[en] In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described Bacillus nakamurai was selected for its strong in vitro antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced B. nakamurai strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in B. velezensis, greenhouse experiments show that B. nakamurai BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by Alternaria solani and Exserohilum turcicum, respectively, at levels similar to or better than B. velezensis QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that B. nakamurai BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.
Nihorimbere, Gaspard ✱; Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium, Research department, Institut des Sciences Agronomiques du Burundi (ISABU), Boulevard du Japon, Rohero 1, P.O Box 795, Bujumbura, Burundi. Electronic address: gaspard.nihorimbere@uclouvain.be
Arias, Anthony Argüelles; Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium. Electronic address: arguellesariasa@gmail.com
Liénard, Charlotte; Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium. Electronic address: lienard.charlotte@hotmail.be
Steels, Sébastien ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Nibasumba, Anaclet; Institut Supérieur de Formation Agricole, Université du Burundi, P.O Box 241, Gitega, Burundi. Electronic address: anaclet.nibasumba@hotmail.fr
Nihorimbere, Venant; Laboratoire de Microbiologie, Faculté d'Agronomie et de BioIngéniérie (FABI), Université du Burundi, Avenue de l'Unesco 2, P.O Box 2940, Bujumbura, Burundi. Electronic address: venant.nihorimbere@gmail.com
Legrève, Anne ✱; Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium. Electronic address: anne.legreve@uclouvain.be
Ongena, Marc ✱; Université de Liège - ULiège > Département GxABT
✱ These authors have contributed equally to this work.
Language :
English
Title :
Unravelling the secondary metabolome and biocontrol potential of the recently described species Bacillus nakamurai.
ARES - Académie de Recherche et d'Enseignement Supérieur
Funding text :
The authors thank Papa Makhona Niang and Vincent Bremhorst (Statistical Methodology and Computing Service, technological platform at UCLouvain \u2013 SMCS/LIDAM, UCLouvain) for their support in genome sequence assembly and statistical analyses, respectively. This research was supported by the Acad\u00E9mie de Recherche et d'Enseignement Sup\u00E9rieur-Commission de Coop\u00E9ration au D\u00E9veloppement (ARES-CDD), F\u00E9d\u00E9ration Wallonie-Bruxelles) through the PRD instrument (Title: Vers une agriculture plus performante et durable au Burundi: application de microorganismes pour am\u00E9liorer la sant\u00E9 et la croissance des plantes). MO is Research Director at the FRS-FNRS (National Fund for Scientific Research) in Belgium.The authors thank Papa Makhona Niang and Vincent Bremhorst (Statistical Methodology and Computing Service, technological platform at UCLouvain \u2013 SMCS/LIDAM, UCLouvain) for their support in genome sequence assembly and statistical analyses, respectively. This research was supported by the Acad\u00E9mie de Recherche et d\u2019Enseignement Sup\u00E9rieur-Commission de Coop\u00E9ration au D\u00E9veloppement (ARES-CDD), F\u00E9d\u00E9ration Wallonie-Bruxelles) through the PRD instrument (Title: Vers une agriculture plus performante et durable au Burundi: application de microorganismes pour am\u00E9liorer la sant\u00E9 et la croissance des plantes). MO is Research Director at the FRS-FNRS (National Fund for Scientific Research) in Belgium.
Abd-Elsalam, K.A., Mohamed, H.I., 2023. Synthesis and application of bacterial secondary metabolites in agroecosystems: a note from the editors, in: Abd-Elsalam, K.A., Mohamed, H.I. (Eds.), Bacterial Secondary Metabolites: Synthesis and Applications in Agroecosystem. Elsevier, Amsterdam, pp. 1–14. https://doi.org/10.1016/B978-0-323-95251-4.00020-X.
Afridi, M.S., Fakhar, A., Kumar, A., Ali, S., Medeiros, F.H.V., Muneer, M.A., Ali, H., Saleem, M., Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res., 265, 2022, 127199, 10.1016/j.micres.2022.127199.
Ajuna, H.B., Lim, H.I., Moon, J.H., Won, S.J., Choub, V., Choi, S.I., Yun, J.Y., Ahn, Y.S., The prospect of antimicrobial peptides from Bacillus species with biological control potential against insect pests and diseases of economic importance in agriculture, forestry and fruit tree production. Biotechnol. Biotechnol. Equip., 38, 2024, 2312115, 10.1080/13102818.2024.2312115.
