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Abstract

Understanding the dynamics of droplet motion on curved substrates is crucial for
optimizing water collection technologies, particularly in environments where atmo-
spheric water harvesting is essential. This study experimentally investigates the
behavior of droplets on various macroscopic structures, including �at surfaces with
curved grooves, vertical cylindrical �bers, and conical �bers. Through experimental
observations, the research reveals that factors such as convex grooves, �ber twists,
gradient radii and pre-existing wetting conditions signi�cantly in�uence droplet
spreading, dynamics and shape transitions. Speci�cally, droplets within convex
grooves spread faster than those in concave ones. The descent of droplets along
vertical �bers is characterized by a self-supply mechanism, where the liquid �lm left
behind the droplet contributes to the formation of subsequent droplets. On twisted
�bers, droplets follow a helical path governed by the groove geometry. Droplets on
conical �bers spontaneously move towards the base of the cone, with their dynam-
ics in�uenced by their shape. The �ndings of this work contribute to the design of
more e�cient substrates for droplet drainage, o�ering practical applications in the
development of optimized fog collectors composed of �ber meshes.
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Résumé

Comprendre la dynamique du mouvement des gouttes de liquide sur des substrats
courbés est essentiel pour optimiser les technologies de collecte d'eau, en parti-
culier dans les environnements où la récolte de l'eau atmosphérique est primor-
diale. Cette étude examine expérimentalement le comportement des gouttes sur
diverses structures macroscopiques, y compris des surfaces planes avec des rain-
ures courbes, des �bres cylindriques verticales et des �bres coniques. À travers
des observations expérimentales, la recherche révèle que des facteurs tels que les
rainures convexes, les torsions entre �bres, les rayons croissants et les conditions
de mouillage préexistantes in�uencent signi�cativement l'étalement, la dynamique
et les transitions dans la forme des gouttes. En particulier, les gouttes dans les
rainures convexes s'étalent plus rapidement que celles dans les rainures concaves.
La descente des gouttes le long des �bres verticales se caractérise par un mécan-
isme d'auto-alimentation, où le �lm liquide laissé à l'arrière de la goutte contribue
à la formation des nouvelles gouttes. Sur les �bres torsadées, les gouttes suivent
un chemin hélicoïdal gouverné par la géométrie de la rainure. Les gouttes sur les
�bres coniques se déplacent spontanément vers la base du cône, leur dynamique
étant in�uencée par leur forme. Les résultats de ce travail contribuent à la concep-
tion de substrats plus e�caces pour le drainage des gouttes, o�rant des applications
pratiques dans le développement de collecteurs de brouillard optimisés composés
de maillages de �bres.
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0

Introduction

"Je t'o�rirai des perles de pluie,
venues de pays où il ne pleut pas"

Jacques Brel

Fresh water is a vital resource for life. It is a treasure that many people are,
unfortunately, struggling to access, and global warming is accentuating these dis-
crepancies [1]. Predominant sources of fresh water include rainfall, groundwater
and lakes, yet, their availability is diminishing. Consequently, the development
of innovative methods for providing fresh water is becoming a crucial challenge.
One often overlooked source is atmospheric water, the water naturally present in
the air, such as dew or fog. Remarkably, numerous natural examples are supplied
with water through moisture, like the one shown in Fig. 0.1. [2]. For instance,
every morning, the spider webs are covered with pearls of water [3]. Certain insect-
trapping plants, cacti and mosses use their conical hairs or spines to condense water
droplets at their tips [4, 5, 6]. In arid deserts, some insects have specialized evolved
structures, bumps or spikes, to harvest moisture during speci�c times of the day
[7, 8]. These fascinating natural mechanisms have recently received huge attention
and inspired the creation of novel, passive technologies for fog and dew collection.
These techniques are demonstrating a promising e�ciency of up to ten liters per
square meter per day for fog-based techniques [9, 10] and up to 0.1 liter per square
meter per night for dew-based techniques [11, 12].

Nature, through selection, has optimized the most e�ective water collection strate-
gies for each species. Studying the speci�c traits of plants and animals pro�cient
in dew or fog collection can unveil key features. These biological structures typi-
cally involve rough surfaces, textured �bers, and grooved conical �bers. In these
systems, one observes a combination of both macroscopic structures like surfaces,
�bers, and cones, and microscopic structures like roughness with bumps or grooves.
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Current fog and dew condensers mimic these characteristics, employing substrates
with roughness or grooves for dew collection, and intertwining meshes or conical
structures for fog harvesting [13, 14, 15].

Figure 0.1: Examples of animals and plants achieving water collection from atmospheric
water, such as dew and fog. Every morning spider webs are covered with pearls of water
(credit: Luc Viatour). Certain species of insect-trapping plants (Sarracenia) (credit:
Sonja-Kalee), cacti (Opuntia microdasys) [16] and mosses (Syntrichia caninervis) [6]
(credit: Splash Lab) collect water thanks to their conical and grooved hairs. Animals
in arid regions such as lizards (Moloch horridus) (credit: Bäras) and beetles (Stenocara
gracilipes) [16] have textures on their backs that collect and transport water.

This thesis aims to expand our understanding of liquid spreading on

both macroscopic structures like �bers and cones, as well as macro-

scopic substrates decorated with grooves. Understanding the dynamics of
droplet spreading is fundamental for improving the e�ciency of water collection
technologies. By analyzing how droplets interact with various surfaces, one can de-
sign more e�ective methods to direct droplets towards collection points. E�cient
drainage is crucial in water collection systems, aiming to maximize the droplet
motion to reduce re-entrainment and evaporation.

In this work, we analyze the motion of droplets on three distinct macroscopic
structures: �at substrates, vertical �bers, and horizontal cones. For �at substrates,
we have characterized droplet spreading within curved grooves. For vertical �bers,
we examined both the descending motion of droplets on smooth and grooved �bers.
Lastly, for conical �ber, we have described the spontaneous motion of droplets along
them. An overview of our achievements in the framework of droplet spreading is
highlighted in Fig. 0.2. In this �gure, we make divisions between the three main
macroscopic structures (substrates, �bers, cones) and the substructures (smooth or
grooves). We believe this additional knowledge will humbly contribute to advancing
water collection technologies.

The thesis is structured as follows. Chapter 1 provides an exploration of key con-
cepts and a review of previous studies concerning the properties of droplets. In
Chapter 2, we focus on the behavior of droplets as they spread within curved
grooves etched on �at substrates. In Chapter 3, we investigate droplets on cylindri-
cal �bers, particularly emphasizing the �lm liquid left behind the moving droplet.

2



Chapter 4 analyzes the motion of a droplet along a bundle of two twisted �bers.
The bundle of two �bers exhibits a grooved substructure. In Chapter 5, one exam-
ines the shape and motion of droplets on conical �bers. The thesis closes with a
conclusive chapter that not only provides a comprehensive take-home message but
also suggests several directions for further research in the �eld of droplet spreading.

Figure 0.2: Schematic overview of the topics addressed in the thesis. The main study is to
focus on droplet spreading on various surfaces. From top to bottom, the geometry of the
surface changes. From left to right, a substructure is added on the macroscopic surface.
Previous studies are written in black. The red-colored references are our contributions
that will be presented in the thesis.
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1

State of the Art

1.1 Droplets

Before studying the behavior of droplets on complex substrates, it is crucial to
clarify fundamental concepts about suspended droplets in the air. For example,
a droplet suspended in a gas is like a raindrop falling from the sky. The droplet
maintains a spherical shape as long as the wind gently blows [17]. This spherical
shape results from the surface tension acting along the droplet's surface.

1.1.1 Surface tension

A suspended droplet constitutes a small amount of liquid surrounded by gas, as
depicted in Fig. 1.1. It establishes a boundary between the two immiscible phases,
liquid and gas, which de�nes a liquid-gas interface. The interface behaves like
a tensioned membrane that prevents any surface deformations of the spherical
droplet. The surface tension property of the interface can be explained from both
a thermodynamical and a mechanical point of view.

Thermodynamical point of view The origin of surface tension lies at the
microscopic level. In a liquid droplet, a molecule located deep within the bulk
is symmetrically surrounded by neighboring molecules. Conversely, a molecule
near the interface encounters nearly half the number of interactions compared to
its counterpart in the bulk of the �uid. This reduction in neighboring molecules
results in an uneven distribution of interactions around the molecule, as depicted in
Fig. 1.2 [18]. The �gure illustrates both attractive and repulsive forces acting on a
molecule in the bulk and at the interface. Attractive forces exert over longer ranges,
while repulsive forces, isotropic in nature, operate over shorter distances. In the
bulk, balanced forces emerge due to the symmetric molecular density surrounding

5



Figure 1.1: (left) A suspended liquid (l) droplet in a gas phase (g). The boundary
between the two immiscible phases is called the liquid-gas interface. (right) A suspended
droplet with an increased radius r by dr. The pressure in the liquid phase is denoted pl
and the pressure in the gas phase is pg.

each molecule. Conversely, at the interface, molecules experience an asymmetric
distribution of neighbors, leading to higher energy levels compared to those within
the bulk. Consequently, any deformation that enlarges the surrounding surface
area of the droplet results in an increase in its energy.

Expanding the surface area A by a small increment dA, and consequently increasing
the volume V by an amount dV , necessitates a work δW [19]. This work is given
by

δW = γdA− pldVl − pgdVg, (1.1)

where γ is the surface tension at the liquid/gas interface, pg and pl represent the
pressures in the gas and liquid phases respectively. dVl is the incremental change in
the liquid's volume and dVg refers to the decrease in the surrounding gas volume.
The �rst term describes the work needed to increase the droplet's surface, while
the latter two terms describe the work needed to modify the droplet's volume. The
work brought to the system is similar to an increase in the system's free energy F
at a given temperature T , containing N particles. This leads to

γ =

(
∂F

∂A

)
T,N

, (1.2)

for a droplet of surface A that surrounds a volume V , this is the thermodynamic
description of the surface tension. The units of γ are J/m2, representing the energy
necessary to increase the surface of one unit. Minimization of energy drives the
suspended droplet to adopt a spherical shape, which is the minimum surface area
for a given volume.

Mechanical point of view Returning to the microscopic viewpoint, molecules
positioned at the interface undergo a scarcity of neighboring molecules. In the ver-
tical direction, the attractive interaction precisely o�sets the repulsive interaction,
as depicted in Fig. 1.2. However, in the horizontal direction, the attractive force
is larger than the isotropic repulsive force which maintains a similar magnitude
to that in the vertical direction [18]. The balance generates a resultant attractive
force per unit length at the liquid interface, known as surface tension.
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Figure 1.2: Sketch depicting two liquid molecules. Solid black arrows represent attractive
forces, while dotted white arrows indicate repulsive forces. Molecules within the bulk
experience balanced attractive and repulsive forces. However, molecules near the interface
encounter a scarcity of neighboring liquid molecules, resulting in higher energy levels
compared to bulk molecules (thermodynamic approach). Additionally, this de�cit induces
a horizontal force component (mechanical approach).

Expressing the work required to increase the droplet's surface expressed in Eq. (1.1)
as a function of the radius r increased by dr, with dA = 8πrdr and dV = 4πr2dr
while dVg = −dVl, yields

δW = 8πrγdr + 4πr2(pg − pl)dr. (1.3)

This equation describes the work done by the capillary force (�rst term) and the
pressure force (second term) [19]. The work done by the capillary force can be
rewritten as Fγdr with Fγ the surface tension force, one has Fγ = 8πrγ = γL and
L the length on which this force apply. One can rewrite surface tension as

γ =
Fγ

L
, (1.4)

and conclude that surface tension is also a force per unit of length.

1.1.2 Laplace pressure

For a spherical droplet, there is a pressure di�erence across the interface due to
surface tension. The equilibrium condition implies δW = 0. Therefore Eq. (1.3),
that describes the incremental work necessary to increase the radius r of a spherical
droplet by dr, becomes

∆p = pl − pg = 2
γ

r
. (1.5)

The pressure di�erence is higher in smaller droplets. A generalized form of this
expression is provided by,

∆p = γ

(
1

r1
+

1

r2

)
(1.6)

where r1 and r2 are the principal radii of curvature of the surface. This relationship
is known as the Laplace pressure law [19, 20].

7



1.1.3 Rayleigh-Plateau instability

We now explore the Rayleigh-Plateau instability, a crucial phenomenon that in�u-
ences the shape adopted by liquid [21, 22]. When using tap water, the resulting
�ow rate determines whether a continuous cylinder of water (at high �ow rates) or a
series of small suspended water droplets (at low �ow rates) is formed, as illustrated
in Fig. 1.3.

This instability is ruled by the minimization of surface area. To examine the
surface evolution between a cylinder and a series of beads, consider a cylinder of
water with a radius R and a length L. Then, using the same amount of liquid,
create a succession of n spherical droplets each with a radius r. With the volume
conservation, one can express this relationship as

πR2L =
4

3
πr3n. (1.7)

The ratio of the surface area of n beads Ab to the surface area of the cylinder Ac

is given by
Ab

Ac
=

n4πr2

2πRL
=

3R

2r
(1.8)

using Eq. (1.7). Thus, when
3R

2r
< 1, (1.9)

the cylinder becomes unstable and breaks into a series of small water droplets due
to surface area minimization [19].

(a) (b)

Figure 1.3: (a) Picture of poured blue dyed water that destabilizes from a cylinder �ow
to a succession of water beads �ow (credit: J. Van Hulle). This is the Rayleigh-Plateau
instability. (b) Pictures of Lord Rayleigh. Taken from [23].

8



1.2 Droplets on a substrate - Statics

During rainfall, raindrops impact solid surfaces, like plant leaves or windows, cre-
ating droplets on these substrates. The morphology of a droplet on a substrate
depends on the properties of the substrate.

