Calcineurin; Protein Kinases; Phosphoric Monoester Hydrolases; Ubiquitin-Protein Ligases; Ubiquitin; PINK1 protein, Drosophila; Protein Serine-Threonine Kinases; Drosophila Proteins; Animals; Protein Kinases/genetics; Protein Kinases/metabolism; Phosphoric Monoester Hydrolases/metabolism; Mitophagy/genetics; Mitochondria/metabolism; Ubiquitin-Protein Ligases/genetics; Ubiquitin-Protein Ligases/metabolism; Ubiquitin/metabolism; Drosophila/metabolism; Protein Serine-Threonine Kinases/metabolism; Calcineurin/metabolism; Drosophila Proteins/genetics; Drosophila Proteins/metabolism; Molecular Biology; Cell Biology
Abstract :
[en] Selective removal of dysfunctional mitochondria via autophagy is crucial for the maintenance of cellular homeostasis. This event is initiated by the translocation of the E3 ubiquitin ligase Parkin to damaged mitochondria, and it requires the Serine/Threonine-protein kinase PINK1. In a coordinated set of events, PINK1 operates upstream of Parkin in a linear pathway that leads to the phosphorylation of Parkin, Ubiquitin, and Parkin mitochondrial substrates, to promote ubiquitination of outer mitochondrial membrane proteins. Ubiquitin-decorated mitochondria are selectively recruiting autophagy receptors, which are required to terminate the organelle via autophagy. In this work, we show a previously uncharacterized molecular pathway that correlates the activation of the Ca2+-dependent phosphatase Calcineurin to Parkin translocation and Parkin-dependent mitophagy. Calcineurin downregulation or genetic inhibition prevents Parkin translocation to CCCP-treated mitochondria and impairs stress-induced mitophagy, whereas Calcineurin activation promotes Parkin mitochondrial recruitment and basal mitophagy. Calcineurin interacts with Parkin, and promotes Parkin translocation in the absence of PINK1, but requires PINK1 expression to execute mitophagy in MEF cells. Genetic activation of Calcineurin in vivo boosts basal mitophagy in neurons and corrects locomotor dysfunction and mitochondrial respiratory defects of a Drosophila model of impaired mitochondrial functions. Our study identifies Calcineurin as a novel key player in the regulation of Parkin translocation and mitophagy.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Marchesan, Elena ; Department of Biology, University of Padova, Padova, Italy
Nardin, Alice; Department of Biology, University of Padova, Padova, Italy
Mauri, Sofia ; Department of Biology, University of Padova, Padova, Italy
Bernardo, Greta; Department of Biology, University of Padova, Padova, Italy
Chander, Vivek; Department of Biology, University of Padova, Padova, Italy
Di Paola, Simone ; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy ; Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Napoli, Italy
Chinellato, Monica; Department of Biology, University of Padova, Padova, Italy
von Stockum, Sophia; Department of Biology, University of Padova, Padova, Italy
Chakraborty, Joy; Department of Biology, University of Padova, Padova, Italy
Herkenne, Stéphanie ; Université de Liège - ULiège > Département des sciences de la vie ; Department of Biology, University of Padova, Padova, Italy
Basso, Valentina; Department of Biology, University of Padova, Padova, Italy
Schrepfer, Emilie; Department of Biology, University of Padova, Padova, Italy ; Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
Marin, Oriano; Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
Cendron, Laura ; Department of Biology, University of Padova, Padova, Italy
Medina, Diego L ; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy ; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
Scorrano, Luca ; Department of Biology, University of Padova, Padova, Italy ; Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
Ziviani, Elena ; Department of Biology, University of Padova, Padova, Italy. elena.ziviani@unipd.it
This work was supported by grants from the Italian Ministry of Health “Ricerca Finalizzata” [GR-2011-02351151], Rita Levi Montalcini “Brain Gain” program and Michael J. Fox RRIA 2014 [Grant ID 9795] to E.Z.
