Can transcranial direct current stimulation (tDCS) over the motor cortex increase endurance running performance? A randomized crossover-controlled trial
Martens, Géraldine ; Université de Liège - ULiège > Département des Sciences de l'activité physique et de la réadaptation
Hody, Stéphanie ; Université de Liège - ULiège > Département des Sciences de l'activité physique et de la réadaptation > Physiologie humaine et physiologie de l'effort physique
Bornheim, Stephen ; Université de Liège - ULiège > Evaluation-Revalidation (EVAREVA)
Angius, Luca; Northumbria University, Newcastle UK > Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation
De Beaumont, Louis; UdeM - Université de Montréal [CA]
Fregni, Felipe; Harvard Medical School
Ruffini, Giulio; Neuroelectrics
Kaux, Jean-François ; Université de Liège - ULiège > Département des Sciences de l'activité physique et de la réadaptation > Médecine physique, réadaptation et traumatologie du sport
Thibaut, Aurore ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Bury, Thierry ; Université de Liège - ULiège > Département des Sciences de l'activité physique et de la réadaptation
Language :
English
Title :
Can transcranial direct current stimulation (tDCS) over the motor cortex increase endurance running performance? A randomized crossover-controlled trial
Publication date :
2024
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Holgado D, Vadillo MA, Sanabria D. "Brain-Doping, " Is It a Real Threat? Front Physiol 2019; 10:483. https://doi.org/10.3389/fphys.2019.00483 PMID: 31068840
Davis NJ. Neurodoping: Brain stimulation as a performance-enhancing measure. Sport Med 2013; 43:649-53. https://doi.org/10.1007/s40279-013-0027-z PMID: 23504390
Borducchi DMM, Gomes JS, Akiba H, et al. Transcranial direct current stimulation effects on athletes' cognitive performance: An exploratory proof of concept trial. Front Psychiatry 2016; 7:227333. https://doi.org/10.3389/fpsyt.2016.00183 PMID: 27965597
Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001; 57:1899-901. https://doi.org/10.1212/wnl.57.10.1899 PMID: 11723286
Nitsche MA, Liebetanz D, Antal A, et al. Modulation of cortical excitability by weak direct current stimulation- technical, safety and functional aspects. Suppl Clin Neurophysiol 2003; 56:255-76.http://www. ncbi.nlm.nih.gov/pubmed/14677403. https://doi.org/10.1016/s1567-424x(09)70230-2 PMID: 14677403
Nitsche MA, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003; 553:293-301. https://doi. org/10.1113/jphysiol.2003.049916 PMID: 12949224
Amann M, Sidhu SK, McNeil CJ, et al. Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue. J Physiol 2022; 600:5203-14. https://doi.org/10.1113/JP282564 PMID: 36326193
Angius L. Critical considerations on tDCS-mediated changes in corticospinal response to fatiguing exercise. J Physiol 2023; 601:703-4. https://doi.org/10.1113/JP284152 PMID: 36536518
Kristiansen M, Thomsen MJ, Nørgaard J, et al. The Effect of Anodal Transcranial Direct Current Stimulation on Quadriceps Maximal Voluntary Contraction, Corticospinal Excitability, and Voluntary Activation Levels. J Strength Cond Res 2022; 36:1540-7. https://doi.org/10.1519/JSC.0000000000003710 PMID: 33677460
Coyle EF. Physiological determinants of endurance exercise performance. J Sci Med Sport 1999; 2:181-9. https://doi.org/10.1016/s1440-2440(99)80172-8 PMID: 10668757
Noakes TD. Fatigue is a Brain-Derived Emotion that Regulates the Exercise Behavior to Ensure the Protection of Whole Body Homeostasis. Front Physiol 2012; 3:82. https://doi.org/10.3389/fphys.2012. 00082 PMID: 22514538
Machado DG, Unal G, Andrade SM, et al. Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimul. 2019; 12:593-605. https://doi.org/10.1016/j.brs.2018.12.227 PMID: 30630690
Chinzara TT, Buckingham G, Harris DJ. Transcranial direct current stimulation and sporting performance: A systematic review and meta-analysis of transcranial direct current stimulation effects on physical endurance, muscular strength and visuomotor skills. Eur J Neurosci 2022; 55:468-86. https://doi.org/10.1111/ejn.15540 PMID: 34904303
Maudrich T, Ragert P, Perrey S, et al. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis. Brain Stimul 2022; 15:1517-29. https://doi.org/10.1016/j.brs.2022.11.007 PMID: 36442774