1.2.1 Wetting and contact angle

A droplet on a substrate can exhibit either complete or partial spreading on the
surface. The spreading parameter, denoted S, de�nes the energy di�erence between
a dry substrate and a wetted substrate, represented as

S = γsg − (γls + γ), (1.10)

with γsg, γls and γ the surface tension between di�erent interfaces, respectively,
solid/gas, liquid/solid, and �nally liquid/gas. When the spreading parameter is
positive or zero, the liquid droplet tends to spread entirely to minimize its energy,
resulting in a liquid �lm formation with a pancake surface shape [24]. However,
if S is negative, the droplet minimizes its energy by forming a spherical cap. The
droplet depicts a contact angle θ at the meeting with the substrate. If the contact
angle θ is smaller than 90◦, the surface is quali�ed as wettable. For contact angles
larger than 90◦, the substrate is categorized as non-wettable, and the droplet adopts
a nearly perfect spherical shape. In the case of water, a wettable surface is termed
hydrophilic, while a non-wettable surface is called hydrophobic. All these di�erent
wetting are depicted in Fig. 1.4.

The contact angle is the result of all surface tensions between the solid and gas,
liquid and gas, liquid and solid. One de�nes the contact line as the �ctive boundary
where all three phases meet. Balancing the various surface tensions acting upon it
results in

γ cos(θ) = γsg − γls. (1.11)

This equation de�nes a unique contact angle, the equilibrium contact angle, de-
termined by the properties of the liquid and the substrate, assuming the substrate
is perfectly smooth. However, experimental observations reveal varying contact
angles due to substrate roughness and the method of droplet deposition.

Consider a substrate with defects and a droplet placed upon it, as in Fig. 1.5 (a).
By tilting the substrate at the maximal inclination without inducing motion of the
droplet, two distinct contact angles are observed: (i) the maximal contact angle
at the lowest point of the droplet, called the advancing contact angle θa, and (ii)
the minimal contact angle at the highest point of the droplet, referred to as the
receding contact angle θr. This situation is sketched in Fig. 1.5 (b). The two
angle values de�ne the contact angle hysteresis. This hysteresis occurs because the
contact line is pinned to the imperfections (roughness or textures) on the surface of
the substrate [25, 26, 27]. This hysteresis e�ect explains why raindrops can cling to
inclined plant leaves or vertical windows without sliding down [28]. As the droplet
remains static, the contact angles at both the front and rear of the raindrop are
within the range dictated by the contact angle hysteresis and the applied capillary
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force is balancing the weight. However, when the contact angle at the front equals
θA and at the rear equals θR, the droplet initiates its descent, as shown in Fig. 1.5
(c) [29].

Figure 1.4: A droplet on a substrate either totally wets the surface (S > 0), creating a
thin �lm, or partially wets the surface (S < 0), forming a spherical cap. In the case of
partial wetting, one may encounter two di�erent situations depending on the liquid/solid
a�nity. If the contact angle is smaller than 90◦, the surface is wettable. If the contact is
larger than 90◦, then the surface is non-wettable.

Figure 1.5: (a) A droplet adopting a spherical cap on a substrate. The contact angle is
referred to as the equilibrium contact angle. (b) The surface is tilted while keeping the
contact line static. In such a con�guration, the droplet exhibits two contact angles, the
advancing contact angle θa and the receding contact angle θr. (c) The surface is inclined
enough to promote the motion of the droplet with a maximal advancing contact angle θA
and a minimal receding contact angle θR.
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1.2.2 Bond number

Until now, gravitational e�ects have been neglected. However, gravity can signi�-
cantly in�uence the shape adopted by a droplet. It is observed that many raindrops
eventually form puddles. Particularly, on a non-wettable surface, as the volume of
the droplet increases, its shape changes from nearly spherical to a more �attened
form resembling a puddle, as shown in Fig. 1.6. In the case of water, the droplet
begins to deform when its size exceeds 2.7 mm. This transition occurs when grav-
itational forces surpass surface tension forces. To characterize this transition, a
non-dimensional number called the Bond number (Bo) is de�ned. This number
compares the in�uence of both forces.

Figure 1.6: Picture of two blue-dyed water droplets on a hydrophobic solid surface (credit:
J. Van Hulle). (left) A small volume, Ω = 3 µl, adopts a spherical shape (Bo < 1). (right)
A larger volume, Ω = 500 µl, adopts a puddle-like shape (Bo > 1).

Dimensionless numbers serve to compare the relative importance between two
quantities. They are dimensionless ratios aiding in discerning dominant or negligi-
ble quantities within a phenomenon. When the ratio approaches 1, both quantities
bear signi�cant importance in the observed phenomenon. In our context, three
dimensionless numbers are de�ned: the Bond number, the capillary number, and
the Weber number. The Bond number is described here under while the capillary
and Weber numbers are de�ned in the next section after the introduction of liquid
velocity and viscosity.

The Bond number, Bo, represents the competition between gravitational and sur-
face tension e�ects. The Bond number is expressed as

Bo =
ρgr2

γ
=

Gravity
Surface tension

, (1.12)

where ρ is the liquid density, g is the gravitational acceleration and r stands for
the characteristic length of the system. A droplet exhibiting a spherical shape
corresponds to a Bo smaller than 1, indicating surface tension dominance over
gravity, as it is the case in Fig. 1.6 (left). Conversely, a droplet with a �attened
shape possesses a Bo larger than 1, signifying gravity overcoming surface tension,
see Fig. 1.6 (right). At the transition point where both e�ects are equivalent, one
de�nes the capillary length as

lc =

√
γ

ρg
. (1.13)

For water, the capillary length is 2.7 mm. Therefore, any droplet with a charac-
teristic length r smaller than lc adopts a spherical shape.
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1.3 Droplets on a substrate - Dynamics

We transition from discussing static droplets to exploring the dynamics of droplet
spreading on a substrate. In this section, we introduce the concept of �uid viscosity,
the capillary and Weber numbers, along with spreading dynamics on both smooth
and textured substrates.

1.3.1 Viscosity

When a �uid is in motion, it dissipates energy due to friction between its di�erent
layers, a property known as viscosity. A straightforward analogy illustrating vis-
cosity is the comparison between water and honey. Honey exhibits higher internal
friction between its layers compared to water. Consequently, when subjected to the
same external force (such as tilting a spoon), honey �ows more slowly than water.
Let's give a quantitative de�nition of the viscosity by examining two adjacent �uid
layers moving relative to each other, as illustrated in Fig. 1.7. Assuming the top
layer moves faster, it exerts a force F on the bottom layer. According to Newton's
third law, the bottom layer exerts an equal force F ′ with an opposite direction on
the top layer, tending to slow it down. A force F acting tangentially on a surface A
de�nes shear stress, τ = F/A. This stress is proportional to the gradient velocity,
we have

τ = η
∂v

∂z
, (1.14)

where η is the dynamic viscosity [30]. It leads to a quantitative expression for the
dissipating force due to viscosity,

F = Aη
∂v

∂z
. (1.15)

Alternatively, instead of the dynamical viscosity η, kinematic viscosity ν can be
de�ned as the ratio of the dynamical viscosity to density ρ,

ν =
η

ρ
. (1.16)

Figure 1.7: Illustration of two adjoining liquid layers interacting and inducing dissipation
in the �uid �ow. The upper layer moves faster than the lower one and tends to pull the
lower layer with it through a force F exerted on the lower layer. Consequently, the lower
layer tends to slow the upper layer with an equal and opposite force F⃗ ′ = −F⃗ on the
upper layer.
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1.3.2 Capillary and Weber numbers

In the case of moving droplets, two new physical quantities play important roles,
the viscosity and the speed. One can de�ne several non-dimensional numbers com-
paring surface tension e�ects to viscous e�ects or inertial ones.

The capillary number, Ca, assesses the ratio of viscous e�ects to surface tension
e�ects and is expressed as

Ca =
ρνv

γ
=

Viscosity
Surface tension

, (1.17)

where ν is the kinematic viscosity and v is the speed of the system. When Ca is
less than 1, surface tension overcomes dissipation caused by viscosity.

The Weber number, We, compares inertial to surface tension forces. It is de�ned
as

We =
ρrv2

γ
=

Inertia
Surface tension

, (1.18)

where r stands for the characteristic length of the system. In both previous non-
dimensional numbers, the speed of the droplet is used. For instance, a falling
droplet with a small Weber number keeps a spherical shape while it bursts creating
smaller droplets when the Weber number is higher [31]. One will continue the State
of the Art with the case of the dynamical spreading of droplets on substrates.

1.3.3 Spreading dynamics

When a droplet is deposited on a surface, it initially undergoes a spreading process
before attaining its equilibrium shape described previously. During this phase,
the droplet spreads along the surface with a circular contact line. In cases where
wetting is complete (S > 0), the droplet continues to spread until it forms a thin
liquid �lm that covers the substrate. In such instances, the contact angle decreases
gradually, eventually approaching the equilibrium value of θ → 0. The contact
angle associated with a moving contact line is termed the dynamical contact angle,
denoted as θD. A spreading droplet is depicted in Fig. 1.8 (a). We consider a small
droplet, meaning that the Bond number is smaller than the unity, thus gravity is
neglected. In such a case, the dynamical contact angle evolves with time following
a relationship expressed as

θD ∼ t−3/10. (1.19)

Additionally, as the dynamical contact angle decreases, the radius r of the droplet
increases, as shown in Fig. 1.8 (a), following this scaling [32]

r ∼ t1/10. (1.20)

These scalings can be explained by considering the forces acting on the contact line.
In case of total wetting, a precursor �lm forms ahead of the observable contact line
[27, 33]. This precursor �lm was observed through an ingenious experiment by
Hardy in 1919 [19, 34]. He utilized a thin glass stick, positioned at equilibrium
with a �nite angle on the substrate, solely supported by the friction between the
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solids. When a droplet was deposited nearby, he noted that the stick fell before the
observable contact line arrived. This precursor �lm exists upstream of the contact
line and it has a sub-micron range thickness [33, 35]. The precursor �lm can be
observed and studied thanks to ellipsometry, interferometry or other microscopy
techniques (electron microscopy, polarized re�ection microscopy) [36], it establishes
�rst with an adiabatic rate (∼ t) at short times and then with a di�usive rate (∼

√
t)

at later times [37, 38]. As a result, the droplet spreads not on the solid substrate
directly, but rather on its own precursor �lm [39]. The driving force per unit length
on the contact line is therefore

fγ = γ − γ cos θD ≈ γ
θ2D
2
. (1.21)

Opposing the driving force is the dissipation force caused by the �uid's viscosity fη
(per unit length). The main dissipation occurs in the liquid wedge of contact angle
θD, sketched in Fig 1.8 (b). The contact line of the droplet moves with a velocity
U . The total power loss per unit length is given by [40]

Ploss = fηU =

∫ ∞

0

dx

∫ ζ

0

dz η

(
dv

dz

)2

. (1.22)

The velocity pro�le in the wedge, as sketched in Fig. 1.8 (b), is described with

vx(z) =
3

2

U

ζ2
(
−z2 + 2ζz

)
, (1.23)

where ζ is a given thickness in the wedge and is expressed as ζ = θDx. The theoreti-
cal development leading to this expression is detailed in Appendix A. Consequently,
the power loss is rewritten as

Ploss = 3η
U2

θD

∫ ∞

0

1

x
dx, (1.24)

However, this integral diverges. To solve this issue, two cuto� lengths need to
be introduced [40]. The maximum value taken by x is the size of the droplet L
and the smallest value is the molecular size a. This leads to an expression for the
dissipation force per unit length

fη = 3η
U

θD
Γ, (1.25)

with Γ = ln
(
L
a

)
. Ho�man showed that Γ is of the order of 15 when the liquid

spreads on a dry surface [41], whereas Bico and Quéré found that Γ is of the order
of 5 when the liquid spreads on a wet surface [42]. Balancing both forces yields the
speed U of the moving contact line,

U =
1

6Γ

γ

η
θ3D, (1.26)

which can be rewritten by considering the droplet's volume conservation,

U ∼ γ

η

Ω3

r9
. (1.27)
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In fact, the shape of the droplet is a spherical cap whose volume is Ω ∼ r2h and the
contact angle is θD ∼ h/r, leading to θD ∼ Ω/r3 [43]. Finally, solving Eq. (1.27),
leads to

r(t) ∼ Ω3/10

(
γ

η
t

)1/10

. (1.28)

This is the spreading equation of a totally wetting droplet, known as Tanner's
equation [44]. Consequently, the dynamical contact angle given by θD ∼ Ω/r3

leads to

θD ∼ Ω1/10

(
γ

η
t

)−3/10

. (1.29)

The exact expression of Tanner's law is

r(t) = r0

(
1 +

40

π3r100

γ

η
Ω3t

)1/10

. (1.30)

with r0 the radius at the initial time [45].

Figure 1.8: (a) Illustration of a droplet spreading on a substrate. As the droplet spreads,
the radius increases and the dynamical contact angle decreases. The precursor �lm is not
represented in this illustration. (b) Advancing corner of �uid with a dynamical contact
angle θD. The velocity pro�le v of the �uid layers is parabolic according to Eq. (1.23).

The spreading described above is governed by capillary forces and bulk dissipa-
tion. However, the scaling can vary with the dominant driving and dissipative
forces. In situations where gravitational forces surpass capillary in�uences, the
spreading follows a scaling power of 1/8 [46]. Additionally, an alternative dissipa-
tion mechanism to the previously mentioned bulk dissipation could be signi�cant,
speci�cally, dissipation at the contact line. When contact line dissipation over-
comes bulk dissipation, while still capillarity-driven, the spreading dynamics have
a scaling exponent of 1/7 [38].

1.3.4 In�uence of textures

Enhancing the spreading rate of a droplet can be achieved by incorporating grooves
into the surface, which con�nes the droplet within the groove, thereby reducing
its contact area with the surface. This modi�ed spreading behavior can exhibit
di�erent temporal power laws, in�uenced by the speci�c geometry of the grooves
[47]. The utilization of textured surfaces, including grooves, is a strategy observed
in nature and is brie�y discussed in the Introduction section, with a more detailed
exploration provided in section 1.6.