Ambrico, A., Trupo, M., Efficacy of cell free supernatant from Bacillus subtilis ET-1, an iturin A producer strain, on biocontrol of green and gray mold. Postharvest Biol. Technol. 134 (2017), 5–10, 10.1016/j.postharvbio.2017.08.001.
Anastassiadou, M., Arena, M., Auteri, D., Brancato, A., Bura, L., Carrasco Cabrera, L., Chaideftou, E., Chiusolo, A., Crivellente, F., De Lentdecker, C., Egsmose, M., Fait, G., Greco, L., Ippolito, A., Istace, F., Jarrah, S., Kardassi, D., Leuschner, R., Lostia, A., Lythgo, C., Magrans, O., Mangas, I., Miron, I., Molnar, T., Padovani, L., Parra Morte, J.M., Pedersen, R., Reich, H., Santos, M., Sharp, R., Szentes, C., Terron, A., Tiramani, M., Vagenende, B., Villamar-Bouza, L., Peer review of the pesticide risk assessment of the active substance Bacillus amyloliquefaciens strain QST 713 (formerly Bacillus subtilis strain QST 713). EFSA J., 19, 2021, 6381, 10.2903/j.efsa.2021.6381.
Anckaert, A., Arias, A.A., Hoff, G., Calonne-Salmon, M., Declerck, S., Ongena, M., The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. Köhl, J., Willem, R., (eds.) Microbial Bioprotectants for Plant Disease Management, 2021, Burleigh Dodds Science Publishing, Cambridge, 247–300, 10.19103/AS.2021.0093.10.
Andrić, S., Rigolet, A., Argüelles Arias, A., Steels, S., Hoff, G., Balleux, G., Ongena, L., Höfte, M., Meyer, T., Ongena, M., Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. ISME J. 17 (2023), 263–275, 10.1038/s41396-022-01337-1.
Ayaz, M., Li, C.H., Ali, Q., Zhao, W., Chi, Y.K., Shafiq, M., Ali, F., Yu, X.Y., Yu, Q., Zhao, J.T., Yu, J.W., Qi, R.De, Huang, W.K., Bacterial and fungal biocontrol agents for plant disease protection: journey from lab to field, current status, challenges, and global perspectives. Molecules, 28, 2023, 6735, 10.3390/molecules28186735.
Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D.L., Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci., 9, 2018, 1473, 10.3389/fpls.2018.01473.
Benaissa, A., Rhizosphere: role of bacteria to manage plant diseases and sustainable agriculture-a review. J. Basic Microbiol., 64, 2023, 2300361, 10.1002/jobm.202300361.
Blin, K., Shaw, S., Augustijn, H.E., Reitz, Z.L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B.R., Metcalf, W.W., Helfrich, E.J.N., Van Wezel, G.P., Medema, M.H., Weber, T., antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51 (2023), 46–50, 10.1093/nar/gkad344.
Bonaterra, A., Badosa, E., Daranas, N., Francés, J., Roselló, G., Montesinos, E., Bacteria as biological control agents of plant diseases. Microorganisms, 10, 2022, 1759, 10.3390/microorganisms10091759.
Borriss, R., Phytostimulation and biocontrol by the plant-associated Bacillus amyloliquefaciens FZB42: an update. Kumar, M., Kumar, V., Prasad, R., (eds.) Phyto-Microbiome in Stress Regulation, 2020, Springer, Singapore, 1–20, 10.1007/978-981-15-2576-6_1.
Bosak, T., Losick, R.M., Pearson, A., A polycyclic terpenoid that alleviates oxidative stress. PNAS 105 (2008), 6725–6729, 10.1073/pnas.0800199105.
Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., Modrie, P., Legrève, A., Mahillon, J., Bragard, C., Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol., 9, 2018, 143, 10.3389/fmicb.2018.00143.
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., Mahillon, J., Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol., 10, 2019, 302, 10.3389/fmicb.2019.00302.