Shyamali Kaushalya F, Romero-Arenas S, García-Ramos A, et al. Acute effects of transcranial direct current stimulation on cycling and running performance. A systematic review and meta-analysis. Eur J Sport Sci 2022; 22:113-25. https://doi.org/10.1080/17461391.2020.1856933 PMID: 33280514
Angius L, Pascual-Leone A, Santarnecchi E. Brain stimulation and physical performance. Prog Brain Res 2018; 240:317-39. https://doi.org/10.1016/bs.pbr.2018.07.010 PMID: 30390837
Nitsche MA, Bikson M. Extending the parameter range for tDCS: Safety and tolerability of 4 mA stimulation. Brain Stimul. 2017; 10:541-2. https://doi.org/10.1016/j.brs.2017.03.002 PMID: 28456325
Williams PS, Hoffman RL, Clark BC. Preliminary Evidence That Anodal Transcranial Direct Current Stimulation Enhances Time to Task Failure of a Sustained Submaximal Contraction. PLoS One 2013; 8:e81418. https://doi.org/10.1371/journal.pone.0081418 PMID: 24349067
Billat V, Faina M, Sardella F, et al. A comparison of time to exhaustion at VO2max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics 1996; 39:267-77. https://doi.org/10.1080/00140139608964457 PMID: 8851531
Redkva PE, Miyagi WE, Milioni F, et al. Anaerobic capacity estimated by the sum of both oxygen equivalents from the glycolytic and phosphagen pathways is dependent on exercise mode: Running versus cycling. PLoS One 2018; 13:e0203796. https://doi.org/10.1371/journal.pone.0203796 PMID: 30212529
Park SB, Jun Sung D, Kim B, et al. Transcranial Direct Current Stimulation of motor cortex enhances running performance. PLoS One 2019; 14. https://doi.org/10.1371/journal.pone.0211902 PMID: 30794568
Baldari C, Buzzachera CF, Vitor-Costa M, et al. Effects of transcranial direct current stimulation on psychophysiological responses to maximal incremental exercise test in recreational endurance runners. Front Psychol 2018; 9:1-10. https://doi.org/10.3389/fpsyg.2018.01867 PMID: 30356689
Codella R, Alongi R, Filipas L, et al. Ergogenic Effects of Bihemispheric Transcranial Direct Current Stimulation on Fitness: A Randomized Cross-over Trial. Int J Sports Med 2021; 42:66-73. https://doi. org/10.1055/a-1198-8525 PMID: 32781476
Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sport 2000; 10:123-45. https://doi.org/10.1034/j.1600-0838.2000.010003123.x PMID: 10843507
Billat LV. Use of Blood Lactate Measurements for Prediction of Exercise Performance and for Control of Training. Sport Med 1996; 22:157-75. https://doi.org/10.2165/00007256-199622030-00003 PMID: 8883213
Angius L, Mauger AR, Hopker J, et al. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul 2018; 11:108-17. https://doi.org/10.1016/j.brs.2017.09.017 PMID: 29079458
Angius L, Santarnecchi E, Pascual-Leone A, et al. Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex Improves Inhibitory Control and Endurance Performance in Healthy Individuals. Neuroscience 2019; 419:34-45. https://doi.org/10.1016/j.neuroscience.2019.08.052 PMID: 31493549
Bornheim S, Croisier JL, Maquet P, et al. Proposal of a new tDCS safety screening tool. Am J Phys Med Rehabil 2018; : 1. https://doi.org/10.1097/PHM.0000000000001096 PMID: 30431445
Angius L, Hopker JG, Marcora SM, et al. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol 2015; 115:2311-9. https://doi.org/10.1007/s00421-015-3212-y PMID: 26148882
Barwood MJ, Butterworth J, Goodall S, et al. The Effects of Direct Current Stimulation on Exercise Performance, Pacing and Perception in Temperate and Hot Environments. Brain Stimul 2016; 9:842-9. https://doi.org/10.1016/j.brs.2016.07.006 PMID: 27567471
Okano AH, Fontes EB, Montenegro RA, et al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med 2015; 49:1213-8. https://doi.org/10.1136/bjsports-2012-091658 PMID: 23446641
Vitor-Costa M, Okuno NM, Bortolotti H, et al. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling. PLoS One 2015; 10:e0144916. https://doi. org/10.1371/journal.pone.0144916 PMID: 26674200
Martens G, Deflandre D, Schwartz C, et al. Reproducibility of the Evolution of Stride Biomechanics During Exhaustive Runs. J Hum Kinet 2018; 64:57-69. https://doi.org/10.1515/hukin-2017-0184 PMID: 30429899
McDnough J, Bruce R. Maximal exercise testing in assessing cardiovascular function. JS Carol Med Assoc 1969; 65:26-33.
