ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 2002 Wiley 91 103 10.1002/0470857897.ch8
A. Kamburov C. Wierling H. Lehrach R. Herwig Consensuspathdb—A database for integrating human functional interaction networks Nucleic Acids Res. 2009 37 1 623 628 10.1093/nar/gkn698
N. Verplaetse A. Passemiers A. Arany Y. Moreau D. Raimondi Large sample size and nonlinear sparse models outline epistatic effects in inflammatory bowel disease Genome Biol. 2023 24 1 224 10.1186/s13059-023-03064-y 37798735 10552306
J.N. Weinstein E.A. Collisson G.B. Mills K.R. Shaw B.A. Ozenberger K. Ellrott I. Shmulevich C. Sander J.M. Stuart The cancer genome atlas pan-cancer analysis project Nat. Genet. 2013 45 10 1113 1120 10.1038/ng.2764 24071849 3919969
A. Colaprico T.C. Silva C. Olsen L. Garofano C. Cava D. Garolini T. Sabedot T.M. Malta S.M. Pagnotta I. Castiglioni M. Ceccarelli G. Bontempi H. Noushmehr Tcgabiolinks: An r/bioconductor package for integrative analysis of tcga data Nucleic Acids Res. 2015 10.1093/nar/gkv1507 26704973 4856967
A. Sjödin I. Ljuslinder R. Henriksson H. Hedman Mammaglobin and lipophilin B expression in breast tumors and their lack of effect on breast cancer cell proliferation Anticancer Res. 2008 28 3A 1493 1498 18630503
H. Jiang H. Hu X. Tong Q. Jiang H. Zhu S. Zhang Calcium-binding protein S100P and cancer: Mechanisms and clinical relevance J. Cancer Res. Clin. Oncol. 2012 138 1 1 9 1:CAS:528:DC%2BC38XkslGnsA%3D%3D 10.1007/s00432-011-1062-5 21947242
Y.-S. Kuo Y.-B. Tang T.-Y. Lu H.-C. Wu C.-T. Lin IGFBP-6 plays a role as an oncosuppressor gene in NPC pathogenesis through regulating EGR-1 expression J. Pathol. 2010 222 3 299 309 1:CAS:528:DC%2BC3cXhsVKis7bO 10.1002/path.2735 20635349
O’bray, L., Rieck, B., & Borgwardt, K. Filtration Curves for Graph Representation; Filtration Curves for Graph Representation. https://doi.org/10.1145/3447548.3467442 (2021).
G.K. Smyth Linear models and empirical bayes methods for assessing differential expression in microarray experiments Stat. Appl. Genet. Mol. Biol. 2004 2004rrls.book...S 2101454 10.2202/1544-6115.1027 16646809
Gibbs, R.A., Belmont, J.W., Hardenbol, P., Willis, T.D., Yu, F., Yang, H., Ch’ang, L.-Y., Huang, W., Liu, B., Shen, Y., et al. The International Hapmap Project (2003).
A.R. Rogers C. Huff Linkage disequilibrium between loci with unknown phase Genetics 2009 182 3 839 844 10.1534/genetics.108.093153 19433632 2710162
Miles, A., & Harding, N. scikit-allel: A Python package for exploring and analysing genetic variation data (2016).
P. Langfelder S. Horvath WGCNA: An r package for weighted correlation network analysis BMC Bioinform. 2008 9 559 1:CAS:528:DC%2BD1MXht1Khsbw%3D 10.1186/1471-2105-9-559
D. Raimondi H. Chizari N. Verplaetse B.-S. Löscher A. Franke Y. Moreau Genome interpretation in a federated learning context allows the multi-center exome-based risk prediction of Crohn’s disease patients Sci. Rep. 2023 13 1 19449 2023NatSR.1319449R 1:CAS:528:DC%2BB3sXitlCgurvI 10.1038/s41598-023-46887-2 37945674 10636050