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Abstract

Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique,

has been shown to increase exercise performance in strength and cycling studies but its

effects on running endurance remain unclear. The objectives of this randomized sham-

controlled crossover trial were to assess tDCS efficacy on submaximal treadmill running

time to exhaustion (TTE). Forty-five healthy male runners aged between 18 and 32 years

(mean maximal oxygen consumption: 46.6 mL/min/kg) performed two constant-load tests

at 90% of their maximal aerobic speed preceded by 20 minutes of active or sham multi-

channel (5 anodes, 3 cathodes) tDCS applied over the bilateral motor cortex with a total

intensity of 4 mA. Ratings of perceived exertion (RPE), blood lactate, VO2, and heart rate

were monitored every five minutes until volitional exhaustion. The median [IQR] TTE was

similar following active (12.2 [10.5, 16.1] minutes) or sham (12.5 [10.2, 15.1] minutes)

tDCS (p = 0.96). Likewise, there were no significant differences between active and sham

conditions for RPE, blood lactate, final VO2, and final heart rate (all p�0.05). No differ-

ence in TTE was found when stratifying groups according to their VO2max (i.e., VO2max

� 45 mL/min/Kg, p = 0.53; VO2max < 45 mL/min/Kg, p = 0.45) but there was a trend for a

significant correlation between VO2max and change in TTE (p = 0.06). TDCS applied

over the bilateral motor cortex did not improve endurance performance in a large sample

of trained runners. Characterization of individual tDCS responsiveness deserves further

consideration. In our experimental conditions, tDCS had no ergogenic effect on endur-

ance running performance.
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Trial registration: Clinical trial registration: NCT04005846.

1. Introduction

Increasing exercise endurance through external interventions is raising interest. Neuromodu-

lation techniques to increase brain activity and, possibly, exercise performance have been

tested; however, their efficacy and ethical use have been questioned [1–3]. Among them, tran-

scranial direct current stimulation (tDCS) stands out given its affordability, safety and ease of

use. TDCS uses low intensity electrical current applied on the scalp to modulate the neuronal

excitability of the targeted brain areas [4]. The effects depend on the current’s flow direction:

anodal stimulation tends to increase the excitability in standard protocols (20 minutes– 2 mA)

while cathodal stimulation tends to decrease it [5]. These effects can be direct, through the

online electrical alteration of the resting membrane potential, or indirect, through offline

long-term potentiation/depression-like mechanisms[6]. Regarding endurance performance,

tDCS applied over the primary motor cortex (M1) could potentially increase its cortical excit-

ability, facilitate the supraspinal drive, reduce central fatigue, and prolong muscular endurance

[7]. These hypotheses have, however, not been confirmed since current evidence fail to estab-

lish a causal link between corticospinal-motoneuronal excitability and improvement in exer-

cise performance [8,9].

Endurance can be quantified by time to exhaustion (TTE) trials, a marker of capacity repre-

sented by the length of time that a given power output can be maintained [10]. Another key

component of endurance performance relates to the perceived exertion during exercise, one of

the most important features of fatigue, typically measured with self-reported rating of per-

ceived exertion (RPE) [11].

Several studies investigated tDCS effects on athletic performance in various settings (e.g.,

isometric or isokinetic strength, cycling, shooting) and with different populations (e.g., non-

athletes, amateurs, professional athletes), leading to mixed results [12–15], with about 60% of

studies reporting physical performances improvements [16]. Heterogeneity among study pro-

tocols and variability in individual response to tDCS could underlie such discrepancies across

study results. Regarding stimulation intensity, most studies used 1.5 or 2 mA current intensi-

ties, which limits the evaluation of tDCS dose effects in this context, while higher intensities

(e.g., 4 mA) could hold better efficacy and are considered safe [17]. Another variable that may

affect the response to tDCS is the athlete’s baseline athletic level. A prior strength study sug-

gested that individuals with a lower level of endurance capacity might benefit more from the

ergogenic effects of M1-tDCS [18], possibly due to a ceiling effect in trained athletes. This

hypothesis still needs to be confirmed in whole-body exercises (i.e., cycling, running) [12].