A closed groove can be described as a cylindrical capillary. When such a capillary
tube comes into contact with a liquid reservoir, the liquid rises following a power law
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with an exponent 1/2, i.e. x ∼ t1/2. This relation is commonly referred to as the
Lucas-Washburn equation [48, 49] or the Bell-Cameron-Lucas-Washburn (BCLW)
equation [50]. In this case, the volume inside the groove is not conserved as it
increases as the liquid ascends. To explain this behavior, one considers a cylinder
with an inner radius R, the height of the �uid in the capillary is described with z
and the �uid has an equilibrium contact angle θE . One neglects the weight of the
liquid column, this is a valid assumption either at the initial stages of the liquid
rise or when the capillary is oriented horizontally. Furthermore, inertial e�ects are
also neglected. Balancing the driving capillary force with the viscous dissipation
yields,

2πRγ cos θE = 8πηxẋ. (1.31)

Therefore one obtains the following dynamics for the rising meniscus

x(t) =

(
1

2

γR cos θE
η

)1/2

t1/2. (1.32)

This di�usive behavior has been observed not only in the invasion from a reservoir
of open rectangular grooves [4, 51] and curved grooves [52], but also across a variety
of patterned surfaces [53] and micropillars [54, 55, 56]. Subsequently, this di�usive
behavior had been extended to dynamics of imbibing porous media going from
textiles [57], soils [58] to foams [59]. Moreover, other dynamics were also found.
Reyssat [60] showed that in divergent tubes with axial shape variations, the scaling
exponent could vary, taking values such as 1/4, 1/7, or even 1/10. Conversely,
in certain converging tubes, the exponent can exceed 1/2 [61]. The in�uence of
gravity on the meniscus shape within a corner leads to a consistent power of 1/3,
regardless of whether the corners are curved [62, 63] or V-shaped grooves [64].
In the context of porous media imbibition, the scaling exponent is a function of
the porosity, leading to values smaller than 1/2 [65]. Additionally, other textured
surfaces showed a scaling power of 1/3, as evidenced in the study of Obara et al.
[66].

Returning to the case of droplet spreading, it is important to note that the total
volume of liquid is constant. The spreading is constrained by the conservation
of droplet volume. On a smooth surface, if capillarity dominates the motion, the
droplet spreads with a power law of time t1/10, as explained previously. Surface
roughness signi�cantly in�uences this spreading, with exponent ranging between
0.25 and 0.5 [43, 67]. Introducing grooves onto the surface further modi�es the
spreading dynamics by con�ning the droplet within the groove. For droplets in V-
shaped micro-grooves [68] and rectangular micro-grooves [69] the spreading follows
a power law with an exponent of 1/2. Warren also calculated several spreading
power laws, in V-shaped grooves, the theoretical calculations predict an exponent
of 2/5 [70]. Droplets spreading across a forest of micropillars [55, 71], follows
di�usion dynamics like BCLW law.

All the scaling provided here above are for intermediate stages of spreading when
the inertial e�ects are neglected. Table 1.1 summarizes all the scaling laws found
in literature.
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Volume Structure Scaling

Not conserved

Cylindrical tube [48, 49, 50],
Porous substrate [54, 55, 53, 56],
Rectangular groove [52, 51],
Curved groove [52]

t1/2

Curved corners [62, 63],
V-shaped groove [64],
Porous substrate [66]

t1/3

Diverging conical [60],
Converging conical [61]

tn

Conserved
Rough substrate [43, 67],
V-shaped groove [68],
Rectangular groove [69],
Micropillars substrate [55, 71]

t1/2

V-shaped groove [70] t2/5

Flat substrates [44, 45],
Flat substrates [46],
Flat substrates [38]

t1/10

t1/8

t1/7

Table 1.1: Table comparing studies about the scaling found for the spreading rate dy-
namics. Literature can be divided into two categories, studies with a reservoir that �lls
the structure (where the volume is not conserved) and studies with a droplet spreading
on the structure (where the volume is constant). The exponent n depends on the axial
variation of the groove.
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1.4 Droplets on cylindrical �ber

Let's come back to the storyline of raindrops falling from the sky that encounter
a substrate. In the previous section, we described the behavior of a droplet on a
�at substrate. However, a droplet may fall onto a curved surface such as branches
of trees, stems of plants, or �bers of spider webs. In the following, we describe the
behavior of droplets on cylindrical �bers, focusing on their shapes and spreading
dynamics.

1.4.1 Droplet geometries and wetting

A droplet on a cylindrical �ber can adopt three di�erent shapes depending on the
�uid properties and the �ber characteristics. The droplet may spread completely
along the �ber forming a thin �lm on the surface. Alternatively, the droplet could
envelop the �ber with a barrel-like shape, such as droplets observed on spider webs.
Lastly, the droplet may have a clamshell shape, resting on one side of the �ber,
such as droplets on plant stems.

In the preceding section, we introduced the spreading parameter S, which evaluates
the energy balance between a dry and a wet surface. For a droplet to spread com-
pletely on a �at substrate, S must be positive, as expanding the liquid-air interface
corresponds to a reduction of the liquid-solid interface. However, when considering
a cylindrical �ber, the spreading condition is di�erent due to the larger surface area
of the liquid-air compared to the solid-liquid interface [24]. For a droplet to achieve
a complete spreading on a cylindrical �ber, the spreading parameter S must exceed
a critical threshold Sc. This critical value is given by

Sc =
3

2
γ

(
a

rf

)2/3

, (1.33)

with a the size of the molecules of the �uid and rf the �ber radius [24]. This
implies that wetting �uids (θ ≈ 0◦) can form a droplet on �bers while a liquid �lm
on �at substrates.

When the spreading parameter is smaller than Sc, a droplet on a cylindrical �ber
may adopt two distinct shapes, the barrel shape or the clamshell shape. The barrel
shape surrounds the �ber entirely maintaining an axisymmetrical shape around
the �ber [72]. The clamshell shape is characterized by a droplet covering only a
portion of the �ber cross-section, not encircling it completely [73, 74]. Both shapes
are illustrated in the Figure 1.9 (a). For a given �ber material and a given �uid, the
barrel shape is generally adopted when the �ber radius is small or the volume of the
droplet is large. On the other hand, the clamshell con�guration appears for thicker
�bers and smaller volumes of droplets. To predict the droplet's con�guration on
the �ber, one can employ the reduced volume V ∗ de�ned as

V ∗ =
Ω

r3f
, (1.34)

where Ω is the volume of the droplet and rf the radius of the �ber [74]. A large re-
duced volume typically results in a barrel shape, whereas a smaller reduced volume
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produces a clamshell shape droplet, see the diagram in Fig. 1.9 (b) [75].

Figure 1.9: (a) Picture of a silicone oil droplet with a barrel shape (left) and a glycerol
droplet with a clamshell shape (right) (credit: J. Van Hulle). Both droplets have the
same volume, Ω = 1 µl and are on the same nylon �ber with a diameter of d = 450 µm.
(b) Diagram of the reduced diameter Ω1/3/rf , with Ω the droplet volume and rf the
�ber radius, as a function of the contact angle θ, that shows geometry adopted by the
droplet (without gravity). Barrel shapes (■) and clamshell shapes (□) are depicted on
the diagram and the region of coexistence of both shapes is represented with (•) and (◦),
respectively. From [75]. The pictures in (a) are added to this graph at the corresponding
estimated positions.

In addition to the �ber radius and the droplet volume, the contact angle θ of the
liquid on the �ber plays a crucial role in determining the droplet's shape [75, 76].
Fluids that exhibit less wetting characteristics (θ ≫) are inclined to form clamshell
shapes, while wetting �uids frequently adopt barrel shapes, as shown in Fig. 1.9
(b). Notably, in the case of such wetting �uids forming barrel shapes, an in�ection
point can be noticed on the surface of the droplet [77]. Altering any key parameter
(droplet volume, �ber radius or contact angle), can trigger a transition from the
clamshell shape to the barrel shape. For example, increasing the volume of a water
droplet initially in a clamshell shape can cause it to transform into a barrel shape.
This transition is called the roll-up transition [78].

The mathematical expression of the barrel shape pro�le can be derived theoretically
by assuming a totally wetting liquid droplet with a constant pressure inside the
droplet, a constant curvature of the surface and negligible gravity e�ects [72]. Under
such circumstances, the Laplace overpressure inside a barrel-shaped droplet is given
by

∆P =
2γ

rf + r
. (1.35)

This pressure depends on both the radius of the �ber rf and the radius of the
droplet r. In the case of the clamshell shape, as the geometry is asymmetric, no
analytical solution for the mathematical pro�le expression is reported for cylindrical
�bers. Only numerical solutions using Surface Evolver are available [73, 74, 79].
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Finally, the droplet shape is in�uenced by gravity when the droplet size is larger
than the capillary length lc. In such case, the symmetric barrel shape is deformed
and adopts an asymmetric barrel shape, as shown in Fig. 1.10 [75, 76, 80].

Figure 1.10: Pictures of silicone oil droplets on a horizontal �ber whose radius is r =
12 µm. From left to right the volume of the droplet increases Ω = 0.01, 0.10, 0.23, 0.32
and 0.52 µl. From [80].

1.4.2 Fluid coating : Landau-Levich-Derjaguin theory

With a wetting �uid, it is possible to uniformly coat a cylindrical �ber with a
thin liquid �lm. The most conventional method for achieving such a coating is to
withdraw the �ber vertically from a liquid bath at a constant speed, as illustrated
in Fig. 1.11. The �nal thickness of the deposited �lm is in�uenced by several
factors: the radius of the �ber, the viscosity and surface tension of the �uid, and
the speed at which the �ber is pulled. This phenomenon was analyzed theoretically
by Landau, Levich, and Derjaguin for a solid plate, giving rise to what is known
as the LLD theory. The principles of the LLD theory have since been adapted and
applied to a variety of substrate geometries, as discussed in further detail by Quéré
[81].

Figure 1.11: Illustration of a �ber pulled out of a liquid bath with a velocity v. The
radius of the �ber is r and the resulting coating �lm thickness is e. The region where the
meniscus is deformed is the dynamic meniscus and it has a characteristic length λ.

As the �ber is pulled out from the liquid bath at a speed v, a �lm with thickness
e forms around the �ber. Close to the liquid bath, the liquid forms a dynamic
meniscus characterized by a length λ (see Fig. 1.11). This characteristic length is
determined by balancing the Laplace pressure, de�ned in Eq. (1.6) of the static
and dynamic menisci. In a static meniscus, the Laplace pressure is zero if the �ber
radius is smaller than the capillary length. In the moving meniscus, the pressure
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contains two terms representing the curvature of the �ber and the curvature of the
�uid pro�le [81]. Matching both pressures leads to

γ

rf + e
− γe

λ2
∼ 0. (1.36)

In the approximation of thin �lms (e ≪ rf ), this equation simpli�es to provide the
characteristic length of the dynamic meniscus as

λ ∼ √
erf . (1.37)

In meniscus dynamics, the �ow generated by the curvature of the �lm and the sub-
sequent Laplace pressure can be approximated as ∆P ∼ γ/rf (with e ≪ rf ). This
�ow is counteracted by viscous forces, leading to a dimensional balance expressed
as

ηv

e2
∼ 1

λ

γ

rf
. (1.38)

Incorporating Eq. (1.37), one obtains the expression of the liquid �lm thickness,

e ≈ rf

(
ηv

γ

)2/3

. (1.39)

The precise formulation of the LLD (Landau-Levich-Derjaguin) law for a �ber
withdrawn from a liquid bath is

e = cdrydCa
2/3 (1.40)

where Ca is the capillary number, cdry = 0.67 is a theoretical prefactor and d is the
�ber diameter. This relationship provides an approximation for the �lm thickness
based on the �ber radius, the �uid's viscosity, the withdrawal speed, and the surface
tension.

1.4.3 Rayleigh-Plateau instability

When such a liquid �lm coats a cylindrical �ber, it's common to observe the �lm
undergoing spontaneous destabilization, leading to surface minimization. This pro-
cess is depicted in Fig. 1.12 and is attributed to the Rayleigh-Plateau instability,
a phenomenon closely aligned with the instability discussed in section 1.1.3. In
both instances, surface tension acts as the driving force behind the observed be-
havior. Considering a liquid �lm of initial thickness e0 surrounding a �ber of radius
rf , the destabilization is marked by a characteristic wavelength λ and an average
�lm thickness e∗ [19]. The variation in the �lm thickness along the x axis can be
modeled as e = e∗ + δe cos(qx), where q represents the wave vector related to the
wavelength λ = 2π/q. By expressing the volume conservation of the �uid over a
single wavelength, the following relationship is established

λπ (rf + e0)
2
= λπ

(
(rf + e∗)

2
+

δe2

2

)
. (1.41)
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Figure 1.12: (a) Illustration and (b) pictures of the Rayleigh-Plateau instability occurring
when a thin liquid �lm coats a cylindrical �ber. These �gures are taken from [82]. The
�ber is made of glass and the liquid is polystyrene. The radius of the �ber is 9.6± 1 µm
and the initial liquid �lm thickness is e0 = 13.2± 1 µm.