Moore DJ West AB Dawson VL Dawson TM Molecular pathophysiology of Parkinson’s disease Annu Rev Neurosci 2005 28 57 87 1:CAS:528:DC%2BD2MXosVegt7c%3D 16022590
Spillantini MG Schmidt ML Lee VM Trojanowski JQ Jakes R Goedert M Alpha-synuclein in Lewy bodies Nature 1997 388 839 40 1997Natur.388.839S 1:CAS:528:DyaK2sXlslWru7o%3D 9278044
Dauer W Przedborski S Parkinson’s disease: mechanisms and models Neuron 2003 39 889 909 1:CAS:528:DC%2BD3sXnsFait7o%3D 12971891
Narendra D Walker JE Youle R Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism Cold Spring Harb Perspect Biol 2012 4 a011338 23125018 3536340
Greenamyre JT MacKenzie G Peng TI Stephans SE Mitochondrial dysfunction in Parkinson’s disease Biochem Soc Symp 1999 66 85 97 1:CAS:528:DC%2BD3cXkvVOlsA%3D%3D 10989660
Gasser T Molecular pathogenesis of Parkinson disease: insights from genetic studies Expert Rev Mol Med 2009 11 e22 19631006
Shulman JM De Jager PL Feany MB Parkinson’s disease: genetics and pathogenesis Annu Rev Pathol 2011 6 193 222 1:CAS:528:DC%2BC3MXjtVWrsrg%3D 21034221
Valente EM Abou-Sleiman PM Caputo V Muqit MM Harvey K Gispert S et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1 Science 2004 304 1158 60 2004Sci..304.1158V 1:CAS:528:DC%2BD2cXktVyit7k%3D 15087508
Valente EM Salvi S Ialongo T Marongiu R Elia AE Caputo V et al. PINK1 mutations are associated with sporadic early-onset parkinsonism Ann Neurol 2004 56 336 41 1:CAS:528:DC%2BD2cXotFyhs74%3D 15349860
Kitada T Asakawa S Hattori N Matsumine H Yamamura Y Minoshima S et al. Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism Nature 1998 392 605 8 1998Natur.392.605K 1:CAS:528:DyaK1cXis1Sqsrc%3D 9560156
Tanaka K Suzuki T Chiba T The ligation systems for ubiquitin and ubiquitin-like proteins Mol Cells 1998 8 503 12 1:CAS:528:DyaK1cXotVejuro%3D 9856335
Trempe JF Sauve V Grenier K Seirafi M Tang MY Menade M et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation Science 2013 340 1451 5 2013Sci..340.1451T 1:CAS:528:DC%2BC3sXpsFKltL4%3D 23661642
Dove KK Klevit RE Structural biology: Parkin’s serpentine shape revealed in the year of the snake Curr Biol 2013 23 R691 693 1:CAS:528:DC%2BC3sXht12gu7%2FE 23968926
Seirafi M Kozlov G Gehring K Parkin structure and function FEBS J 2015 282 2076 88 1:CAS:528:DC%2BC2MXpt1ehsb4%3D 25712550 4672691
Wauer T Komander D Structure of the human Parkin ligase domain in an autoinhibited state EMBO J 2013 32 2099 112 1:CAS:528:DC%2BC3sXosFahtLw%3D 23727886 3730226
Dorn GW 2nd Central Parkin: The evolving role of Parkin in the heart Biochim Biophys Acta 2016 1857 1307 12 1:CAS:528:DC%2BC28Xksl2mu7Y%3D 26992930 4893897
Zhang CW Hang L Yao TP Lim KL Parkin regulation and neurodegenerative disorders Front Aging Neurosci 2015 7 248 26793099
Winklhofer KF Parkin and mitochondrial quality control: toward assembling the puzzle Trends Cell Biol 2014 24 332 41 1:CAS:528:DC%2BC2cXhvVahtLc%3D 24485851
Yang H Zhou HY Li B Chen SD Neuroprotection of Parkin against apoptosis is independent of inclusion body formation Neuroreport 2005 16 1117 21 15973159
Yasuda T Hayakawa H Nihira T Ren YR Nakata Y Nagai M et al. Parkin-mediated protection of dopaminergic neurons in a chronic MPTP-minipump mouse model of Parkinson disease J Neuropathol Exp Neurol 2011 70 686 97 21760537
Trempe JF Fon EA Structure and function of Parkin, PINK1, and DJ-1, the three musketeers of neuroprotection Front Neurol 2013 4 38 1:CAS:528:DC%2BC3sXhsVCiur7K 23626584 3630392