Recent meta-analyses show a significant beneficial effect of tDCS on performance as mea-

sured by TTE in whole-body exercises [13–15]. Among retrieved studies, only three trials

focused on the running modality, although running tests to exhaustion elicit higher levels of

oxygen consumption and energetic demands relative to cycling as the former exercise involves

more muscular mass [19,20]. On one hand, a single-blind randomized controlled trial investi-

gating the effects of a single session of M1-tDCS using a commercial device in 10 trained run-

ners showed a significant increase in TTE following active (21 minutes) compared to sham (18

minutes) stimulation in the absence of significant changes in RPE and cardiorespiratory vari-

ables [21]. On the other hand, a double-blind randomized controlled trial with an identical

tDCS protocol in 13 recreational runners reported no significant difference in TTE or RPE
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change between active (9 minutes) and sham (9 minutes) stimulation [22]. Another single-

blind study used a commercial device and reported a higher peak oxygen consumption follow-

ing active versus sham tDCS in 17 physically active men [23]. Besides being limited by their

restricted sample sizes, these studies failed to provide an additional control task condition

without tDCS in order to account for a potential placebo effect related to an external interven-

tion (i.e., active or sham tDCS application).

Characterizing ergogenic effects of tDCS requires an objective monitoring of exercise-

related physiological variables. Oxygen consumption and blood lactate accumulation are key

markers of aerobic capacity and exercise intensity, respectively [24,25]. Oxygen consumption

kinetics during constant-load endurance running are typically stable and do not differ between

active and sham tDCS conditions [21,22]. The blood lactate increase is more sensitive to exer-

cise intensity and accumulates significantly more, along with TTE, following motor and pre-

frontal tDCS, as compared to cathodal and sham, in cycling TTE trials on small samples (i.e.,

n�12) [26,27]. Such effects remain to be confirmed with larger samples in running tDCS

studies.

To address these gaps, we conducted a large randomized sham-controlled clinical trial to

investigate the effects of a single session of M1-tDCS on running endurance performance,

measured with TTE, in trained athletes while controlling for perceived exertion and perfor-

mance-related physiological parameters. We hypothesized that performance would be

increased following active and not sham tDCS, and that participants with lower baseline ath-

letic levels will benefit more from tDCS.

2. Material and methods

2.1 Standard protocol approvals, patient consent and study registration

The study was approved by the institutional ethics committee (Comité d’Éthique Hospitalo-

Facultaire Universitaire de Liège, approval number CE2019/186) before its beginning. Written

informed consents were obtained for all of the participants. The study was registered as a clini-

cal trial (ClinicialTrials.gov NCT04005846), conducted in accordance with the Declaration of

Helsinki and reported following the CONSORT guidelines (S1 Table). The study protocol can

be found as (S1 File). All study-related data was managed and stored in accordance with the

EU General Data Protection Regulation.

2.2 Participants

Between October 4, 2019 and March 24, 2021, we recruited healthy males aged between 18 and

35, training in endurance sports for at least two hours a week, with a maximal oxygen con-

sumption (VO2max) comprised between 30 and 65 mL/min/kg, which was determined on the

first screening visit. Exclusion criteria were: smoking, dietary supplementation, coffee con-

sumption above 10 units a week, alcohol consumption above 4 units a week, centrally-acting

medication and history of pain or lesion of the lower limbs in the past six weeks. Additionally,

the tDCS Safety Screening Tool (TSST) was completed [28]. Participants were recruited

among students of the faculty, in affiliated sports clubs and through the Physiology Laboratory

database. The CONSORT Participant flow diagram is presented in Fig 1.

2.3 Sample size estimation

The study sample size was estimated a priori using Student’s t-tests (S3 Table) based on previ-

ous studies with amateur and competitive participants (cyclists and runners) [22,26,29–32]. It

reached 52 subjects based on an effect size of 0.8 and a power of 80% with an alpha level of 5%.
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2.4 Procedures

This was a randomized double-blind sham-controlled crossover trial with a screening visit,

two consecutive tDCS (active/sham randomized) followed by constant-load tests, and a con-

trol constant-load test (without tDCS), all spaced by seven days.

