Doctoral thesis (Dissertations and theses)
Droplet dynamics on curved substrates
Van Hulle, Joséphine
2024
 

Files


Full Text
Thesis_JVanHulle.pdf
Author postprint (189.85 MB)
Download
Annexes
Droplet_on_Conical_Fibers.avi
(8.4 MB)
Silicone oil droplet moving on conical fiber : comparison half-angle and volume Chapter 5 : Droplets on a conical fiber. Figure 5.1 Three videos of a single silicone oil moving on a conical fiber. The droplet moves spontaneously towards the base of the cone. From top to bottom the movies are with different experimental parameters : (top) cone half-angle 4° volume 4 µl; (middle) cone half-angle 4°, volume 2 µl; (bottom) cone half-angle 6°, volume 2 µl. Real time video
Download
Fog_cylVScone.avi
(29.7 MB)
Fog collection by cylindrical and conical fibers Chapter 5 : Droplets on a conical fiber. Two experimental videos show water collection on cylindrical and conical fibers in a fog flow. The fog enters from the bottom of the video, and the fibers are observed from beneath. Both fibers are 3 cm long. The cylindrical fiber has a radius of 1.58 mm, while the conical fiber has a half-angle of 6°. The video is accelerated 5 times.
Download
Video_DropOnCone_4ul6d_piv.mp4
(1.96 MB)
Silicone oil droplet full of fluoresent particle moving on a conical fiber Chapter 5 - Droplets on a conical fiber. Video of a silicone oil droplet moving on a conical fiber. The droplet is full of fluorescent particles which facilitates the visualization of internal liquid motion. The red vertical line marks the expected position where the droplet's shape transitions. On the left of this line, the droplet exhibit a barrel shape, while on the right, it has a clamshell shape. Volume of the droplet : 4 µl Half-angle of the cone : 6° Silicone oil viscosity : 50 cSt
Download
Video_Droplet_on_Twisted_Fibres.avi
(3.54 MB)
Video of glycerol droplet on twisted fibres Chapter 4 : Droplets on twisted cylindrical fibers. Figure 4.1. Three experimental videos of a yellow-dyed glycerol droplet descending along a bundle of two twisted fibers. From left to right the number of fiber twists increases, n = 40, n = 80 and n = 120. The volume of the droplet is 5 µl and one fiber is d = 0.25 mm. Real time video.
Download
Video_Droplet_Generations0and1.avi
(5.05 MB)
Video of silicone oil droplet on a cylindrical fiber Chapter 3 : Multiple droplets on a cylindrical fiber. Figure 3.1. Experimental video of a red-dyed silicone oil droplet descending along a cylindrical fiber. As the droplet slides down, a liquid film is left behind. The Rayleigh-Plateau instability takes place which creates a tiny new droplet. Volume of the initial droplet : 5 µl Fiber diameter : 0.3 mm Real time video.
Download
Video_Droplet_Merging.avi
(8.4 MB)
Video of silicone oil droplet on a cylindrical fiber : merging Chapter 3 : Multiple droplets on a cylindrical fiber. Figure 3.1. Experimental video of a red-dyed silicone oil droplet descending along a cylindrical fiber. At a given time and a given position, the two generations will meet. The mother droplet is under and the daughter droplet is above. Volume of the initial droplet : 5 µl Fiber diameter : 0.3 mm Video accelerated 2x.
Download
Video_HypoEpi_r137mm.avi
(13.41 MB)
Silicone oil droplet spreading inside hypocycle and epicycle grooves Chapter 2 : Droplet spreading inside curved grooves. Figure 2.3 (c) Two videos of a red-dyed silicone oil droplet spreading within (top) a hypocycle groove and (bottom) a epicycle groove. The radius of the groove is the same, R = 1.37 mm, and the volume of the droplet is the same, 5 µl. The numerically found contour is in black, it allows to measure to position at both side of the droplet, and therefore the speading over time. Real time video.
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Droplet; fiber; Fluid; Fluid mechanics; Wetting; Spreading; Curved substrates; Surface tension; Dynamics; Drop; Soft Matter
Abstract :
[en] Understanding the dynamics of droplet motion on curved substrates is crucial for optimizing water collection technologies, particularly in environments where atmospheric water harvesting is essential. This study experimentally investigates the behavior of droplets on various macroscopic structures, including flat surfaces with curved grooves, vertical cylindrical fibers, and conical fibers. Through experimental observations, the research reveals that factors such as convex grooves, fiber twists, gradient radii and pre-existing wetting conditions significantly influence droplet spreading, dynamics and shape transitions. Specifically, droplets within convex grooves spread faster than those in concave ones. The descent of droplets along vertical fibers is characterized by a self-supply mechanism, where the liquid film left behind the droplet contributes to the formation of subsequent droplets. On twisted fibers, droplets follow a helical path governed by the groove geometry. Droplets on conical fibers spontaneously move towards the base of the cone, with their dynamics influenced by their shape. The findings of this work contribute to the design of more efficient substrates for droplet drainage, offering practical applications in the development of optimized fog collectors composed of fiber meshes.
[fr] Comprendre la dynamique du mouvement des gouttes de liquide sur des substrats courbés est essentiel pour optimiser les technologies de collecte d'eau, en particulier dans les environnements où la récolte de l'eau atmosphérique est primordiale. Cette étude examine expérimentalement le comportement des gouttes sur diverses structures macroscopiques, y compris des surfaces planes avec des rainures courbes, des fibres cylindriques verticales et des fibres coniques. À travers des observations expérimentales, la recherche révèle que des facteurs tels que les rainures convexes, les torsions entre fibres, les rayons croissants et les conditions de mouillage préexistantes influencent significativement l'étalement, la dynamique et les transitions dans la forme des gouttes. En particulier, les gouttes dans les rainures convexes s'étalent plus rapidement que celles dans les rainures concaves. La descente des gouttes le long des fibres verticales se caractérise par un mécanisme d'auto-alimentation, où le film liquide laissé à l'arrière de la goutte contribue à la formation des nouvelles gouttes. Sur les fibres torsadées, les gouttes suivent un chemin hélicoïdal gouverné par la géométrie de la rainure. Les gouttes sur les fibres coniques se déplacent spontanément vers la base du cône, leur dynamique étant influencée par leur forme. Les résultats de ce travail contribuent à la conception de substrats plus efficaces pour le drainage des gouttes, offrant des applications pratiques dans le développement de collecteurs de brouillard optimisés composés de maillages de fibres.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Van Hulle, Joséphine  ;  Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Language :
English
Title :
Droplet dynamics on curved substrates
Defense date :
26 September 2024
Institution :
ULiège - Université de Liège [Sciences], Belgium
Degree :
Docteur en Sciences
Promotor :
Vandewalle, Nicolas  ;  Université de Liège - ULiège > Département de physique > Physique statistique
President :
Bastin, Thierry  ;  Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Secretary :
Dreesen, Laurent ;  Université de Liège - ULiège > Département de physique > Biophotonique
Jury member :
Opsomer, Eric  ;  Université de Liège - ULiège > Département de physique > Physique statistique
Pan, Zhao;  University of Waterloo > Department of Mechanical and Mechatronics Engineering
Duchesne, Alexis;  ULille - Université de Lille [FR] > IEMN
Available on ORBi :
since 02 October 2024

Statistics


Number of views
123 (24 by ULiège)
Number of downloads
62 (11 by ULiège)

Bibliography


Similar publications



Contact ORBi