Hang L Thundyil J Lim KL Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection Ann N. Y Acad Sci 2015 1350 37 47 2015NYASA1350..37H 1:CAS:528:DC%2BC2MXhs1Cqtr3K 26121488
Tanaka A Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network FEBS Lett 2010 584 1386 92 1:CAS:528:DC%2BC3cXjs12msr0%3D 20188730 2843751
Hampe C Ardila-Osorio H Fournier M Brice A Corti O Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity Hum Mol Genet 2006 15 2059 75 1:CAS:528:DC%2BD28XmtFKgu74%3D 16714300
Matsuda N Kitami T Suzuki T Mizuno Y Hattori N Tanaka K Diverse effects of pathogenic mutations of Parkin that catalyze multiple monoubiquitylation in vitro J Biol Chem 2006 281 3204 9 1:CAS:528:DC%2BD28XhtFSmsr8%3D 16339143
Durcan TM Kontogiannea M Bedard N Wing SS Fon EA Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme J Biol Chem 2012 287 531 41 1:CAS:528:DC%2BC38XotVCj 22081612
Joch M Ase AR Chen CX MacDonald PA Kontogiannea M Corera AT et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels Mol Biol Cell 2007 18 3105 18 1:CAS:528:DC%2BD2sXovFaksrg%3D 17553932 1949385
Chen D Gao F Li B Wang H Xu Y Zhu C et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy J Biol Chem 2010 285 38214 23 1:CAS:528:DC%2BC3cXhsVOku7zJ 20889974 2992255
Moore DJ West AB Dikeman DA Dawson VL Dawson TM Parkin mediates the degradation-independent ubiquitination of Hsp70 J Neurochem 2008 105 1806 19 1:CAS:528:DC%2BD1cXntVCkt7g%3D 18248624 4432938
Muller-Rischart AK Pilsl A Beaudette P Patra M Hadian K Funke M et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO Mol Cell 2013 49 908 21 23453807
Narendra DP Jin SM Tanaka A Suen DF Gautier CA Shen J et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin PLoS Biol 2010 8 e1000298 20126261 2811155
Vives-Bauza C Zhou C Huang Y Cui M de Vries RL Kim J et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy Proc Natl Acad Sci USA 2010 107 378 83 2010PNAS.107.378V 1:CAS:528:DC%2BC3cXnsFCruw%3D%3D 19966284
Matsuda N Sato S Shiba K Okatsu K Saisho K Gautier CA et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy J Cell Biol 2010 189 211 21 1:CAS:528:DC%2BC3cXlt1Khu7c%3D 20404107 2856912
Lin W Kang UJ Characterization of PINK1 processing, stability, and subcellular localization J Neurochem 2008 106 464 74 1:CAS:528:DC%2BD1cXot1OgtLw%3D 18397367 3638740
Jin SM Lazarou M Wang C Kane LA Narendra DP Youle RJ Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL J Cell Biol 2010 191 933 42 1:CAS:528:DC%2BC3cXhsFCntLzO 21115803 2995166
Yamano K Youle RJ PINK1 is degraded through the N-end rule pathway Autophagy 2013 9 1758 69 1:CAS:528:DC%2BC2cXhtVyiur3M 24121706 4028335
Ziviani E Tao RN Whitworth AJ Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin Proc Natl Acad Sci USA 2010 107 5018 23 2010PNAS.107.5018Z 1:CAS:528:DC%2BC3cXjvFGnt7k%3D 20194754 2841909
Kondapalli C Kazlauskaite A Zhang N Woodroof HI Campbell DG Gourlay R et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 Open Biol 2012 2 120080 22724072 3376738
Kazlauskaite A Kondapalli C Gourlay R Campbell DG Ritorto MS Hofmann K et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 Biochem J 2014 460 127 39 1:CAS:528:DC%2BC2cXmvFCjurw%3D 24660806
Kazlauskaite A Kelly V Johnson C Baillie C Hastie CJ Peggie M et al. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity Open Biol 2014 4 130213 24647965 3971407