2.4.1 Screening visit (Visit 1). During the screening visit, participants performed a

VO2max test conducted as described in Martens et al. [33] and inspired from the Bruce proto-

col [34]. Following the warm up (5 minutes at 8 km/h), the pace was incremented by 2 km/h

every 2 minutes up to 16 km/h and then by 1 km/h every 3 minutes until participants’ exhaus-

tion. Strong verbal encouragements were provided and the maximal nature of the effort was

determined using the following criteria: heart rate above 90% of the age-predicted maximum

(i.e., 220-age); respiratory exchange ratio� 1.10; plateau in oxygen uptake (VO2) and; lactate

blood level� 8 mmol/L. VO2, respiratory exchange ratio and heart rate (HR) were measured

continuously (Ergostick, Geratherm Respiratory, Germany and Polar Belt, Polar, USA). Lac-

tate blood levels and RPE were measured at the end of each increment using capillary blood

(YSI 1500 Sport L-Lactate Analyser, YSI, USA) and the French validated version of the Borg’s

6–20 scale [35], respectively. The maximal aerobic speed (MAS) was defined as the highest

speed achieved at VO2max.

Fig 1. Flow diagram of study participants.

https://doi.org/10.1371/journal.pone.0312084.g001
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2.4.2 tDCS and TTE trials (Visits 2 and 3). Following active or sham tDCS (randomized

order, crossover design) and a warm up (5 minutes at 8 km/h), participants performed a con-

stant-load TTE trial at 90% of their MAS until volitional exhaustion or inability to keep the

pace. Using the above-mentioned equipment, cardiorespiratory parameters were continuously

measured while lactate blood levels and RPE were collected every 5 minutes and at the end of

the trial. The tDCS intervention consisted of 20 minutes of stimulation at 4 mA preceded and

followed by a 30-second ramping period (active condition) or a 30-second ramping period

only (sham condition) with a built-in double-blind mode (details below). A topical anaesthetic

cream was applied over the stimulation area prior to each session to diminish somatosensory

perception of the stimulation and to ensure blinding. During tDCS, participants were seated

on a chair and instructed to remain calm and alert. The Stimweaver multichannel tDCS mon-

tage optimization algorithm was used to target the bilateral motor network [36]. Intensity was

set at maximum 2 mA per anode for a maximum total injected current of 4 mA (Fig 2). Using

the Starstim 8 system (Neuroelectrics, Spain) with Ag/AgCl 3.14 cm2 electrodes and conduc-

tion gel, five anodes were placed over C1, C2, C3, C4, Cz and three cathodes over P3, P4, Fz

(international 10–20 EEG system [37]).

Fig 2. tDCS montage. E-Field (normal to cortical surface, in V/m) and current density modelling (provided by Neuroelectric©) with anodes in

red and cathodes in blue (upper part); montage on the cap before stimulation (lower part).

https://doi.org/10.1371/journal.pone.0312084.g002
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At the end of the visit, participants filled out a questionnaire about their perception of

receiving active versus sham tDCS with a 5-point certainty grading scale (1: not sure at all; 5:

absolutely sure). A second questionnaire assessed potential adverse effects using an evidence-

based list of potential symptoms, a self-reported severity value and a certainty grade of whether

the reported effects are related to tDCS or not [38].

2.4.3 Control session (Visit 4). To isolate potential placebo effects related solely to the

external intervention (i.e., active or sham tDCS), a fourth visit consisting only of the constant-

load TTE trial at 90% MAS (without tDCS) was conducted. When co-constructing the proto-

col with participating athletic associations, the addition of a fourth TTE trial over a 1-month

period raised feasibility issues due to training programs constraints. Consequently, the latter

session was presented as optional to the participating athletes.

All laboratory visits were performed at the same moment of the week, on the same tread-

mill, with the same running gear, in a temperature-controlled room and with the same investi-

gators to ensure reproducibility.