Chaouachi, M., Marzouk, T., Jallouli, S., Elkahoui, S., Gentzbittel, L., Ben, C., Djébali, N., Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biol. Technol., 172, 2021, 111389, 10.1016/j.postharvbio.2020.111389.
Chen, X.H., Scholz, R., Borriss, M., Junge, H., Mögel, G., Kunz, S., Borriss, R., Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140 (2009), 38–44, 10.1016/j.jbiotec.2008.10.015.
Crouzet, J., Arguelles-Arias, A., Dhondt-Cordelier, S., Cordelier, S., Pršić, J., Hoff, G., Mazeyrat-Gourbeyre, F., Baillieul, F., Clément, C., Ongena, M., Dorey, S., Biosurfactants in plant protection against diseases: rhamnolipids and lipopeptides case study. Front Bioeng. Biotechnol., 8, 2020, 1014 https://doi.org/10.3389/FBIOE.2020.01014/BIBTEX.
Deb, C.R., Tatung, M., Siderophore producing bacteria as biocontrol agent against phytopathogens for a better environment: a review. South Afr. J. Bot. 165 (2024), 153–162, 10.1016/j.sajb.2023.12.031.
Dertz, E.A., Xu, J., Stintzi, A., Raymond, K.N., Bacillibactin-mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc. 128 (2006), 22–23, 10.1021/ja055898c.
Dunlap, C.A., Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biol. Control 134 (2019), 82–86, 10.1016/j.biocontrol.2019.04.011.
Elnahal, A.S.M., El-Saadony, M.T., Saad, A.M., Desoky, E.S.M., El-Tahan, A.M., Rady, M.M., AbuQamar, S.F., El-Tarabily, K.A., The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur. J. Plant Pathol. 162 (2022), 759–792, 10.1007/s10658-021-02393-7.
Enebe, M.C., Babalola, O.O., The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl. Microbiol. Biotechnol. 102 (2018), 7821–7835, 10.1007/s00253-018-9214-z.
Erega, A., Stefanie, P., Dogsa, I., Danevčič, T., Simunovic, K., Klančnik, A., Možina, S.S., Mulec, I.M., Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni biofilms. Appl. Environ. Microbiol., 87, 2021, e02955-20, 10.1128/AEM.02955-20.
Etesami, H., Jeong, B.R., Glick, B.R., Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops- a review. Curr. Res. Biotechnol., 5, 2023, 100128, 10.1016/j.crbiot.2023.100128.
Fazle Rabbee, M., Baek, K.-H., Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules, 25, 2020, 4973, 10.3390/molecules25214973.
Galiano-Carneiro, A.L., Miedaner, T., Genetics of resistance and pathogenicity in the maize/Setosphaeria turcica pathosystem and implications for breeding. Front Plant Sci., 8, 2017, 1490, 10.3389/fpls.2017.01490.
Galli, M., Feldmann, F., Vogler, U.K., Kogel, K.H., Can biocontrol be the game-changer in integrated pest management? A review of definitions, methods and strategies. J. Plant Dis. Prot. 131 (2024), 265–291, 10.1007/s41348-024-00878-1.
Garrido-Sanz, D., Čaušević, S., Vacheron, J., Heiman, C.M., Sentchilo, V., van der Meer, J.R., Keel, C., Changes in structure and assembly of a species-rich soil natural community with contrasting nutrient availability upon establishment of a plant-beneficial Pseudomonas in the wheat rhizosphere. Microbiome, 11, 2023, 214, 10.1186/s40168-023-01660-5.
Ghadge, V., Kumar, P., Singh, S., Mathew, D.E., Bhattacharya, S., Nimse, S.B., Shinde, P.B., Natural melanin produced by the endophytic Bacillus subtilis 4NP-BL associated with the halophyte Salicornia brachiata. J. Agric. Food Chem. 68 (2020), 6854–6863 https://doi.org/10.1021/ACS.JAFC.0C01997/SUPPL_FILE/JF0C01997_SI_001.PDF.
Gong, W., Wang, J., Chen, Z., Xia, B., Lu, G., Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis. Biochemistry 50 (2011), 3621–3627 https://doi.org/10.1021/BI200123W/SUPPL_FILE/BI200123W_SI_001.PDF.