Koyano F Okatsu K Kosako H Tamura Y Go E Kimura M et al. Ubiquitin is phosphorylated by PINK1 to activate parkin Nature 2014 510 162 6 2014Natur.510.162K 1:CAS:528:DC%2BC2cXhtFygs77E 24784582
Yoshii SR Kishi C Ishihara N Mizushima N Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane J Biol Chem 2011 286 19630 40 1:CAS:528:DC%2BC3MXms1SisLg%3D 21454557 3103342
Chan NC Salazar AM Pham AH Sweredoski MJ Kolawa NJ Graham RL et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy Hum Mol Genet 2011 20 1726 37 1:CAS:528:DC%2BC3MXksFSku7Y%3D 21296869 3071670
Narendra D Tanaka A Suen DF Youle RJ Parkin is recruited selectively to impaired mitochondria and promotes their autophagy J Cell Biol 2008 183 795 803 1:CAS:528:DC%2BD1cXhsVOjtrjJ 19029340 2592826
Tanaka A Cleland MM Xu S Narendra DP Suen DF Karbowski M et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin J Cell Biol 2010 191 1367 80 1:CAS:528:DC%2BC3MXis1WjtQ%3D%3D 21173115 3010068
Sarraf SA Raman M Guarani-Pereira V Sowa ME Huttlin EL Gygi SP et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization Nature 2013 496 372 6 2013Natur.496.372S 1:CAS:528:DC%2BC3sXkvFOqs7k%3D 23503661 3641819
Chen Y Dorn GW 2nd PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria Science 2013 340 471 5 2013Sci..340.471C 1:CAS:528:DC%2BC3sXmt1yrsL8%3D 23620051 3774525
Ashrafi G Schwarz TL The pathways of mitophagy for quality control and clearance of mitochondria Cell Death Differ 2013 20 31 42 1:CAS:528:DC%2BC38XhvVWqtLnI 22743996
Pryde KR Smith HL Chau KY Schapira AH PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy J Cell Biol 2016 213 163 71 1:CAS:528:DC%2BC28XhsVOgsL7F 27091447 5084273
Cereghetti GM Stangherlin A Martins de Brito O Chang CR Blackstone C et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria Proc Natl Acad Sci USA 2008 105 15803 8 2008PNAS.10515803C 1:CAS:528:DC%2BD1cXht1yitrjK 18838687 2572940
Han H Tan J Wang R Wan H He Y Yan X et al. PINK1 phosphorylates Drp1(S616) to regulate mitophagy-independent mitochondrial dynamics EMBO Rep 2020 21 e48686 1:CAS:528:DC%2BB3cXhtVGgtLfP 32484300 7403662
Buhlman L Damiano M Bertolin G Ferrando-Miguel R Lombes A Brice A et al. Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance Biochim Biophys Acta 2014 1843 2012 26 1:CAS:528:DC%2BC2cXhtFansLzM 24878071
Burman JL Pickles S Wang C Sekine S Vargas JNS Zhang Z et al. Mitochondrial fission facilitates the selective mitophagy of protein aggregates J Cell Biol 2017 216 3231 47 1:CAS:528:DC%2BC1cXmvVWltr8%3D 28893839 5626535
Kanki T Wang K Baba M Bartholomew CR Lynch-Day MA Du Z et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy Mol Biol Cell 2009 20 4730 8 1:CAS:528:DC%2BD1MXhsFSkurbE 19793921 2777103
Pereira MB Tisi R Fietto LG Cardoso AS Franca MM Carvalho FM et al. Carbonyl cyanide m-chlorophenylhydrazone induced calcium signaling and activation of plasma membrane H(+)-ATPase in the yeast Saccharomyces cerevisiae FEMS Yeast Res 2008 8 622 30 1:CAS:528:DC%2BD1cXntFWmtLk%3D 18399987
Medina DL Di Paola S Peluso I Armani A De Stefani D Venditti R et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB Nat Cell Biol 2015 17 288 99 25720963 4801004
Twig G Elorza A Molina AJ Mohamed H Wikstrom JD Walzer G et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy EMBO J 2008 27 433 46 1:CAS:528:DC%2BD1cXhtVKkurs%3D 18200046 2234339