With the assumption of minor variations of the interface, one obtains the expression
of the mean thickness

e∗ = e0 −
δe2

4(rf + e0)
. (1.42)

The mean thickness, during the destabilization, is smaller than the initial thickness,
one can therefore have the intuition that the modulation of the �lm reduces the
surface and, consequently, the energy of the system. To quantify the change in
energy, ∆E, we focus only on surface energy, neglecting gravitational e�ects which
are insigni�cant for thin �lms. The energy di�erence over one wavelength is

∆E =

∫ λ

0

2π(rf + e)γds− 2π(rf + e0)γλ, (1.43)

with s the curvilinear abscissa. The �rst term is the surface energy of the modulated
�lm, and the second term corresponds to the surface energy of the initial non-
destabilized cylindrical �lm. By considering small deviations of the surface, i.e.
ds ≈ dx(1 + 1/2(de/dx)2), we integrate the �rst term to �nd the di�erence in
energy between the modulated and the cylindrical �lms,

∆E =
π

2
λγ

δe2

(rf + e0)

(
q2(rf + e0)

2 − 1
)
. (1.44)

A negative ∆E implies that the destabilized �lm is energetically favored, it is the
case when the wave vector q satis�es the inequality q(rf + e0) < 1. This inequality
yields

λ > 2π(rf + e0), (1.45)

meaning that destabilization is inevitable for wavelengths exceeding the perimeter
of the initial cylinder. Among the possible wavelengths satisfying this criterion,
the one selected is the most ampli�ed one. Its value is determined with a linear
stability analysis under the lubrication approximation of thin �lms (e0 ≪ rf ). This
analysis, detailed in Appendix B, leads to the wavelength of Rayleigh-Plateau

λRP = 2π
√
2rf , (1.46)
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which is the most unstable wavelength that dictates the regular pattern of bead
formation along the �ber. Furthermore, the growth time is given by

τRP = 12
ηr4f
γe30

. (1.47)

Quéré's observations on vertical �bers reveal that under certain conditions, the
cylindrical �lm remains stable [83]. Indeed, with a vertical �ber, the liquid drains
downwards, creating a velocity pro�le across the �lm thickness, that may inhibit
the instability. In such scenarios, no droplet forms because the characteristic time
of the gravitational �ow τ is shorter than the characteristic time of the instability
τRP . The characteristic time τ is given by a characteristic speed that compares
gravitational to viscous e�ects, v ∼ ρge2/η that moves the �uid along a distance
having the order of the instability wavelength λRP ∼ rf . The characteristic time
of the instability τRP is given by Eq. (1.47). Applying the condition τ < τRP , one
�nds

e0 < cc
d3

l2c
(1.48)

with cc = 0.175 a coe�cient and d the �ber diameter. In other words, the threshold
�lm thickness below which the Rayleigh-Plateau instability is suppressed in vertical
�ber is ec = ccd

3/l2c . However, when the �lm thickness is larger than this critical
value, various behaviors are observed, as explained here below.

1.4.4 Liquid �lm �owing down a �ber

In experiments focusing on uniform liquid �lms descending along a vertical �ber,
the �uid is introduced at a constant �ow rate Q. The interplay between the �ow
rate, �ber radius and nozzle diameter determines the emergence of several regimes
[84, 85, 86, 87, 88]. These regimes are destabilization of the �lm caused by the
Rayleigh-Plateau instability, driven by surface tension, and can be categorized into
three distinct regimes: (a) The isolated droplet regime or dripping state where
primary droplets spaced evenly move at a constant speed and coalesce with smaller
secondary beads (secondary breakup of the thin �lm) in a cyclic pattern [89]; (b)
The steady Rayleigh-Plateau regime where a regular sequence of short-spaced and
periodic droplets is observed descending the �ber at constant speed and spacing
without any collisions; (c) The unsteady and convective regime is characterized by
random coalescence events where primary droplets merge to form larger droplets,
which then coalesce with subsequent primary beads, the overall bead pattern is
irregular. These three regimes are shown in Fig. 1.13. In the isolated droplet and
Rayleigh-Plateau regimes, beads move at a constant speed and spacing, demon-
strating absolute instability. Conversely, the convective regime is marked by coa-
lescence events occurring at irregular distances from the nozzle, indicative of con-
vective instability [90]. Adjusting the incoming �ow rate, while maintaining the
same �ber radius and nozzle diameter, transitions between these regimes. By in-
creasing the �ow rate, the regime transitions from the isolated to Rayleigh-Plateau
and then to convective. Similarly, increasing the �ber diameter with a �xed �ow
rate triggers the same sequence of regime changes. Modifying the nozzle diameter,
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Figure 1.13: Experimental pictures of a liquid �lm �owing down a vertical �ber. Three
regimes can be observed, (left) isolated regime, (middle) Rayleigh-Plateau regime and
(right) convective regime. From [88].

the �uid's properties, or the �ber cross-section, can also in�uence these transitions
[87, 91, 92, 93, 94]. High surface tension �uids (γ > 50 mN/m) or large �ber radii
can lead to asymmetrical droplets in these regimes [92], as shown in Fig. 1.14.
Asymmetrical droplets may also form from liquid �lms in�uenced by lateral winds
[95]. In scenarios where inertia dominates surface tension e�ects (large �ow rates),
the Rayleigh-Plateau instability is supplanted by the Kapitza instability leading
to the formation of capillary wave trains along the liquid �lm [96]. These various
regimes and transitions underscore the rich complexity of �uid behavior on vertical
�bers.

Figure 1.14: (a) Diagram describing the shape adopted by a liquid �ow on a vertical
�ber in the Rayleigh-Plateau regime. It depends on the surface tension of the liquid used
and the �ber diameter. The droplet geometry is either symmetrical or asymmetrical.
(b) Experimental pictures of the symmetrical con�guration and (c) the asymmetrical
morphology. From [92].
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1.4.5 Motion of droplet on a �ber

In this section, we analyze the motion of a barrel-shaped droplet descending along
a vertical dry �ber. A droplet on a �ber, as on an inclined surface, exhibits two
di�erent contact angles at the front and the rear of the droplet [97]. The motion of
the droplet is triggered when these angles overcome a critical value. This descending
motion on a vertical �ber is the focus of the work of Gilet et al., where they establish
a balance between the droplet's weight and its viscous dissipation [98].

To describe the viscous dissipation occurring in a droplet on a vertical �ber, we can
refer to the study of Lorenceau and Quéré [99]. They analyze the dissipation in
both the liquid wedge, de�ned near the advancing contact line, and the bulk of the
global macroscopic droplet wedge for droplets on cylindrical �bers. The dissipation
in the viscous and dynamic liquid wedge is given by Tanner's law, with the contact
angle described as θ ∼ (Γηv/γ)1/3 (see Eq. (1.26)). This leads, according to Eq.
(1.25), to the following expression for the dissipation force

Fwedge ∼ γrf

(
ηvΓ

γ

)2/3

. (1.49)

In the case where the dissipation occurs in the global droplet, the contact angle
is related to the width l and length L of the droplet, with the wedge described as
θ ∼ l/L. Under these conditions and according to Eq. (1.25), the dissipation force
can be expressed as

Fglobal ∼ ηrfΓv

(
L

l

)
. (1.50)

In the case study of Gilet, the viscous dissipation occurs mainly in the bulk of the
droplet and is quanti�ed as

Fη = ξηdv (1.51)

where ξ is a coe�cient taking both geometric aspects and the ratio of the droplet's
length to its width (indicative of the dynamical contact angle), where d is the �ber
diameter and v is the droplet speed. Gilet et al. express ξ as ξ = πCvΓ

L
l with L

and l denoting respectively the length and width of the droplet [98], and Cv being
a numerical drag coe�cient of the order unity for cylinders. Applying Newton's
third law, while disregarding inertia, yields

0 = ρgΩ− Fη, (1.52)

which leads to the expression of the speed, when taking ż = v,

ż =
1

ξ

ρg

η

Ω

d
. (1.53)

As the droplet descends along the dry �ber, it leaves a liquid �lm behind (LLD
theory), diminishing its volume. The volume loss rate is captured by

Ω̇ = −πdeż, (1.54)
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where the left �lm thickness e is speci�ed according to the LLD theory (see Eq.
(1.40)). By solving the di�erential equation formed by Eqs. (1.53) and (1.54), the
evolution of the droplet position z as function of time t is obtained,

z =
ż
1/3
0 −

(
ż
−2/3
0 + 2

3wt
)−1/2

w/3
, (1.55)

where ż0 is the initial speed of the droplet and where w is a parameter that depends
on physical constants

w =
cdry
CvΓ

l

L

(
η

γ

)2/3
ρgd

η
. (1.56)

This theoretical model alongside experimental data is illustrated in Fig. 1.15 (a).
The model depicts well the observed droplet motion.

A metastable shape, both observed in [98] and [100], of a clamshell shape droplet
descending on a vertical �ber even though its reduced volume exceeds unity, as
shown in Fig. 1.15 (b). Nevertheless, this clamshell con�guration is unstable and
transitions to the barrel shape, at which point the descent speed decreases by a
factor 3 [98].

Figure 1.15: (a) Graph of the position z along time t of a barrel shape droplet descending
along a vertical �ber. Experimental parameters : d = 0.25 mm, (•) ν = 10 cSt, (▲) ν = 20
cSt, (■) ν = 50 cSt and (▼) ν = 100 cSt. The dashed line corresponds to Eq. (1.55)
with cdry = 0.67 (the predicted value from the LLD theory) and the solid line is with
cdry = 1.5. (b) Experimental picture of an initially clamshell shape droplet (ν = 100
cSt), descending a vertical �ber (d = 160 µm), that shifts to the barrel shape (the stable
con�guration). The change in shape induces a sudden decrease in the vertical speed. Both
images are taken from [98].

1.4.6 Several �bers

Arranging several �bers in di�erent manners o�ers fascinating possibilities for
droplet manipulations. By employing a combination of vertical and horizontal
�bers, one can either suspend a droplet or allow it to pass through, leaving behind
a small portion of its volume at the intersection, it is illustrated in Fig. 1.16 (a).
This stop-and-go behavior is in�uenced by both the �ber radius and the droplet
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volume [101]. Such interactions have led to the development of �ber-based sys-
tems capable of creating compound droplets, highlighting advancements in �uid
manipulation techniques [102]. Moreover, by positioning two perpendicular �bers
at an incline, it becomes possible to direct a droplet from one �ber to another by
selecting the slope and the �ber diameter [103].

Figure 1.16: (a) Network of �bers created by a vertical �ber and a horizontal �ber, both
�bers are in contact. A barrel shape silicone oil droplet descends along the vertical �ber.
At the crossing, the droplet is either pinned and hung at the junction or the droplet
crosses the horizontal �ber and leaves a thin liquid droplet at the junction. From [101].
(b) Silicone oil droplet at the node formed by two crossing �bers. Depending on the angle
between the �bers, the droplet adopts three di�erent shapes: a column morphology, a
mixed shape with a droplet formed on one side of the column, and a single drop at the
node. From [104].

From a static point of view, the shape adopted by a droplet depends on the angle
made by the two horizontal �bers. When starting from two parallel �bers and
gradually increasing the angle between them, the droplet transitions from a colum-
nar morphology with a droplet spread between the �bers, to a mixed shape with a
droplet formation on one side of the column, to a single drop at the intersection as
shown in Fig. 1.16 (b) [104]. With vertical �bers, the separating angle signi�cantly
a�ects water droplet retention, with the optimal volume retention occurring at an
angle of 36◦ between �bers [105]. The spacing between parallel �bers also plays a
critical role. Close proximity leads to an elongated liquid column, whereas greater
distances result in a compact, hemispherical droplet shape [106]. These two droplet
shapes are illustrated in Fig. 1.17 (a). In setups with elastic �bers spaced apart,
the �bers are seen, as in Fig. 1.17 (b), to being de�ected inwards due to the action
of the liquid droplet [107]. This is the same phenomenon occurring in a brush of
�bers withdrawn from a liquid bath where the �bers are clustered together (see
Fig. 1.17 (c)), as paint brushed or human long hairs after a heavy rain [108, 109].

A recent study by Khattak et al [110] demonstrates how varying the spacing be-
tween two horizontal rigid �bers can drive droplet motion. The droplet moves
towards narrower gaps [111], a principle ingeniously applied using a saw-tooth
pattern and a moving straight �ber to enable movement over extended distances,
as shown in Fig. 1.18 (a). Additionally, when a constant liquid �ow is applied
between two vertical and parallel �bers, two di�erent behaviors emerge, such as
self-sustaining sheets or liquid bridge droplets [93], see Fig. 1.18 (b). Adding to
the complexity these bridge droplets can rotate around an axis formed by two he-
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lical spaced �bers, as illustrated in Fig. 1.18 (c). These examples showcase the
potential for droplet manipulation using innovative multi�ber con�gurations. We
will explain in section 1.6 of this State of the Art, the application of �ber-based
structures to harvest water in foggy environments.

Figure 1.17: The spacing between two parallel �bers dictated the adopted shape. (a)
The �bers are rigid and horizontal. For relatively large spacing, the droplet has the
usual compact hemispherical shape while for less spaced �bers, the shape is a long liquid
column. From [106]. (b) The �bers are elastic and vertical. Both �bers are �xed at one
end (left part) and free at the other (right side). A droplet is deposited on the �bers and
spontaneously moves towards the free end of the �bers, making the �bers to coalesce and
the droplet to spread. From [107]. (c) Brush of several �bers withdrawn from a liquid
bath. The same elongated droplet geometry is observed as in (b). From [109].

Figure 1.18: (a) Droplet motion induced by a reduced gap between two �bers. The
droplet migrates towards narrow gap. By using a saw-tooth �ber and a straight �ber
that cyclically translates above and under the saw-tooth �ber, the droplet can travel long
distances. From [110]. (b) Constant liquid �ow rate applied between two vertical �bers.
Increasing the spacing induces the liquid sheet pattern to transition into a bridge droplet
shape. From [93]. (c) Same experiment as in (b) with two helical spaced �bers. The
bridge droplets rotated around their central axis. From [93].
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1.5 Droplets on conical �ber

Lastly, the substrate on which the droplet sits can be a conical �ber. Such �bers
are encountered in nature with cactus spines, pine needles, moss barbs, or plant
hairs. This geometry introduces a gradient in the �ber radius. In this section,
we provide an overview of the spontaneous motion of droplets that may occur on
conical �bers.

1.5.1 Surface tension imbalance

A droplet on a conical �ber may exhibit a barrel or a clamshell shape, in�uenced by
several physical parameters such as radius, volume and contact angle, as reviewed
previously in section 1.4.1. In both geometries, the droplet encounters di�erent
radii on either side. This may lead to the motion of the droplet towards lower radii
of curvature to minimize its liquid/vapor interface [112, 113]. This mechanism is
entirely passive, as the droplet moves spontaneously without any external energy
input into the system.