Shephard RJ, Vandewalle H, Gil V, et al. Respiratory, muscular, and overall perceptions of effort: the influence of hypoxia and muscle mass. Med Sci Sports Exerc 1992; 24:556-67.https://europepmc.org/article/med/1569852 (accessed 6 Nov 2023). PMID: 1569852
Ruffini G, Fox MD, Ripolles O, et al. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage 2014; 89:216-25. https://doi.org/10.1016/j.neuroimage.2013.12.002 PMID: 24345389
Herwig U, Satrapi P, Schonfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 2003; 16:95-9.http://www.ncbi.nlm.nih.gov/pubmed/14977202. https://doi.org/10.1023/b:brat.0000006333.93597.9d PMID: 14977202
Brunoni AR, Amadera J, Berbel B, et al. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol 2011; 14:1133-45. https://doi.org/10.1017/S1461145710001690 PMID: 21320389
Frazer A, Williams J, Spittles M, et al. Anodal transcranial direct current stimulation of the motor cortex increases cortical voluntary activation and neural plasticity. Muscle Nerve 2016; 54:903-13. https://doi. org/10.1002/mus.25143 PMID: 27065472
Cogiamanian F, Marceglia S, Ardolino G, et al. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci 2007; 26:242-9. https://doi.org/10.1111/j.1460-9568.2007.05633.x PMID: 17614951
Angius L, Pageaux B, Hopker J, et al. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience 2016; 339:363-75. https://doi.org/10.1016/j. neuroscience.2016.10.028 PMID: 27751960
Abdelmoula A, Baudry S, Duchateau J. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience 2016; 322:94-103. https://doi.org/10.1016/j.neuroscience.2016.02.025 PMID: 26892298
Müller P, Duderstadt Y, Lessmann V, et al. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J Clin Med 2020; 9. https://doi.org/10.3390/jcm9041136 PMID: 32326586
Podda MV, Cocco S, Mastrodonato A, et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep 2016; 6:22180. https://doi.org/10.1038/srep22180 PMID: 26908001
Lattari E, Filho BJR, Fonseca SJ, et al. Effects on Volume Load and Ratings of Perceived Exertion in Individuals' Advanced Weight Training After Transcranial Direct Current Stimulation. J strength Cond Res 2020; 34:89-96. https://doi.org/10.1519/JSC.0000000000002434 PMID: 29329154
Zénon A, SidibéM, Olivier E. Disrupting the Supplementary Motor Area Makes Physical Effort Appear Less Effortful. J Neurosci 2015; 35:8737-44. https://doi.org/10.1523/JNEUROSCI.3789-14.2015 PMID: 26063908
Etemadi M, Amiri E, Tadibi V, et al. Anodal tDCS over the left DLPFC but not M1 increases muscle activity and improves psychophysiological responses, cognitive function, and endurance performance in normobaric hypoxia: a randomized controlled trial. BMC Neurosci 2023; 24. https://doi.org/10.1186/S12868-023-00794-4 PMID: 37020275
Teymoori H, Amiri E, Tahmasebi W, et al. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: a randomized controlled trial. J Neuroeng Rehabil 2023; 20. https://doi.org/10.1186/s12984-023-01221-9 PMID: 37496055
Furuya S, Klaus M, Nitsche MA, et al. Ceiling Effects Prevent Further Improvement of Transcranial Stimulation in Skilled Musicians. J Neurosci 2014; 34:13834-9. https://doi.org/10.1523/JNEUROSCI. 1170-14.2014 PMID: 25297109
Rosen DS, Erickson B, Kim YE, et al. Anodal tDCS to right dorsolateral prefrontal cortex facilitates performance for novice jazz improvisers but hinders experts. Front Hum Neurosci 2016; 10:229675. https://doi.org/10.3389/fnhum.2016.00579 PMID: 27899889
Oki K, Mahato NK, Nakazawa M, et al. Preliminary Evidence That Excitatory Transcranial Direct Current Stimulation Extends Time to Task Failure of a Sustained, Submaximal Muscular Contraction in Older Adults. Journals Gerontol Ser A 2016; 71:1109-12. https://doi.org/10.1093/gerona/glw011 PMID: 26912478
Pascual-Leone A, Dang N, Cohen LG, et al. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 1995; 74:1037-45. https://doi.org/10.1152/jn.1995.74.3.1037 PMID: 7500130
Nitsche MA, Liebetanz D, Lang N, et al. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 2003; 114:2220-3.http://www.ncbi.nlm.nih.gov/pubmed/14580622. https://doi.org/10.1016/s1388-2457(03)00235-9 PMID: 14580622
Neri F, Mencarelli L, Menardi A, et al. A novel tDCS sham approach based on model-driven controlled shunting. Brain Stimul 2020; 13:507-16. https://doi.org/10.1016/j.brs.2019.11.004 PMID: 31926812
Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol 2011; 24:590-6. https://doi.org/10.1097/WCO.0b013e32834c3db0 PMID: 21968548