Twig G Shirihai OS The interplay between mitochondrial dynamics and mitophagy Antioxid Redox Signal 2011 14 1939 51 1:CAS:528:DC%2BC3MXkvVSqs7g%3D 21128700 3078508
Okatsu K Saisho K Shimanuki M Nakada K Shitara H Sou YS et al. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria Genes Cells 2010 15 887 900 1:CAS:528:DC%2BC3cXhtVCltbrP 20604804 2970908
Rizk A Paul G Incardona P Bugarski M Mansouri M Niemann A et al. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh Nat Protoc 2014 9 586 96 1:CAS:528:DC%2BC2cXmtVehurw%3D 24525752
Van Laar VS Roy N Liu A Rajprohat S Arnold B Dukes AA et al. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy Neurobiol Dis 2015 74 180 93 25478815
Cherra SJ 3rd Steer E Gusdon AM Kiselyov K Chu CT Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons Am J Pathol 2013 182 474 84 1:CAS:528:DC%2BC3sXhtFGqtLw%3D 23231918 3562730
Wang X Winter D Ashrafi G Schlehe J Wong YL Selkoe D et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility Cell 2011 147 893 906 1:CAS:528:DC%2BC3MXhsVKgsLbP 22078885 3261796
Friberg H Ferrand-Drake M Bengtsson F Halestrap AP Wieloch T Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death J Neurosci 1998 18 5151 9 1:CAS:528:DyaK1cXksFarsb8%3D 9651198 6793481
Zou Y Hiroi Y Uozumi H Takimoto E Toko H Zhu W et al. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy Circulation 2001 104 97 101 1:CAS:528:DC%2BD3MXls1emsb8%3D 11435345
Zou Y Yao A Zhu W Kudoh S Hiroi Y Shimoyama M et al. Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin Circulation 2001 104 102 8 1:CAS:528:DC%2BD3MXls1emsbw%3D 11435346
Chaugule VK Burchell L Barber KR Sidhu A Leslie SJ Shaw GS et al. Autoregulation of Parkin activity through its ubiquitin-like domain EMBO J 2011 30 2853 67 1:CAS:528:DC%2BC3MXnvVektb0%3D 21694720 3160258
Riley BE Lougheed JC Callaway K Velasquez M Brecht E Nguyen L et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases Nat Commun 2013 4 2013NatCo..4.1982R 1:STN:280:DC%2BC3sjis1eksw%3D%3D 23770887
Spratt DE Martinez-Torres RJ Noh YJ Mercier P Manczyk N Barber KR et al. A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease Nat Commun 2013 4 2013NatCo..4.1983S 23770917
Kane LA Lazarou M Fogel AI Li Y Yamano K Sarraf SA et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity J Cell Biol 2014 205 143 53 1:CAS:528:DC%2BC2cXns1Gru7s%3D 24751536 4003245
Kumar A Aguirre JD Condos TE Martinez-Torres RJ Chaugule VK Toth R et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis EMBO J 2015 34 2506 21 1:CAS:528:DC%2BC2MXht12mtr7K 26254304 4609183
Ishii T Okai T Iwatani-Yoshihara M Mochizuki M Unno S Kuno M et al. CETSA quantitatively verifies in vivo target engagement of novel RIPK1 inhibitors in various biospecimens Sci Rep 2017 7 2017NatSR..713000I 29026104 5638916
Jafari R Almqvist H Axelsson H Ignatushchenko M Lundback T Nordlund P et al. The cellular thermal shift assay for evaluating drug target interactions in cells Nat Protoc 2014 9 2100 22 1:CAS:528:DC%2BC2cXht12msrfJ 25101824
Safiulina D Kuum M Choubey V Gogichaishvili N Liiv J Hickey MA et al. Miro proteins prime mitochondria for Parkin translocation and mitophagy EMBO J 2019 38 e99384 30504269
Barr FA Nakamura N Warren G Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae EMBO J 1998 17 3258 68 1:CAS:528:DyaK1cXksFClt7w%3D 9628863 1170664