A pioneering study on the motion of droplets on conical �bers was conducted by
Lorenceau and Quéré [99]. They studied the behavior of thin silicone oil barrel-
shaped droplets that spontaneously move along horizontal conical copper �bers,
towards the larger radius of the �ber, see Fig. 1.19. The droplet velocity is observed
to decrease as it moves towards larger radii. This motion is due to the di�erence
in the Laplace pressure inside the droplet, which is given by

dP

dz

∣∣∣∣
Ω

= − 2γ

(rf + h)2

(
drf
dz

+
dh

dz

) ∣∣∣∣
Ω

, (1.57)

according to Eq. (1.35), where z is the distance from the tip of the �ber along the
axis of the cone, h the height of the droplet taken from the �ber center and rf is
the local �ber radius.

Figure 1.19: Superposition of pictures of a silicone oil droplet moving on a conical copper
�ber. The picture time interval is constant, 1.6 s. The droplet moves towards large radii
and its speed decreases along the motion. From [99].

Depending on the size of the droplet, the height h varies. For large droplets, h is
constant and given by R0 = ( 3Ω4π )

1/3, while for small droplets, the geometry is very
�at and the height tends towards the radius of the �ber, see Fig. 1.20. Considering
these geometrical considerations [99, 114], the pressure gradient reduces to,

dP

dz

∣∣∣∣
Ω

=

{
− 2γ

(rf+R0)2
α if rf < R0 (large droplet),

− γ
r2f
α if rf > R0 (small droplet), (1.58)
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Figure 1.20: Silicone oil droplet having a radius R0 on a �ber with a radius rf . (a) Case
of a large droplet, rf < R0, with r = 12 µm and R0 = 200 µm. (b) Case of a small
droplet, rf > R0, with rf = 100 µm and R0 = 80 µm. Both pictures are from [99].

with α the half-angle of the conical �ber and R0 the radius of the droplet. The
driving force is proportional to the pressure gradient,

Fdriving ∼ dP

dz
Ω. (1.59)

Opposing the driving force is a dissipation force. In the experiments of [99], the
droplets are small, and the dissipation is seen to occur mainly in the bulk of the
droplet. The dissipation is thus given by Eq. (1.50). This leads to the description
of the droplet velocity which is given by

v ∼ γ

ηΓ

(
h− rf

L

)(
Ω

r3f

)
α. (1.60)

With an increasing �ber radius, driving force decreases and the dissipation force
increases. It explains why the droplet slows down as it moves towards thicker
regions of a conical �ber [99, 115]. As the droplet moves, it leaves a liquid �lm
at the rear [116, 117]. If the conical �ber is pre-wetted, the droplet moves faster
due to reduced frictional force between the liquid and the solid [116, 118]. A
larger lubricating �lm induces a faster droplet motion [118]. The prewetting liquid
�lm may also destabilize due to Rayleigh-Plateau instability, forming droplets that
spontaneously move along the cone [99, 119].

As the droplet moves, it increases the liquid/solid surface area. An equilibrium
position is reached when the energy reduction from increased liquid/solid surface
area balances the energy cost of extending the liquid/vapor interface. At this po-
sition of minimal energy, the droplet stops. This equilibrium position is observed
theoretically and experimentally and depends on contact angle hysteresis, droplet
volume, cone half-angle, and contact angle [120]. Droplets are expected to move
further along the cone with larger volume or smaller half-angle and contact angle.
Without contact angle hysteresis, the droplet undergoes shape instability, transi-
tioning from a barrel to a clamshell shape [112, 118]. The clamshell shape droplets
always move towards the base of the conical �ber, independent of wettability, as
shown in Fig. 1.21 [121]. There is no equilibrium position for the clamshell-shaped
droplets, meaning they continue moving towards lower curvature inde�nitely. Un-
der gravitational e�ects, both barrel and clamshell droplets reach an equilibrium
position that minimizes the energy of the system [112]. To enhance droplet mo-
tion on conical �bers, concave or convex grooves can be added to the cone surface,
enabling faster droplet movement [122, 123].
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Figure 1.21: A water droplet with a clamshell shape (Ω = 4 µL) on a slippery liquid-
infused porous surface (SLIPS) conical �ber. (a) The coating liquid is silicone oil, which
creates a non-wetting surface for water droplets with an apparent contact angle θapp ≈
105◦. The cone half-angle is 10◦. (b) The coating liquid is decanol, creating a wetting
surface for water droplets with an apparent contact angle θapp ≈ 45◦. The cone half-angle
is 5◦. In both experiments (a) and (b), the water droplet spontaneously moves towards
the base, irrespective of surface wettability. From [121].

1.6 Water collection

This �nal section of the State of the Art aims to describe a promising application
of this thesis: enhancing atmospheric water collection. This involves capturing
water present in steam �ows, clouds, or humidity. Such harvesting is based on
interactions between droplets and �bers to catch tiny droplets, to make them grow
and to drain them towards a reservoir. The basic of water collection processes is
explained here below.

1.6.1 Di�erence between fog and dew

An important distinction to establish is the di�erence between fog and dew. Wa-
ter vapor can be cooled to create liquid water, this phase transition is induced by
temperature variations while keeping constant volume and pressure. The temper-
ature at which water vapor reaches its saturated vapor pressure is known as the
dew point, at this temperature, excess vapor condensates. Both fog and dew result
from water condensation but occur under di�erent conditions. Fog forms when
the air near the ground is cooled, creating clouds with suspended water droplets
from, theoretically, homogeneous nucleation, and in practice, from heterogeneous
nucleation on dust particles, pollen, pollution for instance [124]. Dew forms when
a surface cools enough to cause surrounding water vapor in the air to condense
upon it, this is a heterogeneous nucleation on the surface [12].

Fog and dew collection employ fundamentally di�erent techniques [125]. For fog
collection, water droplets have already nucleated, and a structure is required to
capture the microscopic droplets. Such techniques mainly depend on aerodynam-
ics and multiphase �ows. In contrast, dew collection, also termed condensation
collection, requires cooling a surface to facilitate the phase transition to liquid and
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employ speci�c surface properties for nucleation. Despite these di�erences, both
techniques necessitate the evacuation of collected water droplets. For dew collec-
tors, the nucleation site must be freed of the collected water to allow the subsequent
nucleation. For fog harvesters, water must also be evacuated because droplets on
the structure decrease e�ciency, as will be explained in the next section.

Moving the droplets, referred to as drainage, is a goal of this thesis, which aims
to improve the displacement of liquid droplets. This is why water collection is
an important perspective of our work. More speci�cally, this thesis focuses on
�ber-based structures which are particularly suitable for fog collection. For dew
collection, these structures are less suitable because of cooling challenges.

1.6.2 Bio-inspiration

In most arid regions like deserts, plants and animals have developed speci�c strate-
gies in order to survive long periods without rain [126]. Among others, one can cite
the Stipagrostis sabulicola Namib desert grass [127], the Opuntia microdasys cactus
[5], the Syntrichia caninervis moss [6], the Sequoia sempervirens tree [128] or the
Sarracenia insect trapping plant [4]. Other examples are spider web [3], Phryno-
soma cornutum lizard [7] and the Physasterna cribripes Namib darkling beetle [8].
All the species have developed organs to harvest water: they have spikes, bumps,
spines or hairs that are able to collect tiny drops of water from air, fog or rain.

From these various examples, we describe more particularly the Opuntia microdasys
cactus, the Sarracenia insect trapping plant and the Stipagrostis sabulicola grass
as these plants have interesting features further analyzed in the thesis.

The Opuntia microdasys cactus This cactus can collect fog droplets thanks to its
spines [5]. The spines are clustered in small groups that appear white in Fig. 1.22
(a) and display a con�guration with spines in various directions. Each hydrophilic
spine has an average half-angle of 6◦ and at the tip, smaller conical bards can be
observed, as shown in Fig. 1.22 (b) and (c) [114, 5]. The middle part of the spine
features gradient grooves that are closer together near the tip and wider at the
base, see Fig. 1.22 (c). At the base, there are trichomes, tiny hairs with a belt
structure (Fig. 1.22 (d)). The fog collection process consists of three steps. First,
collection: some fog droplets deposit on the small barbs and the spine tip, where
they coalesce into larger droplets (see Fig. 1.22 (b)). Second, transportation: as
the droplets grow large enough to sense the gradient radius, they move towards
the base of the spine (see Fig. 1.22 (b)). This motion is driven by the gradient
radius and the grooves. Finally, upon reaching the base, the droplets encounter
the trichomes that rapidly absorb them. All these steps are sketched in Fig. 1.22
(d). The cycle then repeats as the spine, now free of the larger droplets, begins to
collect new fog droplets. Note that droplets on inclined spines are also observed to
move towards the plant [114, 5].

The Sarracenia insect-trapping plant This plant is an insect-trapping plant
that lives in marshlands [4]. This plant consists of a pitcher, a long vertical tube
with a peristome at the top, resembling a mouth, and an operculum, or lid, covered
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Figure 1.22: (a) Picture of the Opuntia microdasys cactus. The white dots are clusters
of spines. (credit: J. Van Hulle). (b) A spine of the Opuntia microdasys cactus in a
saturated fog �ow. One observes the collection of the fog droplet thanks to the conical
barbs at the tip of the spine, which coalesce to form larger droplets (0 s to 4.43 s). As
the droplet grows, it moves towards the base of the conical �ber and thus the plant (6.04
s to 8.48 s). (c) A spine analyzed with a scanning electron microscope, showing the bards
at the tip of the spine and the grooves in the middle part. (d) Schematic illustration of
the fog collection process, composed of three steps, the collection (droplets 1 and 2), the
transportation (droplet 3) and the absorption (droplet 4). Images (b), (c) and (d) are
from [5].

with tiny hairs, the trichomes, as shown in Fig. 1.23 (a). This plant collects water
from the humid environment through its trichomes, which are grooved conical
�bers. These hairs collect water in order to keep the peristome wet and highly
slippery, thereby trapping insects [129]. The water collection is composed of two
modes. Mode I, shown in Fig. 1.23 (b), involves the formation of a thin liquid
�lm on the trichome surface. Small harvested water droplets coalesce and move
towards the larger radius of the trichome. Once this �lm is formed, Mode II begins,
characterized by the high-speed motion of continuous small droplets sliding on the
thin liquid �lm. Mode II is illustrated in Fig. 1.23 (c). This motion reached
about 11700 µm/s, which is three orders of magnitude larger than the droplet
motion observed on cactus spines. This rapid motion is attributed to the speci�c
structure of the trichome. The trichome has an overall conical shape, as shown in
Fig. 1.23 (d). The apex angle is about 17◦ at the tip, and the diameter increases
slightly from 10 µm around the tip to 60 µm near the base. On its surface, ribs
and microchannels are observed, as shown in Fig. 1.23 (e) to (h). The ribs vary
in height, and their number increases closer to the base. Near the tip, there are
typically 1 or 2 low ribs (Fig. 1.23 (f)), increasing to 4 or 5 near the base (Fig.
1.23 (h)). When the trichome harvests fog, the process starts by forming a thin
liquid �lm inside the microchannels between the low ribs. After this �lm is formed,
subsequent harvested droplets slide on this �lm and between two high ribs. The fast
motion is driven by the capillary force exerted by the hierarchical microchannels.

The Stipagrostis sabulicola grass This grass is found in the Namib Desert of
southwestern Africa, where regular fog events occur [127]. The plant, composed
of long thin culms and leaves as shown in Fig. 1.24 (a), relies upon fog for water
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Figure 1.23: (a) Pictures of the Sarracenia insect-trapping plant. The trichomes, re-
sponsible for water collection from fog and dew, are small hairs on the operculum of the
plant. (b) Mode I of fog water harvesting: small droplets form on the trichome, coalesce,
and move towards the base, creating a thin liquid �lm along the natural �ber. (c) Mode
II of collection: small droplets slide rapidly on the liquid �lm. (d) The structure of the
trichome is a conical �ber with hierarchical grooves on its surface. (e) to (h) Scanning
electron microscopy images of the trichome's surface to highlight the two-height ribs and
the microchannels. From [4].

intake. Water droplets with large advancing and receding contact angles (θA ∼ 98◦

and θR ∼ 56◦, respectively) are observed to pin on the grass leaves, see Fig. 1.24
(b). Once the water droplet becomes large enough, it slides straight down towards
the base of the plant, collecting all the smaller pinned droplets along the way. The
directional motion, with minimal scattering of droplets, is attributed to the parallel
ridges and grooves observed on the culms and leaves of the plant, as highlighted in
Fig. 1.24 (c) and (d). The ridges have diameters of about 100 − 150 µm and the
grooves have diameters of about 30− 80 µm.

Figure 1.24: (a) Picture of the Stipagrostis sabulicola Namib grass. The arrow labeled "L"
indicates the leaves, while the arrow labeled "C" points to the culms. (b) A Namib grass
leaf with collected fog water droplets, showing the advancing and the receding contact
angles. (c) Droplets on the leaves, highlighting the grooves and ridges on the leaf surface
as well as droplets spanning multiple grooves. (d) Scanning electron microscopy image of
the leaf surface. From [127].

A general observation from these three fog collecting plants is that they all have
the same features, namely conical spines and a grooved surface.
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1.6.3 Fog collectors

We review here below synthetic �ber-based (cylindrical and conical) fog collectors,
directly inspired by spider webs and cactus spines. In this speci�c case, fog is
formed due to atmospheric conditions and is transported by the wind towards the
structure.

Fog collectors are usually made of a mesh composed of an intertwining of horizontal
and vertical �bers, which e�ectively collect water droplets present in the fog. The
experimental setup consists of placing a vertical mesh in an opened land so the
wind, which carries fog droplets, blows perpendicular to the net, as illustrated in
Fig. 1.25. In experimental lab setups, the mesh is placed in front of a wind fan that
blows perpendicular to the mesh. Several parameters can be tuned to improve the
collection: the �ber radius, the half-spacing between the �bers, and the fog droplet
radius. The global collection e�ciency is composed of three distinct contributions

E = EACEdEdr,

where EAC is the aerodynamic collection e�ciency, Ed is the deposition e�ciency,
and Edr is the drainage e�ciency [130]. Each e�ciency is explained below.