2.5 Randomization and blinding

Simple randomization was performed by a third party using a computer-generated sequence

in a 1:1 allocation ratio. The tDCS device was used in double-blind mode and pre-pro-

grammed with either active or sham-coded sessions provided to the investigators before each

test. Neither the investigators nor the participants were aware of the coded allocation and the

tDCS software depicted identical information (including identical stimulation time) for both

active and sham conditions. Upon study completion and database cleaning, the code was pro-

vided to the person in charge of the analyses.

2.6 Outcomes

The primary outcome was the TTE following active versus sham tDCS (i.e., tDCS efficacy) at

the group level and in subgroups stratified according to fitness level (amateur, competitive)

based on the median VO2max. The secondary outcomes were: (1) the tDCS efficacy in the sub-

group who completed the control session (Visit 4) and; the influence of fitness level (VO2max)

on tDCS efficacy.

2.7 Statistical analyses

Statistical analyses were performed per protocol (i.e., dropouts excluded) using R4.2.1 (R

Foundation for Statistical Computing, Vienna, Austria). The normality of the data distribution

was assessed using Shapiro-Wilk tests. According to the nature of the distribution, mean and

standard deviation or median and interquartile ranges were used for descriptive analyses.

Baseline comparisons (age, weight, height, body fat, years of training, weekly training,

VO2max, MAS, TTE on VO2max test, maximal heart rate, maximal respiratory exchange

ratio) between groups (active/sham and sham/active) were performed using independent Stu-

dent’s t-tests (normal distribution) and Wilcoxon rank-sum tests (non-normal distribution).

Comparisons between active and sham tDCS sessions were then performed using paired Stu-

dent’s t-tests and Wilcoxon signed-rank tests. Subgroup analyses including the additional con-

trol condition (Visit 4) were performed using one-way ANOVAs (normal distribution) or

Kruskal-Wallis tests (non-normal distribution). A new variable derived from the time (TTE)

by treatment (active-sham condition) interaction was constructed to quantify the change in

TTE between active and sham tDCS: ΔTTE = TTE active minus TTE sham. The relationship

between baseline VO2max and ΔTTE was assessed using Spearman’s correlations. Results were

considered significant at p< 0.05.
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3. Results

Fifty-four participants were included; 45 completed the three protocol visits, and 21 completed

the additional control visit. The flowchart is presented in Fig 1 and the demographics and aer-

obic profiles are presented in Table 1, with no significant differences between allocation

groups. Based on the median VO2max (46.7), participants with a VO2max� 45 mL/min/Kg

(n = 25) were classified as competitive while participants <45 (n = 20) were classified as ama-

teur. The study dataset is available as (S1 Dataset).

3.1 tDCS efficacy

At the group level (n = 45), the median [IQR] TTE was 12.2 [10.5, 16.2] minutes after active

tDCS and 12.5 [10.2, 15.1] after sham tDCS (Fig 3A). There was no significant difference

between active and sham conditions (V = 523; p = 0.96). The final RPE, blood lactate, VO2 and

heart rate (Fig 3) were also similar between active and sham conditions (all p’s>0.05), as pre-

sented in Table 2. In the subgroup of amateur participants (n = 20), the TTE was 10.7 [9.4,

13.8] minutes following active tDCS and 10.3 [9.6, 12.8] following sham, with no significant

difference between conditions (V = 126; p = 0.45). For the competitive subgroup (n = 25), the

Table 1. Sociodemographic and aerobic profile of the study participants.

Total

(N = 45)

Active First

(N = 21)

Sham First

(N = 24)

p-value a

Age (years)

Median [Q1, Q3] 21.0

[21.0, 22.0]

21.0

[21.0, 22.0]

21.0

[20.8, 22.3]

0.647

Weight (Kg)

Mean (SD) 73.1 (8.9) 74.2 (8.2) 72.2 (9.6) 0.466

Height (cm)

Mean (SD) 179 (7.2) 179 (8.1) 179 (6.6) 0.971

Body fat (%)

Mean (SD) 13.7 (3.4) 14.0 (3.6) 13.5 (3.4) 0.650

Years of training

Median [Q1, Q3] 7.0

[3.0, 10.0]