Grubbs, K.J., Bleich, R.M., Santa Maria, K.C., Allen, S.E., Farag, S., Shank, E.A., Bowers, A.A., Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. e00040-17 mSystems, 2, 2017, 10.1128/mSystems.00040-17.
Han, Q., Wu, F., Wang, X., Qi, H., Shi, L., Ren, A., Liu, Q., Zhao, M., Tang, C., The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ. Microbiol. 17 (2015), 1166–1188, 10.1111/1462-2920.12538.
Hoff, G., Arias, A.A., Boubsi, F., Pršic, J., Meyer, T., Ibrahim, H.M.M., Steels, S., Luzuriaga, P., Legras, A., Franzil, L., Lequart-Pillon, M., Rayon, C., Osorio, V., de Pauw, E., Lara, Y., Deboever, E., de Coninck, B., Jacques, P., Deleu, M., Petit, E., van Wuytswinkel, O., Ongena, M., Surfactin stimulated by pectin molecular patterns and root exudates acts as a key driver of the Bacillus-plant mutualistic interaction. mBio, 12, 2021, e01774-21, 10.1128/mBio.01774-21.
Hossain, M.A., Hossain, M.S., Akter, M., Challenges faced by plant growth-promoting bacteria in field-level applications and suggestions to overcome the barriers. Physiol. Mol. Plant Pathol., 126, 2023, 102029, 10.1016/j.pmpp.2023.102029.
Hu, J., Yang, T., Friman, V.P., Kowalchuk, G.A., Hautier, Y., Li, M., Wei, Z., Xu, Y., Shen, Q., Jousset, A., Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proc. R. Soc. B, 288, 2021, 20211396, 10.1098/rspb.2021.1396.
Imran, M., Abo-Elyousr, K.A.M., Mousa, M.A.A., Saad, M.M., A study on the synergetic effect of Bacillus amyloliquefaciens and dipotassium phosphate on Alternaria solani causing early blight disease of tomato. Eur. J. Plant Pathol. 162 (2022), 63–77, 10.1007/s10658-021-02384-8.
Iqbal, S., Begum, F., Rabaan, A.A., Aljeldah, M., Al Shammari, B.R., Alawfi, A., Alshengeti, A., Sulaiman, T., Khan, A., Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis group: a comprehensive review. Molecules, 28, 2023, 927, 10.3390/molecules28030927.
Islam, T., Rabbee, M.F., Choi, J., Baek, K.H., Biosynthesis, molecular regulation, and application of bacilysin produced by Bacillus species. Metabolites, 12, 2022, 397, 10.3390/metabo12050397.
Kai, M., Diversity and distribution of volatile secondary metabolites throughout Bacillus subtilis isolates. Front Microbiol., 11, 2020, 559, 10.3389/fmicb.2020.00559.
Kalyon, B., Helaly, S.E., Scholz, R., Nachtigall, J., Vater, J., Borriss, R., Süssmuth, R.D., Plantazolicin A and B: Structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org. Lett. 13 (2011), 2996–2999, 10.1021/ol200809m.
Katsuyama, Y., Ohnishi, Y., 2012. Type III polyketide synthases in microorganisms, in: Hopwood, D.A. (Ed.), Methods in Enzymology. Academic Press, San Diego, pp. 359–377. https://doi.org/10.1016/B978-0-12-394290-6.00017-3.
Khan, M., Salman, M., Ahmad Jan, S., Khan Shinwari, Z., Biological control of fungal phytopathogens: a comprehensive review based on Bacillus species. MOJ Biol. Med. 6 (2021), 90–92, 10.15406/mojbm.2021.06.00137.
Lam, V.B., Meyer, T., Arias, A.A., Ongena, M., Oni, F.E., Höfte, M., Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms, 9, 2021, 1441, 10.3390/microorganisms9071441.
Lee, S.B., Taylor, J.W., 1990. Isolation of DNA from fungal mycelia and single spores, in: Innis, M.A., Gelfand, H.D., Sninsky, J.J., White, J.T. (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp. 282–287. https://doi.org/10.1016/B978-0-12-372180-8.50038-X.
Liu, Y., Teng, K., Wang, T., Dong, E., Zhang, M., Tao, Y., Zhong, J., Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize. J. Appl. Microbiol. 128 (2020), 242–254, 10.1111/jam.14459.