Figure 1.25: Picture of a fog collector made of meshes. The structure is vertical, allowing
the wind to blow through it. The water droplets transported by the wind may collide
with the mesh and drain towards a gutter below the net. From [131].

The aerodynamic collection e�ciency EAC : This represents the portion of
the unperturbed �ow that goes through the net, while the rest of the �ow is deviated
around the net. A representation of the aerodynamic e�ects is illustrated in Fig.
1.26 (a). Rivera showed that it depends on the shade coe�cient s, which describes
the proportion of holes and matter in the net. A plate with no holes corresponds
to s = 1, will completely deviate the �ow, resulting in no collisions between the
�ow and the plate. Conversely, a mesh with large holes and extremely thin �bers,
so a small shade coe�cient, will leave the �ow unperturbed, and no water will be
collected. The maximum aerodynamic collection e�ciency is demonstrated to be
around s = 0.5, meaning the net is composed of 50% of holes and 50% of matter
[130].
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The deposition e�ciency Ed : This represents the fraction of fog droplets in a
collision trajectory that are actually deposited on the meshes [130]. The condition
of collision depends on the Stokes number,

St =
inertia

viscous drag
=

2ρr2fogv

9ηrf
, (1.61)

where rfog is the typical radius of a fog droplet, v is the �ow speed, rf is the radius of
the �ber. If the Stokes number is larger than 1, inertia dominates, and the droplet
collides with the �ber. A Stokes number smaller than one means viscous drag
overcomes inertia, causing the droplet to deviate by following the wind streamlines
around the �ber, resulting in no collision. A representation of the deposition and
inertial e�ects is illustrated in Fig. 1.26 (b). Langmuir calculated the capture
e�ciency for a cylindrical �ber and showed that the thinner the �ber, the larger
the capture e�ciency [9, 132].

The drainage e�ciency Edr : This represents the proportion of water captured
by the net that actually �ows to the reservoir [130]. A representation of a draining
net is illustrated in Fig. 1.26 (c). This e�ciency can be reduced by several factors,
including the re-entrainment of captured droplets, evaporative losses and potential
leaks in the gutter and pipes leading to the collector's reservoir [9].

Figure 1.26: Representation of fog collection e�ciency. (a) Aerodynamic e�ects seen
from above the net. The fog �ow is deviated due to the presence of the net. (b) One
single portion of the net (a �ber) interacting with the inertial fog droplets. The droplets
may either follow the streamlines around the �ber or impact it, depending on their inertia.
(c) Droplets collected by the net (here made of vertical �bers) need to drain towards the
gutter. From [133].

Fibers are interesting components to design the net as each e�ciency can be opti-
mized, in addition to being low-cost. The shade coe�cient can be easily adjusted
by adding or removing �bers, thus improving EAC easily. The capture e�ciency
can be modi�ed by changing the �ber diameter, and the drainage e�ciency can
be enhanced with hydrophilic wires that spread droplets into liquid �lms. Robust
nets made of both horizontal and vertical �bers are capable of collecting fog but
are limited by clogged droplets, which remain on the net without draining and
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reduce the mesh openness, both factors impacting overall e�ciency [9]. A solution
is to use only vertical �bers, similar to harps, as shown in Fig. 1.27 [134, 135, 136].
This con�guration increases e�ciency by limiting clogging events. However, some
droplets may still remain on the �bers without draining, impacting the collection
rate [137]. To further improve this, placing two �bers side by side can help. A
droplet on a bundle of two �bers tends to form a columnar shape as observed in
section 1.4.6, enhancing both the drainage and the capture e�ciency [137, 133].
Another interesting improvement is to use multi-layer �ber nets, adding another
net behind the �rst one, which optimizes the aerodynamic collection e�ciency [138].

Figure 1.27: Experimental images of four stainless steel meshes ((a) and (b)) and harps
((c) and (d)). The nets (a) and (c) are made with thin �bers (diameters : (a) d = 254 µm,
(c) d = 229 µm). The nets (b) and (d) are made with larger �bers (diameters : (b) d = 1.30
mm and (c) d = 1.60 mm). (a) The mesh is fully clogged with droplets, interfering with
the aerodynamics of the fog stream. (b) Only partially clogged droplets are observed,
but the �bers are too large to e�ciently capture fog droplets. (c) The most e�ective
fog collector, as it e�ciently captures droplets with small wires that also favor draining
without clogging. (d) Large wire harp with e�cient droplet drainage, but the capture
rate is low due to the large �bers. From [134].

In �ber nets, the motion of droplets is mainly driven by gravitational force. This
requires that droplets reach a critical size to initiate sliding motion. Gravity e�ects
become signi�cant when the droplet size exceeds the capillary length, which delays
the onset of a new collection cycle at that position, increases the risk of evaporation,
and decreases the deposition e�ciency. Ensuring the motion of small droplets is
crucial for continuous and e�cient fog collection. Two approaches can be employed:
creating wettability gradients along the �ber through chemical surface modi�cation,
and/or using surface gradients with conical structures [139]. In our context, we will
discuss the latter solution.

Conical �bers in a fog �ow are e�ective in catching fog droplets, similar to cylin-
drical �bers, as illustrated in Fig. 1.28 (a) [16]. These �bers initially capture small
droplets that coalesce into larger ones, which then move towards the base of the
cone. Conical �bers facilitate the spontaneous movement of droplets from the tip
to the base without relying on gravity, thereby continuously refreshing the collect-
ing surface and enhancing the global fog collection e�ciency. Two notable designs
incorporating conical �bers are the kirigami cactus and cone-pierced membranes.
The kirigami cactus design corresponds to sheets cut into triangular shapes, in-
spired by a combination of harps and cactus spines. The 2D spines collect fog
water droplets and self-propel them towards a central axis between the two rows of
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spines, as shown in Fig. 1.28 (b). The central axis gathers the collected droplets,
which grow rapidly due to the input from several spines, forming a large droplet
that slides vertically along the axis towards a gutter [140]. The second design,
cone-pierced membranes, features a network of conical �bers that pierce a porous
membrane. The conical �bers capture and transport fog droplets to the porous
membrane, that absorbs and releases the collected water on the other side. These
conical �bers are inspired by the Sarracenia insect-trapping plant with hierarchical
microgrooves on their surfaces. Additionally, the porous membrane is optimized
with a Janus system consisting of a hydrophobic layer near the cone base and a
hydrophilic layer underneath. The membrane is also designed with bumps to favor
liquid dripping, enhancing the overall e�ciency of the fog harvester, as illustrated
in Fig. 1.28 (c) [141].

Figure 1.28: (a) Horizontal conical �ber with a 10◦ half-angle in a perpendicular to
the cone large axis fog �ow. The �ber captures fog droplets that coalesce on the cone
surface to form larger droplets that move towards larger radii. The collected water droplet
detaches from the end of the �ber. From [16]. (b) Kirigami cactus which is a cut sheet
with triangular shapes, with a vertical central axis between the opposite triangles. Fog
droplets are collected on the tips and edges of the triangles, where they merge and are
transported towards the base. Once the larger droplets form on the central axis, they
slide vertically towards a gutter. From [140]. (c) Cone-pierced membrane composed of
hierarchical grooves conical �bers and a Janus membrane. The conical �bers pierce the
porous membrane at regular intervals. The membrane consists of a hydrophobic layer
near the cone base and a hydrophilic layer on the opposite side. As the conical �bers
collect fog droplets, the liquid is transported into the porous media where it is absorbed
and released on the other side. The membrane is embossed to favor droplet dripping
compared to a �at membrane. From [141].
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1.7 Foundations and Launch Pad

This thesis aims to expand our understanding of liquid spreading dynamics on
macroscopic structures such as �bers and cones, and on macroscopic structures
decorated with grooved substructures, including grooved substrates and grooved
�bers. The important background necessary to appreciate the thesis subjects has
been explained in this State of the Art section. In the following, we will dive into
the thesis' core. Firstly, we will begin by describing the spreading dynamics of
a droplet in a concave and a convex groove inscribed on a �at substrate. Next,
we will examine di�erent droplet descending motions on vertical �bers. A wetting
droplet on a single cylindrical �ber leaves a liquid �lm that destabilizes to form new
droplets. We will observe an interesting behavior of droplet merging. A droplet
on a double-twisted cylindrical �ber exhibits helical motion that depends on the
number of �ber twists. Finally, we will analyze droplet motion on conical �bers,
focusing on shape deformation due to gravity and transition due to the increasing
radius.

Throughout the thesis, we will progress from �at substrates to cylindrical �bers
and then to conical �bers. The complexity of the substrates is further increased by
incorporating grooved substructures. As will be explained, all these droplet-surface
interactions are relevant to fog harvesting systems.

Figure 1.29: Outline of the following chapters. Inspired by natural observations, our
research investigates the in�uence of various natural features. We analyze droplet spread-
ing within curved grooves, droplet sliding along vertical �bers, and droplet movement on
horizontal cones.
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2

Droplet spreading inside

curved grooves

In this chapter, we discuss the spreading of silicone oil droplets within curved
grooves. Both curvatures are studied with convex and concave grooves, referred
to as epicycle and hypocycle grooves. The radius of the grooves is varied. The
spreading dynamic is di�erent depending on the sign of the curvature. This chap-
ter reveals that epicycle grooves are an important ingredient to e�ciently spread
totally wetting droplets. We present experimental data and a model to describe
the observed spreading behaviors.

Partially published as

J. Van Hulle, and N. Vandewalle, E�ect of groove curvature on droplet spreading,
Soft Matter 19, 4669 (2023).

M. Leonard, J. Van Hulle, F. Weyer, D. Terwagne and N. Vandewalle, Droplets
sliding on single and multiple vertical �bers, Phys. Rev. Fluids 8, 103601 (2023).
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2.1 Motivations

A wetting liquid may spread spontaneously along a surface thanks to capillary
driving forces [40]. This spontaneous motion is of primary importance in many
�elds. Biomedical applications with lab-on-chip device [101, 142], water delivery
in microgravity [143] or also water collection in arid regions [135]. Even in our
everyday life, capillarity governs the way a biscuit soaks up co�ee or water absorbs
into paper [144].

Several studies have examined capillary rise into di�erent structures, or droplet
spreading on speci�c substrates [38, 47, 145], as reviewed in Chapter 1. A general
trend has been observed, the position of the advancing meniscus always follows a
power law x = ctp, where x is the position of the leading meniscus and t is time.
The exponent value p depends on various experimental parameters: whether the
volume of liquid is conserved or not, whether the transporting structure is open
or closed, it also depends on the shape and size of this transporting structure,
a literature review is proposed in Table 1.1. However, less attention has been
dedicated to the e�ects of curvature.

When it comes to e�ciency, nature is often a good source of inspiration since
natural selection has shaped the best features over time. As reviewed in Chapter
1, many plant species that deal with water collection are decorated with curved
grooves, such as the spines of the Opuntia microdasys cactus (see Fig. 1.22) [5], the
trichomes of the insect trapping plant Sarracenia (see Fig. 1.23) [4] and the leaf of
the Namib desert grass Stipagrostis sabulicola (see Fig. 1.24) [127]. In Fig. 2.1, we
show a 3D representation of various textures observed on water-transporting organs
of these plants. All organs have an overall conical shape and, along the �ber, one
notices curved grooves. The conical geometry is known to passively transport the

(a)

(b)

(c)

Figure 2.1: Representation of natural �bers found on several plants with the expected
cross-sections of the �ber. Illustration of (a) a cactus spine observed on Opuntia micro-

dasys [5], (b) a trichome of the insect trapping plant Sarracenia [4], (c) a leaf of the Namib
desert grass Stipagrostis sabulicola [127]. All these structures are used by the plants to
collect and drive water droplets. The ingredients are the same in each case, the �ber
is conical and there are curved grooves along the �ber. The diameter of each natural
�ber is approximately 35 µm for the Opuntia microdasys spine, 40 µm for the Sarracenia
trichome and 250 µm for the Stipagrostis sabulicola leaf.
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droplet along the �ber [99, 119] as soon as the droplets are captured which increases
the water harvesting e�ciency [16, 140, 146]. Then, the purpose of the grooves is
also to enhance the water droplet motion by pre-wetting and keeping wet the �ber
[4]. Two recent studies showed that curved grooves on synthetic conical �bers can
also increase the liquid transport [122, 123], which will be described in Chapter
5. Notice, from the examples shown in Fig. 2.1, that curved grooves appear at
di�erent scales. In addition, two types of curved groove structures are observed.
For Fig. 2.1 (a) and (c), the bumps appear wider than the hollows. For Fig. 2.1
(b) the bumps and the hollows have the same width. One can wonder what is the
best groove's geometry to spread droplets.

In the present chapter, we compare the in�uence of the curvature's groove sign
on the spreading dynamics of a droplet. In other words, we are searching for the
curvature (convex or concave) that enhances the droplet spreading.

2.2 Experimental setup

A sketch of the experimental setup is provided in Fig. 2.2. The substrates are three-
dimensionally (3D) printed with Object Prime 30 from Stratasys. The printer is
jetting tiny polymers droplets which are cured with a UV lamp. The accuracy of
a single layer is about 30 µm. The material used by the printer is Acrylonitrile
Butadiene Styrene (ABS). The 3D-printing technique allows to tune the curvature's
sign as well as the radius R of the groove. We use grooves with R ranging from 0.5
mm to 2 mm. The radius R of the curved groove is sketched in Fig. 2.3 (a). This
substrate is horizontal and a droplet of liquid is gently deposited in the middle
of one groove. The droplet is produced by a micropipette (Eppendorf Xplorer).
The liquid is silicone oil (Dow Corning) with a viscosity ν = 100 cSt. The surface
tension is γ = 20.6 mN/m and the density is ρ = 960 kgm−3. The droplet volume
is �xed at Ω = 5 µl. The static contact angle of silicone oil on ABS is very small,
we are thus in the case of total wetting, θE ≈ 0◦. Prior to each experiment, the
groove is cleaned with isopropanol and distilled water, then the surface is left to
dry.