Ayala I Crispino R Colanzi A GRASP65 controls Golgi position and structure during G2/M transition by regulating the stability of microtubules Traffic 2019 20 785 802 1:CAS:528:DC%2BC1MXhs1yltrbF 31336000
Lee JY Nagano Y Taylor JP Lim KL Yao TP Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy J Cell Biol 2010 189 671 9 1:CAS:528:DC%2BC3cXmslKktr4%3D 20457763 2872903
Ding WX Ni HM Li M Liao Y Chen X Stolz DB et al. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming J Biol Chem 2010 285 27879 90 1:CAS:528:DC%2BC3cXhtVOnsL3L 20573959 2934655
Ding WX Guo F Ni HM Bockus A Manley S Stolz DB et al. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation J Biol Chem 2012 287 42379 88 1:CAS:528:DC%2BC38Xhslyks7rJ 23095748 3516781
Geisler S Holmstrom KM Skujat D Fiesel FC Rothfuss OC Kahle PJ et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 Nat Cell Biol 2010 12 119 31 1:CAS:528:DC%2BC3cXhtlCqtbs%3D 20098416
Chan NC Chan DC Parkin uses the UPS to ship off dysfunctional mitochondria Autophagy 2011 7 771 2 21460629 3973655
Kitamura T Koshino Y Shibata F Oki T Nakajima H Nosaka T et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics Exp Hematol 2003 31 1007 14 1:CAS:528:DC%2BD3sXosVyksbk%3D 14585362
Katayama H Kogure T Mizushima N Yoshimori T Miyawaki A A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery Chem Biol 2011 18 1042 52 1:CAS:528:DC%2BC3MXhtV2itLfP 21867919
van Wijk SJ Fiskin E Putyrski M Pampaloni F Hou J Wild P et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells Mol Cell 2012 47 797 809 22819327 3714537
Geisler S Holmstrom KM Treis A Skujat D Weber SS Fiesel FC et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations Autophagy 2010 6 871 8 1:CAS:528:DC%2BC3cXhtl2ksr7L 20798600
Poole AC Thomas RE Andrews LA McBride HM Whitworth AJ Pallanck LJ The PINK1/Parkin pathway regulates mitochondrial morphology Proc Natl Acad Sci USA 2008 105 1638 43 2008PNAS.105.1638P 1:CAS:528:DC%2BD1cXhvFWktbo%3D 18230723 2234197
Clark IE Dodson MW Jiang C Cao JH Huh JR Seol JH et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin Nature 2006 441 1162 6 2006Natur.441.1162C 1:CAS:528:DC%2BD28Xmtlaiu78%3D 16672981
Park J Lee SB Lee S Kim Y Song S Kim S et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin Nature 2006 441 1157 61 2006Natur.441.1157P 1:CAS:528:DC%2BD28Xmtlaiu70%3D 16672980
Yang Y Gehrke S Imai Y Huang Z Ouyang Y Wang JW et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin Proc Natl Acad Sci USA 2006 103 10793 8 2006PNAS.10310793Y 1:CAS:528:DC%2BD28XntFWmtr0%3D 16818890 1502310
Chakraborty J von Stockum S Marchesan E Caicci F Ferrari V Rakovic A et al. USP14 inhibition corrects an in vivo model of impaired mitophagy EMBO Mol Med 2018 10 e9014 30249595 6220287
von Stockum S Sanchez-Martinez A Corra S Chakraborty J Marchesan E Locatello L et al. Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction Life Sci Alliance 2019 2 e201900392
Lee JJ Sanchez-Martinez A Zarate AM Beninca C Mayor U Clague MJ et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin J Cell Biol 2018 217 1613 22 1:CAS:528:DC%2BC1cXhvVWnsrnO 29500189 5940313
Cornelissen T Vilain S Vints K Gounko N Verstreken P Vandenberghe W Deficiency of parkin and PINK1 impairs age-dependent mitophagy in Drosophila eLife 2018 7 e35878 29809156 6008047
Vives-Bauza C de Vries RL Tocilescu M Przedborski S PINK1/Parkin direct mitochondria to autophagy Autophagy 2010 6 315 6 1:CAS:528:DC%2BC3cXot1ehtrg%3D 20200476