Liu, Z., Budiharjo, A., Wang, P., Shi, H., Fang, J., Borriss, R., Zhang, K., Huang, X., The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl. Microbiol. Biotechnol. 97 (2013), 10081–10090, 10.1007/s00253-013-5247-5.
Lourenzi, C.R., Loss, A., Souza, M., Comin, J.J., Lovato, P.E., Sousa, Soares, C.R.F., The role of PGPR secondary metabolites in alleviating allelopathic effects (Biotic Stress) and induced tolerance in plants. Sayyed, R.Z., Uarrota, V.G., (eds.) Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion, 2022, Springer, Cham, 133–152, 10.1007/978-3-031-07559-9_8.
Malit, J.J.L., Wu, C., Liu, L.L., Qian, P.Y., Global genome mining reveals the distribution of diverse thioamidated RiPP biosynthesis gene clusters. Front Microbiol., 12, 2021, 635389, 10.3389/fmicb.2021.635389.
Marian, M., Shimizu, M., Improving performance of microbial biocontrol agents against plant diseases. J. Gen. Plant Pathol. 85 (2019), 329–336, 10.1007/s10327-019-00866-6.
Miao, S., Liang, J., Xu, Y., Yu, G., Shao, M., Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. Cell. Physiol., 2023, 1–15, 10.1002/jcp.30974.
Miljaković, D., Marinković, J., Balešević-Tubić, S., The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8, 2020, 1037, 10.3390/microorganisms8071037.
Mithöfer, A., Boland, W., Do you speak chemistry?. EMBO Rep. 17 (2016), 626–629, 10.15252/embr.201642301.
Molohon, K.J., Saint-Vincent, P.M.B., Park, S., Doroghazi, J.R., Maxson, T., Hershfield, J.R., Flatt, K.M., Schroeder, N.E., Ha, T., Mitchell, D.A., Plantazolicin is an ultranarrow-spectrum antibiotic that targets the Bacillus anthracis membrane. ACS Infect. Dis. 2 (2016), 207–220, 10.1021/acsinfecdis.5b00115.
Nakamura, L.K., Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int. J. Syst. Bacteriol. 39 (1989), 295–300 https://doi.org/10.1099/00207713-39-3-295/CITE/REFWORKS.
Ndayihanzamaso, P., Niko, N., Niyongere, C., Bizimana, S., Nibasumba, A., Lepoint, P., Tinzaara, W., Kaboneka, S., Sakayoya, E., Jogo, W., Mugiraneza, T., Karamura, E., Distribution, incidence and farmers knowledge of banana Xanthomonas wilt in Burundi. Afr. J. Agric. Res. 11 (2016), 3615–3621, 10.5897/ajar2016.11210.
Nihorimbere, G., Korangi Alleluya, V., Nimbeshaho, F., Nihorimbere, V., Legrève, A., Ongena, M., Bacillus-based biocontrol beyond chemical control in central Africa: the challenge of turning myth into reality. Front Plant Sci., 15, 2024, 1349357, 10.3389/fpls.2024.1349357.
Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., Ongena, M., Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol. 79 (2012), 176–191.
Novello, G., Bona, E., Toumatia, O., Vuolo, F., Bouras, N., Titouah, H., Zitouni, A., Gorrasi, S., Massa, N., Cesaro, P., Todeschini, V., Lingua, G., Gamalero, E., Rhizosphere bacterial isolation from indigenous plants in arid and semi-arid algerian soils: implications for plant growth enhancement. Processes, 11, 2023, 2907, 10.3390/pr11102907.
O'Callaghan, M., Ballard, R.A., Wright, D., Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use Manag 38 (2022), 1340–1369, 10.1111/sum.12811.
Pedreira, T., Elfmann, C., Stülke, J., The current state of SubtiWiki, the database for the model organism Bacillus subtilis. Nucleic Acids Res. 50 (2022), D875–D882, 10.1093/nar/gkab943.
Pršić, J., Ongena, M., Elicitors of plant immunity triggered by beneficial bacteria. Front Plant Sci., 11, 2020, 594530, 10.3389/fpls.2020.594530.