Figure 2.2: Sketch of the experimental setup. Grooves are printed along a �at substrate
made of ABS. (left) The groove is concave, called hypocycle groove, (right) the groove
is convex, called epicycle. A red-colored silicone oil droplet spreads inside the groove.
The spreading is recorded with a camera above the horizontal groove. The radius of the
grooves R ranges from 0.5 mm to 2 mm.
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The droplet spreading is recorded from above thanks to a CCD camera (Charge-
Coupled Device) at 20 fps. To improve the contrast as in Fig. 2.3, silicone oil is
colored in red and we used two lights (E�lux) on each side of the groove. With
an image treatment, the contour of the spreading droplet over time is detected
(see Fig. 2.3 (c)). It allows to obtain the left and right positions of the advancing
meniscus and so the spread x of the droplet along the groove. An experimental
movie with the obtained contour is available with the QR code in Fig. 2.3 (d). The
spreading is recorded after the droplet is completely inside the groove. For a given
droplet volume Ω, the droplet completely �lls the groove if the spread x is higher
than the calculated �lled spreading, x > xf = Ω/S where S is the cross-section of
the groove. Before the value xf is reached the droplet sits around the groove with
a spherical cap. These early stages of droplet spreading will not be described in
the present study.

R R

Figure 2.3: (a) Illustration of a hypocycle groove (left) and an epicycle groove (right).
(b) Pictures of the liquid front in a hypocycle groove (left) and an epicycle groove (right).
The radius of the groove is the same being R = 1.37 mm, as sketched above the pictures.
The droplet is colored in red. One can observe that the shape of the advancing front
of the droplet is impacted by the curvature of the groove. In a hypocycle groove, the
droplet has a round advancing meniscus. In an epicycle groove, the droplet is pinched
at the bottom of the groove. (c) Superposition of experimental pictures of a red-colored
droplet spreading in a hypocycle groove (top) and in an epicycle groove (bottom) with
the same radius R = 1.37 mm. The numerically found contour is in black. The time
interval between successive contours is 5 s. The scale bars represent 1 mm. (d) QR code
to access an experimental video comparing the spreading of a red-dyed silicone oil droplet
in a hypocycle groove and in an epicycle groove. This video corresponds to (c).
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2.3 Spreading characterization

When the droplet is in contact with the groove, the spreading becomes one direc-
tional. To investigate the crucial physical parameters, one can calculate several
non-dimensional numbers. The capillary number compares surface tension e�ects
to viscous ones, it is de�ned by Ca = ẋνρ/γ where ẋ is the speed of spreading, ρ
the density and γ the surface tension. In our case, we found Ca ≈ 2 10−3 mean-
ing that surface tension overcomes viscosity. The Weber number compares the
inertial force to the surface tension force, we have We = ρẋ2L/γ with L the char-
acteristic length of the system. In the present study, droplets are con�ned inside
a millimeter groove, so we have L ≈ 10−3 m. For our experiments, the Weber
number is typically We ≈ 2 10−5, meaning that surface tension forces dominate
inertial forces. The Reynolds number, Re = ẋL/ν ≈ 7 10−3, compares inertial
forces to viscous forces. This value reveals that viscous forces are larger than in-
ertial ones. The Bond number compares gravitational forces to capillary forces,
Bo = ρgL2/γ ≈ 0.5, where g is the gravitational acceleration. It indicates that
capillary forces are larger than gravitational ones. The capillary length is given by
lc =

√
γ/(ρg) = 1.5 10−3 m. Therefore, in our system, the motion of the liquid

inside the groove is driven by surface tension forces.

In Fig. 2.4, we plot a double logarithmic graph of the non-dimensional spread (x−
x0)/lc over time t for di�erent curvatures. The value x0 is the initial spread adopted
by the droplet inside the groove. One can notice that all long time dynamics are
given by power laws as expected. But the slopes are di�erent depending on the
sign of the curvature. The spread of a droplet inside an epicycle groove is going
as time to the power one half. While inside a hypocycle groove, it spreads as
time to the power one third. Then, we vary the radius R of the groove. We
observe that the dynamic of a droplet inside an epicycle groove is independent of
the radius as all curves collapse. However, for a droplet inside a hypocycle groove,
the spreading clearly depends on the radius of curvature. We observe that the
spreading increases as the radius decreases. From those �rst observations, one can
say that the spreading can be enhanced in a hypocycle groove with a small radius.
Nevertheless, a droplet spreading inside an epicycle groove wins any droplet race,
with spreading factors one order of magnitude larger than in the case of hypoycles.

2.3.1 Hypocycle - concave

A droplet inside a hypocycle groove spreads along the direction given by the channel
(see Fig. 2.3). This motion is led by surface tension acting along the contact line.
The driving force can be expressed as

Fγ,h ∼ γxθ2D (2.1)

where θD is the dynamical contact angle [19]. We can express this contact angle
as θD ∼ z/R, where z is the height of the droplet that decreases as the droplet
spreads, and is de�ned in Fig. 2.5 (a). In fact, as can be noticed in this �gure, the
front meniscus is curved. The characteristic length of this meniscus is assumed to
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Figure 2.4: Double logarithmic graph of the non-dimensional spread (x−x0)/lc as func-
tion of time t. In blue, the groove is an epicycle. In green, the groove is a hypocycle. The
darker the color is, the larger the radius of the groove R (radius values are respectively
1.07 mm, 1.37 mm and 1.67 mm). The error bars coming from repeated experiments for
each data set are in light color. One notices that the spread of a droplet inside an epicycle
groove is independent of the radius R. However, for a hypocycle groove, the spread is
faster for small radii. The grey lines are power law �ts on experimental data, the �tting
laws are described in section 2.3.

be the radius of the groove R. Hence, the driving force is given by

Fγ,h ∼ γx
z2

R2
(2.2)

Since the dissipation occurs in the bulk of the droplet, the dissipation force is then
given by

Fη,h ∼ νρxẋ (2.3)

where ẋ is the spreading speed. By balancing both forces and looking at the
stationary equation, one can obtain the expression of the spreading speed, ẋ ∼
γ
νρ

z2

R2 . By assuming the volume of the droplet is Ω ∼ xzR. Therefore, the speed is

expressed as ẋ ∼ γ
νρ

Ω2

x2R4 . This leads to the following expression of the spread over
time

x ∼
(

γ

νρ

Ω2

R4
t

)1/3

. (2.4)

This model gives the scaling law to describe the spreading. It predicts a power law
of time to the power one third as observed experimentally. In fact, this model is an
adaptation of Tanner's model that describes the spreading of a droplet on a smooth
surface. Here, we have a 1D version of that model where the driving force, as well
as the volume of the droplet, are rewritten to take into account the con�nement of
the droplet inside the 1D groove.
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Figure 2.5: Pictures of the advancing contact line of a red-colored silicone oil droplet
spreading in curved grooves. (a) In a hypocycle groove, the advancing meniscus of the
droplet is curved, describing an advancing contact angle that decreases as the droplet
spreads. The advancing contact angle is approximated by the ratio of the height of the
droplet z and the curvature of this meniscus, which is approximated by the groove radius
R. (b) In an epicycle groove, the advancing meniscus of the droplet is pinched at the cusp
of the groove. This creates a con�ned advancing meniscus that leads the dynamics, its
characteristic length is given by the resolution of the 3D printer, rp, which governs the
size of the cusp.

2.3.2 Epicycle - convex

A picture of a droplet spreading inside an epicycle groove is shown in Fig. 2.3 (c).
One can notice that the advancing contact line of the droplet is pinched at the cusp
of the epicycle (Fig. 2.3 (b)). There, the fastest spreading takes place, therefore
this point dominates the dynamic. As the front meniscus is in contact with the
cusp of the groove, the driving force is expressed as

Fγ,e ∼ γrp (2.5)

where rp is the accuracy of the 3D printer. In fact, the advancing front is con�ned
inside the bottom of the groove where the characteristic length scale is �xed by the
layer deposition accuracy of the 3D printer, as illustrated in Fig. 2.5 (b). In our
system, we have rp ≈ 30 µm. The dissipation occurs in the bulk of the droplet.
The dissipation force is thus given by

Fη,e ∼ νρxẋ. (2.6)

The spread is obtained by balancing the forces. The expression of the spread x of
the droplet over time is therefore given by

x ∼
(

γ

νρ
rpt

)1/2

. (2.7)

This scaling model is based on the BCLW model (see section 1.3.4). It corresponds
to the case of a closed capillary tube with the size of the cusp rp.
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2.3.3 Analysis

In the previous sections, we proposed two models for the spreading of a droplet
inside each type of groove. We can �t the experimental data with the equations of
each curvature (Eq. (2.4) and Eq. (2.7)). The �tting law is a power law, x/lc = ctp

with two �tting parameters, being the coe�cient c and the power p. In Fig. 2.4, the
grey lines are the adjustment of the power law on the data. These �ts capture the
overall trend of the spreading process e�ectively. Please notice that the scaling law
deviates from the experimental data during the initial seconds of the experiment.
We attributed this deviation to a change in regime, the transition from the droplet
�lling the groove to a regime where the volume inside the groove is constant, as
discussed in section 2.2. The observed deviation is an indication of the time range
during which the regime transition a�ects the dynamic. Our models describe the
spreading behavior for a constant volume, which is applicable to later time periods.

In Fig. 2.6 (a), we plot a graph of the �tting parameter p, the power of the �tting
power law, as a function of the groove's radius R. For both the hypocycle and
the epicycle groove, the parameter p is independent of the radius of the groove.
We found a power one third for the hypocycle groove and a power one half for
the epicycle. The models proposed in the previous subsections are in excellent
agreement with the experimental data.

Figure 2.6: (a) The �tted exponent p as a function of the radius R of the groove. For
both curvatures, the exponent p is independent of the radius. It has two distinct values,
one half for the epicycle and one third for the hypocycle. (b) Double logarithmic graph
of the �tted prefactor c as a function of the radius R of the groove. The error bars are
smaller than the size of the symbols. For the epicycle, the parameter c is independent of
the groove's radius. For the hypocycle, the parameter c follows a decreasing power law
of the radius. The triangular markers correspond to the same cross-section of the groove
(left triangle S = 0.8 mm2; right triangle S = 1.2 mm2; up triangle S = 1.8 mm2).

In Fig. 2.6 (b), we plot a double logarithmic graph of the �tting parameter c as
a function of the groove's radius R for both curvatures. Firstly, for the hypocycle
case, the coe�cient c of the power law exhibits a decreasing trend with the radius
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R of the groove. This trend can itself be �tted,

ch = ahR
−4/3 (2.8)

with ah = 1.6mm4/3s−1/3. The model proposed in section 2.3.1 gives the Eq. (2.4)
where the spread is decreasing with the good dependency of the radius. We have

ch =
1

lc

(
γ

νρ
Ω2

)1/3

R−4/3. (2.9)

Then, the prefactor ah provided by the model is ah,model = 1
lc

(
γ
νρΩ

2
)1/3

= 12

mm4/3s−1/3, it overestimates the experimental value as no geometrical factors were
taken into account in our model. Nevertheless, the model gives the good power as
well as the right dependency for R.
Secondly, for the epicycle groove, the coe�cient in front of the power law is in-
dependent of the radius of the groove. This can be understood as the droplet is
pinched at the cusp of the groove where the characteristic length is governed by the
accuracy of the 3D printer. The model obtained in section 2.3.2 gives the equation
Eq. (2.7) which recovers this independence of the groove's radius. We have

ce =
1

lc

(
rp

γ

νρ

)1/2

. (2.10)

The value of this coe�cient is ce = 1.7 s−1/2 which is the same order of magnitude
as the mean value obtained in Fig. 2.6 (b).

The in�uence of the cross-section of the groove is depicted by the triangular markers
in Fig. 2.6 (a) and (b). One observes that these data can be analyzed by considering
the radius of the groove.

The models explained in section 2.3.1 and 2.3.2 are in excellent agreement with the
experimental data. In both cases, we use the expression of bulk dissipation. The
di�erence between both models appears in the expression of the driving force. This
driving force takes into account the speci�c shape of the droplet adopted inside the
groove. Di�erent shapes lead to two distinct dynamics.

2.4 Application

To compare the spreading e�ciency of both groove types, we have created the logo
of our University with either epicycle grooves or hypocycle grooves. To compare
both structures, we kept as a constant the cross-section, S = 0.8mm2. Meaning the
radius of the epicycle groove is larger than the hypocycle one. The experimental
pictures are shown in Fig. 2.7. A droplet is dropped o� at the same spot on both
logos, the droplet is colored in black. After 170 s, the logo made with epicycle
grooves is completely �lled, and the logo is highlighted by the droplet. While,
during this same lapse of time, the logo made with hypocycle grooves is more or
less still half �lled. This simple experiment proves that spreading can be enhanced
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Epicycle Hypocycle

∆t = 170s

5 mm

Figure 2.7: The logo of the University of Liège is a triangular lattice. By using epicycle
grooves (left) or hypocycle grooves (right), a droplet colored in black spreads inside the
network. Both grooves have the same cross-section, S = 0.8 mm2 (epicycle's radius:
R = 1.37 mm and hypocycle's radius: R = 0.71 mm). In the epicycle case, the logo is
�lled after 170 s. However, during this same lapse of time, the hypocycle logo is half �lled.

using the right curvatures of the grooves. One could imagine micro�uidics devices
based on this groove avoiding the use of pumps.

This research is in line with water collection problems. In fact, the �ndings of
this study have potential applications in improving water collection in arid regions.
Large meshes of cylindrical �bers show good e�ciency in fog catching. The struc-
ture is made with either an intermingling of �bers [130, 9] or with harps made of
vertical �bers [134, 136]. One could imagine to add curved grooves on the �bers in
order to increase the drainage. In fact, the groove spreads the liquid and retains it
as a �lm which should decrease the friction. Better than that, it has recently been
shown that the epicycloid structure of the �ber allows droplets to go down faster
[147], this assertion is further discussed in the next section. Moreover, the �rst step
of any fog catcher is the initialization time, this is when the net is capturing liquid
without draining it [148]. Simply by adding curved grooves on the �ber, this onset
time should decrease.
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2.5 Grooved �bers

This section reviews the article [147], which studies one perspective of epicycle
grooves by using these grooves on �bers to improve droplet drainage.