Shimura H Hattori N Kubo S Mizuno Y Asakawa S Minoshima S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase Nat Genet 2000 25 302 5 1:STN:280:DC%2BD3czptF2nsw%3D%3D 10888878
Sha D Chin LS Li L Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling Hum Mol Genet 2010 19 352 63 1:CAS:528:DC%2BD1MXhs1WisLfP 19880420
Zhang C Lee S Peng Y Bunker E Giaime E Shen J et al. PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions Curr Biol 2014 24 1854 65 1:CAS:528:DC%2BC2cXhtlSqs7rL 25088558 4143385
Gegg ME Cooper JM Chau KY Rojo M Schapira AH Taanman JW Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy Hum Mol Genet 2010 19 4861 70 1:CAS:528:DC%2BC3cXhsVyhsrzO 20871098 3583518
Poole AC Thomas RE Yu S Vincow ES Pallanck L The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway PLoS One 2010 5 e10054 2010PLoSO..510054P 20383334 2850930
Bjorkoy G Lamark T Brech A Outzen H Perander M Overvatn A et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death J Cell Biol 2005 171 603 14 16286508 2171557
Lee JY Koga H Kawaguchi Y Tang W Wong E Gao YS et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy EMBO J 2010 29 969 80 1:CAS:528:DC%2BC3cXhvFGisg%3D%3D 20075865 2837169
von Muhlinen N Thurston T Ryzhakov G Bloor S Randow F NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria Autophagy 2010 6 288 9
Ordureau A Sarraf SA Duda DM Heo JM Jedrychowski MP Sviderskiy VO et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis Mol Cell 2014 56 360 75 1:CAS:528:DC%2BC2cXhs1Ortr%2FL 25284222 4254048
Sun Y Vashisht AA Tchieu J Wohlschlegel JA Dreier L Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy J Biol Chem 2012 287 40652 60 1:CAS:528:DC%2BC38Xhslantr7P 23060438 3504778
Jin SM Youle RJ The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria Autophagy 2013 9 1750 7 1:CAS:528:DC%2BC2cXhtVyiurzF 24149988 4028334
Yu Z Wang H Tang W Wang S Tian X Zhu Y et al. Mitochondrial Ca(2+) oscillation induces mitophagy initiation through the PINK1-Parkin pathway Cell Death Dis 2021 12 1:CAS:528:DC%2BB3MXhvFWrt7%2FF 34148057 8214625
Kubli DA Cortez MQ Moyzis AG Najor RH Lee Y Gustafsson AB PINK1 is dispensable for mitochondrial recruitment of parkin and activation of mitophagy in cardiac myocytes PLoS One 2015 10 e0130707 26110811 4482400
Lee SB Kim JJ Han SA Fan Y Guo LS Aziz K et al. The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome Nat Cell Biol 2019 21 940 51 1:CAS:528:DC%2BC1MXhsVKnsbjJ 31358971 6679774
Avraham E Rott R Liani E Szargel R Engelender S Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation J Biol Chem 2007 282 12842 50 1:CAS:528:DC%2BD2sXksVSitLc%3D 17327227
Lee SB Kim JJ Nam HJ Gao B Yin P Qin B et al. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1 Mol Cell 2015 60 21 34 1:CAS:528:DC%2BC2MXhsFaqsr7I 26387737 4592523
Hung CM Lombardo PS Malik N Brun SN Hellberg K Van Nostrand JL et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy Sci Adv 2021 7 eabg4544 2021SciA..7.4544H 1:CAS:528:DC%2BB3MXhsVSku77J 33827825 8026119
Balasubramaniam M Parcon PA Bose C Liu L Jones RA Farlow MR et al. Interleukin-1beta drives NEDD8 nuclear-to-cytoplasmic translocation, fostering parkin activation via NEDD8 binding to the P-ubiquitin activating site J Neuroinflamm 2019 16 1:CAS:528:DC%2BC1MXisFSjsrvL
Um JW Han KA Im E Oh Y Lee K Chung KC Neddylation positively regulates the ubiquitin E3 ligase activity of Parkin J Neurosci Res 2012 90 1030 42 1:CAS:528:DC%2BC38XhtFait7w%3D 22271254