7.0

[2.0, 12.0]

7.3

[4.6, 10.0]

0.632

Weekly training (hours)

Median [Q1, Q3] 3.0

[2.0, 6.0]

2.0

[2.0, 7.0]

3.0

[2.0, 4.1]

0.818

VO2max (mL/min/Kg)

Mean (SD) 46.6 (7.5) 45.2 (7.6) 47.9 (7.3) 0.228

Max. aerobic speed (Km/h)

Median [Q1, Q3] 16.0

[14.0, 16.5]

14.4

[14.0, 16.3]

16.0

[14.4, 16.6]

0.199

TTE on VO2max task (minutes)

Mean (SD) 11.6 (3.3) 11.1 (3.6) 12.1 (2.9) 0.281

Max. heart rate (bpm)

Mean (SD) 194.8 (9.4) 194.8 (11.2) 194.8 (7.8) 0.994

Max. respiratory exchange ratio

Median [Q1, Q3] 1.2

[1.2, 1.3]

1.2

[1.2, 1.3]

1.2

[1.2, 1.3]

0.873

VO2max = maximal oxygen consumption; TTE = time to exhaustion.
a = Student’s t-test or Wilcoxon test according to data distribution.

https://doi.org/10.1371/journal.pone.0312084.t001
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TTE was 15.2 [11.7, 16.7] minutes for active tDCS and 15.0 [12.5, 15.7] for sham, with no sig-

nificant difference between conditions (V = 138; p = 0.53). The RPE and physiological vari-

ables were also similar between active and sham conditions for both subgroups (all p’s>0.05,

see Table 2).

In the subgroup of participants who completed the 4th control session without tDCS inter-

vention (n = 21, secondary analysis), the mean ± SD TTE was 13.3 ± 3.5 minutes after active

tDCS, 13.1 ± 3.1 after sham tDCS and 12.6 ± 4.0 for the control session. There was no signifi-

cant difference between the three conditions (F = 0.19; p = 0.83). The final RPE, blood lactate,

VO2 and heart rate were also similar between active, sham and control conditions (all p

>0.05), as presented in Table 3. In the subgroup of amateur participants (n = 10), the TTE was

11.7 ± 3.3 minutes following active tDCS, 11.2 ± 2.3 minutes following sham and 10.5 ± 3.7

minutes for the control session, with no significant difference between conditions (F = 0.35;

p = 0.71). For the competitive subgroup (n = 21), the TTE was 14.7 ± 3.1 minutes for active

tDCS, 14.8 ± 2.6 minutes for sham and 14.5 ± 3.4 minutes for the control session, with no sig-

nificant difference between conditions (F = 0.03; p = 0.97). The RPE and physiological vari-

ables were also similar between active, sham and control conditions for both groups (all p’s

>0.05, see Table 3).

3.2 Influence of fitness level

There was no significant correlation between the individual VO2max and the change in TTE

between active and sham tDCS (i.e., ΔTTE); however, a trend was noted (R = -0.30; p = 0.058,

Fig 3. Study outcomes. Differences in A. time to exhaustion (TTE); B. final rating of perceived exertion (RPE); C.

blood lactate; D. final oxygen consumption (VO2) and E. final heart rate (HR) between active and sham tDCS

conditions. Influence of baseline athletic characteristics on improvement in time to exhaustion (ΔTTE = TTE active

tDCS minus TTE sham): F. maximal oxygen consumption (VO2max).

https://doi.org/10.1371/journal.pone.0312084.g003
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Fig 3F). The negative correlation shows that participants with less aerobic capacity (i.e., lower

VO2max) presented a larger improvement in TTE following active stimulation (i.e., greater

ΔTTE).

Table 2. Time to exhaustion (TTE, primary outcome), rating of perceived exertion (RPE), final blood lactate, final oxygen uptake (VO2) and final heart rate (HR)

following active and sham tDCS protocols in the study sample (n = 45) and in subgroups stratified according to VO2max (i.e., amateur< 45 mL/min/Kg; n = 20 and

competitive� 45 mL/min/Kg; n = 25).