Rahman, F.Bin, Sarkar, B., Moni, R., Rahman, M.S., Molecular genetics of surfactin and its effects on different sub-populations of Bacillus subtilis. Biotechnol. Rep., 32, 2021, 10.1016/j.btre.2021.e00686.
Ren, H., Dommaraju, S.R., Huang, C., Cui, H., Pan, Y., Nesic, M., Zhu, L., Sarlah, D., Mitchell, D.A., Zhao, H., Genome mining unveils a class of ribosomal peptides with two amino termini. Nat. Commun., 14, 2023, 1624, 10.1038/s41467-023-37287-1.
Saiyam, D., Dubey, A., Malla, M.A., Kumar, A., Lipopeptides from Bacillus: unveiling biotechnological prospects-sources, properties, and diverse applications. Braz. J. Microbiol. 55 (2024), 281–295, 10.1007/s42770-023-01228-3.
Salwan, R., Sharma, M., Sharma, A., Sharma, V., Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress, 7, 2023, 100140, 10.1016/j.stress.2023.100140.
Santos, L.F., Olivares, F.L., Plant microbiome structure and benefits for sustainable agriculture. Curr. Plant Biol., 2021, 10.1016/j.cpb.2021.100198.
Sartori, M., Nesci, A., García, J., Passone, M.A., Montemarani, A., Etcheverry, M., Efficacy of epiphytic bacteria to prevent northern leaf blight caused by Exserohilum turcicum in maize. Rev. Argent. Microbiol 49 (2017), 75–82, 10.1016/J.RAM.2016.09.008.
Saxena, D., Ben-Dov, E., Manasherob, R., Barak, Z., Boussiba, S., Zaritsky, A., A UV tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin. Curr. Microbiol. 44 (2002), 25–30, 10.1007/S00284-001-0069-6.
Scholz, R., Molohon, K.J., Nachtigall, J., Vater, J., Markley, A.L., Süssmuth, R.D., Mitchell, D.A., Borriss, R., Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J. Bacteriol. 193 (2011), 215–224, 10.1128/JB.00784-10.
Scholz, R., Vater, J., Budiharjo, A., Wang, Z., He, Y., Dietel, K., Schwecke, T., Herfort, S., Lasch, P., Borriss, R., Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol. 196 (2014), 1842–1852, 10.1128/JB.01474-14.
Serrão, C.P., Ortega, J.C.G., Rodrigues, P.C., de Souza, C.R.B., Bacillus species as tools for biocontrol of plant diseases: a meta-analysis of twenty-two years of research, 2000–2021. World J. Microbiol. Biotechnol., 40, 2024, 110, 10.1007/s11274-024-03935-x.
Shafi, S., Reda, F.M., Ismail, M., Production of terpenoids, terpene alcohol, fatty acids and N2 compounds by Bacillus amyloliquefaciens S5i4 isolated from archaeological egyptian soil. Adv. Tech. Clin. Microbiol., 1, 2017, 18.
Shaikh, I.A., Turakani, B., Malpani, J., Goudar, S.V., Mahnashi, M.H., Hamed Al-Serwi, R., Ghoneim, M.M., El-Sherbiny, M., Abdulaziz Mannasaheb, B., Alsaikhan, F., Sindagimath, V., Khan, A.A., Muddapur, U.M., Azzouz, S., Mohammed, T., Shakeel Iqubal, S.M., Extracellular protease production, optimization, and partial purification from Bacillus nakamurai PL4 and its applications. J. King Saud. Univ. Sci., 35, 2023, 102429, 10.1016/j.jksus.2022.102429.
Sun, X., Xu, Z., Xie, J., Hesselberg-Thomsen, V., Tan, T., Zheng, D., Strube, M.L., Dragoš, A., Shen, Q., Zhang, R., Kovács, Á.T., Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 16 (2022), 774–787, 10.1038/s41396-021-01125-3.
Takigawa, H., Sugiyama, M., Shibuya, Y., C35-terpenes from Bacillus subtilis KSM 6-10. J. Nat. Prod. 73 (2010), 204–207, 10.1021/np900705q.