McLelland GL Soubannier V Chen CX McBride HM Fon EA Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control EMBO J 2014 33 282 95 1:CAS:528:DC%2BC2cXhtV2iu7jM 24446486 3989637
McLelland GL Lee SA McBride HM Fon EA Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system J Cell Biol 2016 214 275 91 1:CAS:528:DC%2BC28XhvFWlu7nN 27458136 4970327
Towers CG Wodetzki DK Thorburn J Smith KR Caino MC Thorburn A Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy Dev Cell 2021 56 2029 42.e2025 1:CAS:528:DC%2BB3MXhsVagsbfK 34171288 8319140
Koentjoro B Park JS Sue CM Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease Sci Rep 2017 7 2017NatSR..744373K 28281653 5345073
Yun J Puri R Yang H Lizzio MA Wu C Sheng ZH et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin eLife 2014 3 e01958 24898855 4044952
Morais VA Haddad D Craessaerts K De Bock PJ Swerts J Vilain S et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling Science 2014 344 203 7 2014Sci..344.203M 1:CAS:528:DC%2BC2cXlslSmtb4%3D 24652937
Matheoud D Sugiura A Bellemare-Pelletier A Laplante A Rondeau C Chemali M et al. Parkinson’s disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation Cell 2016 166 314 27 1:CAS:528:DC%2BC28XhtVGitrzJ 27345367
Cecconi C Shank EA Bustamante C Marqusee S Direct observation of the three-state folding of a single protein molecule Science 2005 309 2057 60 2005Sci..309.2057C 1:CAS:528:DC%2BD2MXhtVWntLrI 16179479
Costa V Giacomello M Hudec R Lopreiato R Ermak G Lim D et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli EMBO Mol Med 2010 2 490 503 1:CAS:528:DC%2BC3MXosFeiug%3D%3D 21069748 3044888
Bolte S Cordelieres FP A guided tour into subcellular colocalization analysis in light microscopy J Microsc 2006 224 213 32 2312809 1:CAS:528:DC%2BD2sXhvVWquro%3D 17210054
Um JH Kim YY Finkel T Yun J Sensitive measurement of mitophagy by flow cytometry using the ph-dependent fluorescent reporter mt-Keima J Vis Exp 2018 12 58099
Minisini M Di Giorgio E Kerschbamer E Dalla E Faggiani M Franforte E et al. Transcriptomic and genomic studies classify NKL54 as a histone deacetylase inhibitor with indirect influence on MEF2-dependent transcription Nucleic Acids Res 2022 50 2566 86 1:CAS:528:DC%2BB38Xhs1KksLzK 35150567 8934631
Dai MS Shi D Jin Y Sun XX Zhang Y Grossman SR et al. Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism J Biol Chem 2006 281 24304 13 1:CAS:528:DC%2BD28Xot1eqsL4%3D 16803902
Montava-Garriga L Singh F Ball G Ganley IG Semi-automated quantitation of mitophagy in cells and tissues Mech Ageing Dev 2020 185 111196 1:CAS:528:DC%2BC1MXisVGgtb3O 31843465 6961211
Chakraborty J Caicci F Roy M Ziviani E Investigating mitochondrial autophagy by routine transmission electron microscopy: Seeing is believing? Pharm Res 2020 160 105097 1:CAS:528:DC%2BB3cXhs1ejsL3F
Lazarou M Jin SM Kane LA Youle RJ Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin Dev Cell 2012 22 320 33 1:CAS:528:DC%2BC38Xit12htL4%3D 22280891 3288275
Duchen MR Mitochondria and calcium: from cell signalling to cell death J Physiol 2000 529 57 68 2000JPhD..33..57D 1:CAS:528:DC%2BD3cXovVajsro%3D 11080251 2270168
Klee CB Crouch TH Krinks MH Calcineurin: a calcium- and calmodulin-binding protein of the nervous system Proc Natl Acad Sci USA 1979 76 6270 3 1979PNAS..76.6270K 1:CAS:528:DyaL3cXntFeruw%3D%3D 293720 411845