Group Variable Active tDCS Sham tDCS Statistic a

Study sample (n = 45) TTE (min) 12.2 [10.5, 16.1] 12.5 [10.2, 15.1] V = 523; p = 0.96

Final RPE 20 [19, 20] 20 [19, 20] V = 141; p = 0.64

Lactate (mmol/L) 9.8 ± 3.7 8.9 ± 2.8 t = -2.0; p = 0.052

Final VO2 (mL/min/kg) 45.9 ± 8.7 45.8 ±7.8 t = -0.06; p = 0.96

Final HR (bpm) 188 [183, 195] 192 [184, 195] V = 298; p = 0.09

Amateur (n = 20) TTE (min) 10.7 [9.4, 13.8] 10.3 [9.6, 12.8] V = 126; p = 0.45

Final RPE 20 [18, 20] 20 [20, 20] V = 17.5; p = 0.33

Lactate (mmol/L) 8.3 [7.2, 10.7] 7.8 [6.7, 9.9] V = 124; p = 0.50

Final VO2 (mL/min/kg) 39.1 ± 7.4 40.2 ± 6.3 t = -1.3; p = 0.21

Final HR (bpm) 191 ± 9 192 ± 8 t = -1.1; p = 0.28

Competitive (n = 25) TTE (min) 15.2 [11.7, 16.7] 15.0 [12.5, 15.7] V = 138; p = 0.53

Final RPE 19 [19, 20] 19 [19, 20] V = 47; p = 0.55

Lactate (mmol/L) 10.0 ± 3.4 9.4 ± 2.3 t = 1.7; p = 0.11

Final VO2 (mL/min/kg) 51.1 ± 5.3 50.2 ± 5.7 t = 1.1; p = 0.28

Final HR (bpm) 187 [183, 192] 189 [184, 193] V = 120; p = 0.26

Descriptive statistics are presented as median [IQR] or mean ± SD depending on data distribution.
a = Student’s t-test (t) or Wilcoxon test (V) according to data distribution.

https://doi.org/10.1371/journal.pone.0312084.t002

Table 3. Time to exhaustion (TTE), rating of perceived exertion (RPE), final blood lactate, final oxygen uptake (VO2) and final heart rate (HR) following active and

sham tDCS protocols in the subgroup who completed the additional control visit (n = 21) and in subgroups stratified according to VO2max (i.e., amateur< 45 mL/

min/Kg; n = 10 and competitive� 45 mL/min/Kg; n = 11).

Group Variable Active tDCS Sham tDCS Control Statistic a

Subgroup with control session (n = 21) TTE (min) 13.3 ± 3.5 13.1 ± 3.1 12.6 ± 4.0 F = 0.19; p = 0.83

Final RPE 19 [18, 20] 20 [19, 20] 20 [19, 20] H = 4.39; p = 0.11

Lactate (mmol/L) 10.1 [7.3, 12.4] 9.1 [7.4, 10.8] 10.0 [8.0, 12.4] H = 1.37; p = 0.50

Final VO2 (mL/min/kg) 46.5 ± 7.6 46.4 ± 6.3 47.7 ± 4.8 F = 0.19; p = 0.82

Final HR (bpm) 191 ± 6 193 ± 6 190 ± 7 F = 1.24; p = 0.30

Amateur (n = 10) TTE (min) 11.7 ± 3.3 11.2 ± 2.3 10.5 ± 3.7 F = 0.35; p = 0.71

Final RPE 19 [18, 20] 20 [20, 20] 20 [19, 20] H = 4.31; p = 0.12

Lactate (mmol/L) 8.7 [7.2, 12.3] 7.6 [6.8, 9.7] 8.2 [7.6, 11.8] H = 0.79; p = 0.68

Final VO2 (mL/min/kg) 40.8 ± 6.4 42.5 ± 4.8 44.4 ± 4.1 F = 0.97; p = 0.40

Final HR (bpm) 193 ± 7 195 ± 5 191 ± 6 F = 0.75; p = 0.48

Competitive (n = 11) TTE (min) 14.7 ± 3.1 14.8 ± 2.6 14.5 ± 3.4 F = 0.03; p = 0.97