Thakur, N., Sood, R., Parmar, S., Reviving back the ecological sustainability through microbial bioprospection. Kumar, A., (eds.) Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management, 2022, Springer, Cham, 279–299, 10.1007/978-3-030-87512-1_12.
Vaishnavi, J., Osborne, W.J., 2021. Microbial volatiles: Small molecules with an important role in intra- and interbacterial genus interactions-quorum sensing, in: Kumar, A., Sing, J., Samuel, J. (Eds.), Volatiles and Metabolites of Microbes. Academic Press, London, pp. 35–50. https://doi.org/10.1016/B978-0-12-824523-1.00005-5.
Van Heel, A.J., De Jong, A., Song, C., Viel, J.H., Kok, J., Kuipers, O.P., BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46 (2018), 278–281, 10.1093/nar/gky383.
Wang, R., Liang, X., Long, Z., Wang, X., Yang, L., Lu, B., Gao, J., An LCI-like protein APC2 protects ginseng root from Fusarium solani infection. J. Appl. Microbiol. 130 (2021), 165–178, 10.1111/jam.14771.
Wang, S.-Y., Herrera-Balandrano, D.D., Wang, Y.-X., Shi, X.-C., Chen, X., Jin, Y., Liu, F.-Q., Laborda, P., Biocontrol ability of the Bacillus amyloliquefaciens group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of fungal postharvest diseases: a review. J. Agric. Food Chem. 70 (2022), 6591–6616, 10.1021/acs.jafc.2c01745.
Wang, Y., Zhang, C., Liang, J., Wu, L., Gao, W., Jiang, J., Iturin A extracted from Bacillus subtilis WL-2 affects Phytophthora infestans via cell structure disruption, oxidative stress, and energy supply dysfunction. Front Microbiol., 11, 2020, 536083, 10.3389/fmicb.2020.536083.
Wang, Z., Liu, C., Shi, Y., Huang, M., Song, Z., Simal-Gandara, J., Li, N., Shi, J., Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit. Rev. Food Sci. Nutr., 2023, 1–14, 10.1080/10408398.2023.2185588.
Weiland-Bräuer, N., Friends or foes-microbial interactions in nature. Biol. (Basel), 10, 2021, 496, 10.3390/biology10060496.
White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1.
Willocquet, L., Savary, S., Singh, K.P., Revisiting the use of disease index and of disease scores in plant pathology. Indian Phytopathol. 76 (2023), 909–914, 10.1007/s42360-023-00663-4.
Wu, G., Zhou, J., Zheng, J., Abdalmegeed, D., Tian, J., Wang, M., Sun, Shengwei, Sedjoah, R.C.A.A., Shao, Y., Sun, Sen, Xin, Z., Construction of lipopeptide mono-producing Bacillus strains and comparison of their antimicrobial activity. Food Biosci., 53, 2023, 102813, 10.1016/j.fbio.2023.102813.
Xu, Z., Liu, Y., Zhang, N., Xun, W., Feng, H., Miao, Y., Shao, J., Shen, Q., Zhang, R., Chemical communication in plant-microbe beneficial interactions: a toolbox for precise management of beneficial microbes. Curr. Opin. Microbiol., 72, 2023, 102269, 10.1016/j.mib.2023.102269.
Yamamoto, S., Shiraishi, S., Suzuki, S., Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides?. Lett. Appl. Microbiol. 60 (2015), 379–386, 10.1111/lam.12382.
Yin, Q.J., Ying, T.T., Zhou, Z.Y., Hu, G.A., Yang, C.L., Hua, Y., Wang, H., Wei, B., Species-specificity of the secondary biosynthetic potential in Bacillus. Front Microbiol., 14, 2023, 1271418, 10.3389/fmicb.2023.1271418.
Yu, X., Ai, C., Xin, L., Zhou, G., The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47 (2011), 138–145, 10.1016/j.ejsobi.2010.11.001.
Zanon, M.S.A., Cavaglieri, L.R., Palazzini, J.M., Chulze, S.N., Chiotta, M.L., Bacillus velezensis RC218 and emerging biocontrol agents against Fusarium graminearum and Fusarium poae in barley: in vitro, greenhouse and field conditions. Int. J. Food Microbiol., 413, 2024, 110580, 10.1016/j.ijfoodmicro.2024.110580.