Final RPE 19 [19, 20] 19 [19, 20] 20 [19, 20] H = 1.39; p = 0.50

Lactate (mmol/L) 10.5 ± 2.8 9.9 ± 2.4 11.0 ± 3.4 F = 0.41; p = 0.67

Final VO2 (mL/min/kg) 51.7 ± 4.2 50.0 ± 5.4 50.2 ± 3.8 F = 0.47; p = 0.63

Final HR (bpm) 190 ± 6 192 ± 6 190 ± 7 F = 0.47; p = 0.63

Descriptive statistics are presented as median [IQR] or mean ± SD depending on data distribution.
a = One-way ANOVA (F) or Kruskal-Wallis test (H) according to data distribution.

https://doi.org/10.1371/journal.pone.0312084.t003
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3.3 Blinding efficacy

Eight (18%) of the participants detected the active condition with a degree of certainty of 4 or

5, and 10 (22%) of the participants detected the sham condition with a degree of certainty of 4

or 5. There was no significant difference between the proportions of participants who correctly

detected the active and sham tDCS (Chi-squared = 1.20, p = 0.27).

3.4 Adverse effects

A total of 99 adverse effects were reported: 49 after the active tDCS session, reported by 32

(71%) participants and 50 after the sham session, reported by 31 (69%) participants (S2 Table).

All adverse effects were classified as mild as they did not require further action or medical

intervention and did not cause distress to the participants.

4. Discussion

4.1 tDCS efficacy

This study aimed at investigating the effects of a single application of 20-minute 4 mA tDCS

over the bilateral motor cortex on running performance as measured by time to exhaustion

(TTE) duration using a randomized sham-controlled crossover design. Our results show that

tDCS did not affect endurance running between active and sham sessions whether among

amateur or competitive participants. The absence of any ergogenic effect of tDCS sharply con-

trasts with previous reports on cycling [26,32] and running endurance performance [21]. This

could be partly explained by their small sample sizes (n<20) and/or methodological differ-

ences in tDCS application or blinding. The present study included a larger sample that was

based on a priori estimation and used a robust trial methodology with adequate blinding.

Methodological differences among tDCS studies on performance represent a common issue

that has been raised by several systematic reviews [12,15,39]. Replication studies therefore

appear warranted.

Previous studies using transcranial magnetic stimulation applied over M1 allowed to mea-

sure excitability changes via induction of isolated muscle contractions. Some of these demon-

strated a significant increase in M1 cortical excitability related to tDCS [40,41] while others

did not find any effect of tDCS on cortical excitability [42,43]. For whole-body exercise endur-

ance, only a single study using a cycling task to failure showed significant increases in corti-

cospinal excitability of the knee extensors following anodal stimulation as compared to sham

or cathodal stimulation [26]. Our primary outcome measure was focused on performance and

we did not control for tDCS-related motor system changes using motor evoked potentials

notably due to feasibility constraints. This limits our understanding of tDCS mechanisms in a

running setting.

Controlling for cardiorespiratory and metabolic parameters allows characterizing exercise

intensity and linking it with endurance performance. Given the similarity in TTEs in all condi-

tions, we expected observing no significant changes in the performance-related physiological

parameters. This was the case for the oxygen uptake and the final heart rate, which is in line

with previous running studies [21,22]. However, blood lactate levels tended to be higher in

participants assigned to the active tDCS condition relative to sham participants. This finding

was partially in line with previous reports from Angius et al. also showing significantly greater

lactate accumulation following active tDCS but paralleled with increased performance in

cycling TTE [26,27]. Future studies are therefore needed to clarify how modified circulating

lactate levels could potentially influence exercise performance via tDCS-supported plasticity

molecules including BDNF [44,45].
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Regarding psychological factors, it is well known that perceived exertion during exercise

plays a key role in endurance capacity and fatigue [11]. It has been suggested that M1-tDCS

could decrease the perception of effort by modulating corollary discharges upstream of the

motor cortex (e.g., supplementary motor area) in weight-lifting and cycling tasks (i.e., cycling)

[26,42,46]. These mechanisms rely on the predominant processing of effort perception within

the supplementary motor area [47]. Our study results show, however, no significant difference

in the ratings of perceived exertion between active and sham sessions. This confirms the more

recent M1-tDCS studies performed in running [21,22]. Other brain targets could reveal to be

relevant in tackling motivational aspects including the insular cortex [31] and the left dorsolat-

eral prefrontal cortex [27,48,49].

The present study also sought to control for a potential placebo effect of tDCS on perfor-

mance by adding an optional 4th control session during which no tDCS was applied. Our

results show that in our limited subsample of 21 participants who completed the latter control

session, the TTE was comparable across all sessions, therefore invalidating any placebo effect

related to tDCS application.

4.2 Fitness level

We accounted for the potential influence of fitness athletic level on performance changes fol-

lowing tDCS. Previous studies suggested that lower fine motor skills or maximal strength abili-

ties were associated with greater improvements after tDCS as opposed to higher levels [12,50–

52] but confirmation for gross motor skills was pertinent. When using maximal oxygen con-

sumption (VO2max) as a marker for fitness level, we found a trend for improvement in TTE

following active tDCS (ΔTTE) close to statistical significance (p = 0.058). When using the TTE

on the screening test as a marker, we found a significant negative correlation with ΔTTE, sug-

gesting less trained runners (those with lower performance on their screening test) could bene-

fit more from tDCS (increase their TTE) as opposed to confirmed runners (lasting longer on

their screening test). This aligns with the literature on specialized motor learning, where a ceil-

ing effect in well-trained participants prevents additional benefits from neuromodulation

interventions [50,53]. Similarly, the group of competitive runners might have reached their

maximal level of synaptic reorganization and would not benefit from the potential tDCS-

induced M1 excitability increase while the amateur runners would still have room for

improvement. However, this hypothesis did not translate into our subgroup-based analysis.

There was indeed no significant tDCS effect in the two subgroups of amateur and competitive

runners. Further exploring this hypothesis would require a better distinction between begin-

ners (e.g., untrained) and professional (e.g., elite-level) runners.

4.3 tDCS application

Regarding the safety aspects, our study confirmed previous reports on minor adverse effects

(e.g., tingling, itching) incidence, including those reported after sham stimulation. When used

according to established safety criteria [54], including the careful screening of study partici-

pants [28], tDCS is a safe neuromodulation technique. Regarding blinding, its efficacy with

standard sham protocols has been debated.[55] Our results show that the blinding was effi-

ciently achieved. The use of a topical anaesthetic cream likely played a role and its use would

be recommended, particularly for such high-density montages. Overall, the utilization of a

multichannel montage, administering a cumulative current of 4mA, which is above current

standard protocols, demonstrates apparent safety, without compromising the integrity of par-

ticipant blinding.
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4.4 Limitations

Our main limitations pertain to the tDCS protocol. We used a single session delivered before

the TTE trial for feasibility constraints, while the concurrent application of tDCS with the tar-

geted activity may have been more efficient [18,56]. This method also prevents the investiga-

tion of the cumulative effects of tDCS using several consecutive sessions. Furthermore, the

cephalic tDCS montage used might have induced effects under the cathodes, potentially inter-

fering with the anodal stimulation. Extracephalic tDCS montages, even though challenging in

terms of current density simulation, appear more efficient than cephalic ones for increasing

endurance performance in cycling and therefore deserve further investigation in running trials

[26].

4.5 Conclusion

To conclude, no beneficial effect of M1-tDCS on running performance has been identified.

The potential effect of multiple sessions remains unknown and warrants further research. The

fitness level might influence tDCS response and deserves further investigation. A single appli-

cation of tDCS does not appear as a relevant ergogenic aid and does not currently represent a

doping threat for running.
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PLOS ONE Effects of motor tDCS on running performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0312084 December 5, 2024 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312084.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312084.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312084.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312084.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312084.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312084.s006
https://doi.org/10.1371/journal.pone.0312084
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