One key takeaway from the above analysis is that epicycle grooves are more e�ective
at rapidly spreading a droplet. Actually, convex grooves, such as epicycle grooves,
can be easily built using two cylindrical �bers placed side by side. This arrangement
creates two convex grooves on each side, as illustrated in the cross-sectional view
in Fig. 2.8 (a). Does a droplet descend faster on such a bundle of �bers than on
a single �ber with the same equivalent diameter? The answer is yes. Fig. 2.8
(b) shows the speed of the descending silicone oil droplet ż on vertical �bers as a
function of its volume Ω. As the droplet slides down, its volume decreases due to the
formation of a thin liquid �lm left behind (see LLD theory in section 1.4.2). The
graph compares the speed of droplets sliding on a single �ber (light color) with
those on a bundle of two �bers with the same equivalent diameter (dark color).
The diameter of each �ber in the bundle is half the diameter of the single �ber
case. The graph indicates that, for a given droplet volume, the droplet descends
faster on a bundle of two �bers than on a single �ber [147]. Furthermore, Fig. 2.8
(c) presents two superpositions of pictures with the same time interval between
successive frames, demonstrating that a droplet on a bundle of two �bers (right)
travels further in the same time interval compared to one on a single �ber (left).

Figure 2.8: (a) Illustration of the cross-sectional view of a single �ber (case n = 1) and
a bundle of two �bers (case n = 2). (b) Graph of the silicone oil droplet speed ż as a
function of the droplet's volume Ω. The light color corresponds to the case of a single
�ber (n = 1) and the dark color to the case of a bundle of two �bers (n = 2) with the
same equivalent diameter. The graph is taken from [147]. (c) Superposition of pictures
with the same time interval between successive images (credit: M. Leonard). On the left,
the droplet slides on a single �ber (n = 1, d = 0.28 mm); on the right, it slides on a
bundle of two �bers with the same equivalent diameter (n = 2, d = 0.14 mm). A droplet
on a bundle of two �bers travels further in the same time interval compared to one on a
single �ber.
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2.6 Conclusion

A study of curved grooves e�ect on the droplet spreading dynamics has been per-
formed. A 3D printer is used to manufacture the grooves, it allows to choose easily
the radius of curvature. A droplet spreading in a curved groove adopts a di�erent
shape depending on the sign of the curvature. Speci�cally, we observed that the ad-
vancing contact line is curved for the hypocycle groove (concave), while the front of
the liquid is pinched inside the cusp of the groove for the epicycle groove (convex).
This leads to di�erent spreading dynamics. In both cases, the droplet spreads with
a power law. For the hypocycle groove, the power is one third and the pre-factor
decreases with the power law of the groove's radius. For the epicycle groove, the
power is one half, which is higher than the hypocycle case, and the pre-factor is
independent of the groove's radius. We proposed two models inspired from Tan-
ner's and BCLW's models that predict these powers and pre-factors. Notice that
both powers encountered are greater than the one of a droplet spreading on a �at
surface (power 1/10). Therefore, grooved structures favor any droplet spreading.
Consequently, it is not surprising to �nd such kind of structures on plants living in
arid regions, as illustrated in Fig. 2.1, in section 2.1 [5, 4, 127]. Our study reveals
that epicycle grooves are more e�cient to spread droplets, with in the power law a
higher exponent and a larger pre-factor. Epicycle grooves seem similar to the large
bumps and small hollows observed on some natural �bers, see Fig. 2.1 (a) and (c).
Further biological research could verify this hypothesis. In conclusion, our study
provides a comparison between two ways of spreading droplets and o�ers many
new perspectives.
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3

Multiple droplets

on a cylindrical �ber

In this chapter, we investigate the dynamics of a droplet on a smooth vertical cylin-
drical �ber. As the droplet descends, it coats the dry �ber with a thin liquid �lm.
This coating destabilizes to form smaller droplets that also slide downwards on the
wet �ber. We model both the initial droplet and the subsequent droplet dynam-
ics. The merging of droplets is observed. We theoretically predict the number of
droplets created at the deposition location.

These experiments have been performed in the Pan Lab at Waterloo University in
collaboration with Zhao Pan.
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3.1 Introduction

The study of droplet and �ber interaction is a vast research area spanning across
both static and dynamic studies. Herein we focus on dynamic processes. The
dynamics of a barrel-shaped droplet sliding along a vertical or inclined �ber is
described in [98] and is reviewed in section 1.4.5. A coating liquid �lm on a �ber is
known to destabilize through the Rayleigh-Plateau instability [23], leading to the
formation of small droplets on the �ber. Furthermore, Quéré further provided a
cuto� value of the �lm thickness below which a �lm on a vertical �ber remains
stable [83]. Yet, some mysteries are still to be unraveled. In particular, Quéré et
al. highlighted in [149] a predator/prey-like interactions between droplets on �bers
resulting from the Rayleigh-Plateau instability: "When [...] the �lm is thick [...],
drops appear quickly and fall along the �ber. If one drop is slightly larger than the
other, it falls faster and in passing swallows the rest". This behavior is shown in
Fig. 3.1. To our knowledge, this behavior has not been further studied.

Figure 3.1: (a) Red dyed silicone oil droplet descending a vertical nylon �ber. The time
interval between each image is 0.68 s. As the droplet slides down, a liquid �lm is left be-
hind. The thickness of this liquid �lm is larger when the droplet speed is larger. Therefore
at the release point of the initial droplet, the so-called mother droplet or generation 0,
the �lm is the thickest. The Rayleigh-Plateau instability takes place which creates a tiny
new droplet, termed as daughter droplet or generation 1. This daughter droplet slides
on the �lm left by the mother droplet. Both motions are di�erent. (b) At a given time
and a given position, the two generations will meet. The mother droplet is under and the
daughter droplet is above. The time interval between each image is 0.017 s. One observes
that the daughter droplet �nally catches the mother droplet, leading to a merging of both
droplets. The experimental data for (a) and (b) are the same, Ω = 5 µl, ν = 100 cst and
d = 0.3 mm. The scale bars correspond to 2 mm. QR codes on the right side give access
to the corresponding experimental videos.
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We aim to study the residual liquid �lm a descending droplet produces along a
vertical dry �ber. Focusing on predator/prey behavior in light of all the knowledge
we have on the topic of droplets on �bers. We focus on the case of a single droplet
descending along a dry �ber. As the droplet descends, it leaves a non-uniform liquid
�lm behind. This residual �lm may undergo a Rayleigh-Plateau destabilization,
forming subsequent droplets. These newborn droplets slide on the liquid �lm left
by the previous droplet. One aims to describe the dynamic of these subsequent
droplets and predict the number of droplet generations created at the release point
of the �rst mother droplet.

3.2 Methods

The �bers used in the experiments are made of nylon (�shing thread) and are
�xed vertically. These �bers have a circular cross-section with diameters ranging
from d = 0.2 mm to d = 0.45 mm. The liquid used is silicone oil with kinematic
viscosities of ν = 50 cSt and ν = 100 cSt. The droplets are deposited on the �ber
using a syringe (Eppendorf Xplorer). The tested volumes are Ω = 3, 5 and 7 µl.
To enhance contrast, the silicone oil is dyed red, and a white lighting source is
positioned behind the �ber. Prior to each experiment, the �ber is cleaned with
isopropanol and distilled water and let to dry. Each experiment is conducted �ve
times.

The motion of the droplets is recorded with a CCD camera positioned in front of
the �ber. The camera setup allows a �eld of view of 13 cm while still capturing the
millimeter-scale droplets. The positions of the droplets z over time t are extracted
using a Python script.

Figure 3.2: Sketch of the experimental setup. A cylindrical �ber stands vertically and
a 5 µl red-colored droplet with a barrel shape descends along it. A liquid �lm is left at
the rear of the droplet and may destabilize into a new droplet, which also descends along
the now wet �ber. These descents are recorded with a camera placed in front of the �ber.
The diameter of the �ber d ranges from 0.20 mm to 0.45 mm.
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3.3 Results

A �rst droplet is deposited on a dry �ber and is referred to as generation 0 or the
"mother" droplet. As this droplet descends along the vertical �ber, it coats the
�ber with a liquid �lm, as observed in the experimental pictures in Fig. 3.1 (a).
Due to the droplet losing volume as it travels, its speed decreases. The thickness
of the resulting �lm is directly related to the droplet's speed, the higher the speed,
the thicker the �lm. Consequently, the droplet leaves a non-uniform �lm along
the �ber, with the thickest �lm located close to the initial deposition point. A
liquid �lm on a �ber tends to minimize its energy through the Rayleigh-Plateau
instability, creating droplets from the �lm. These subsequent droplets are created
along the path where the mother droplet (generation 0) has traveled. Since the
�lm is thickest at the initial release point, the �rst new droplet forms rapidly here.
This new droplet, referred to as generation 1 or the �rst "daughter" droplet, slides
along a non-uniform wet �ber (the liquid �lm left by the previous mother droplet)
and engulfs other potential droplets of the same generation in its path due to their
slower growth, which results from the thinner liquid �lm. In Fig. 3.1 (a) one
observes the liquid destabilization that takes a longer time on the lower part of
the �ber. As generation 1 moves, it also leaves a liquid �lm behind, potentially
enabling the formation of a second generation.

A distinction is made between generation 0 and the following generations. Gener-
ation 0 slides on a dry �ber, while generations 1 and beyond slide on a wet �ber.
This di�erence results in distinct dynamics for generations 0 and 1. Notably, it is
observed that both generations merge after traveling a certain distance, as shown
in Fig. 3.1 (b). The mother droplet and the daughter droplet are destined to meet
again, and it is only a matter of time before it occurs. At the merging position,
the droplets accelerate, creating a thicker liquid �lm at the point of merging, as
observed and analyzed in [118]. The merging may therefore initiate a new cycle of
generations.

The case study of this chapter focuses on a single droplet descending a �ber, which
is to be distinguished from studies where a constant �ow rate is applied at the
top of the �ber, see section 1.4.4 of the State of the Art. In cases of imposed
�ow rate, the descending coating also destabilizes into droplets. The interplay
between the �ow rate, �ber radius and nozzle diameter determines the emergence
of three regimes [91, 85, 87, 88]: the isolated droplet regime or dripping state, where
primary droplets are spaced evenly, move at a constant speed and coalesce with
smaller secondary beads (secondary breakup of the thin �lm) in a cyclic pattern
[89], (b) the steady Rayleigh-Plateau regime, characterized by a regular sequence
of closely spaced and periodic droplets descending the �ber at constant speed and
spacing, without collisions, (c) the unsteady and convective regime characterized by
random coalescence events where primary droplets merge to form larger droplets,
which then coalesce with subsequent primary beads, resulting in an irregular overall
bead pattern. This research inscribes in the isolated droplet regime due to the
small liquid input rate, but it di�ers signi�cantly in that the incoming rate is not
constant, setting it apart from those case studies.
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In our experiments, the motion of the droplet is a�ected by gravity as revealed
when calculating the Bond number Bo = ρgL2/γ, where ρ is the �uid density, g
is the gravitational acceleration, L is the characteristic length of the droplet and γ
is the surface tension. Taking L ∼ 10−3 m, yields Bo = 0.46, indicating that both
gravity and surface tension in�uence the droplet motion. The Capillary number
compares viscous e�ects to surface tension ones and is given by Ca = νρż/γ, where
ν is the kinematic viscosity and ż is the droplet's vertical speed. The maximum
speed measured in our experiments is ż = 0.025 m/s for ν = 50 cSt, leading to Ca
= 0.06. This low Capillary number suggests that surface tension forces dominate
over viscous forces. The Weber number, de�ned as We = ρż2L/γ, compares inertial
e�ects to surface tension and is signi�cantly smaller than one (10−2 or less) across
all the experimental parameters tested in this study, indicating the dominance of
surface tension over inertial forces. Finally, the Reynolds number is given by Re
= żL/ν = 0.5, which indicates that inertial e�ects are comparable to viscous e�ects
and may play a role in the droplet's dynamic.

3.4 Discussion

We focus on the dynamics of both generations 0 and 1. All generations beyond 1
are expected to follow a similar trend as generation 1. The positions of the recorded
generations are shown in Fig. 3.3, where lighter colors indicate higher generation
numbers. The dynamics of droplet generation 0 di�er from those of subsequent
generations. Generation 1 is formed at the initial position of the mother droplet.
Generations 1 and 2 exhibit a similar trend characterized by an accelerating phase
followed by a decelerating phase. We begin our analysis by describing the dynamics
of generation 0.

3.4.1 Mother droplet

Generation 0, or the mother droplet, refers to the initial droplet descending on a
dry vertical �ber. The dynamic of this droplet has been studied by Gilet et al. [98]
and is re-explained in this section. The droplet descends the dry �ber driven by its
weightW = ρgΩ0. Opposing this driving force is a dissipative force, Fν = νρdvξdry
with ξdry a parameter which describes the dissipation of the droplet on a dry �ber.
This dissipation parameter is given by ξdry = πCv

L
l Γ, where Cv is a coe�cient,

L/l is the aspect ratio of the droplet (length to width), and Γ is a logarithm factor
introduced by de Gennes [40]. Balancing these forces gives the speed of the mother
droplet

ż0 =
g

ξdryνd
Ω0, (3.1)

where the subscript 0 refers to generation 0. As the droplet descends, it loses
volume at a rate given by

Ω̇0 = −πde0ż0, (3.2)

where e0 is the thickness of the liquid �lm left behind the droplet, which depends
on the droplet's speed and the �ber diameter. This �lm thickness is given by the
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Figure 3.3: Vertical position z over time t of a droplet sliding along a straight �ber,
with di�erent colors representing di�erent generations. The red color refers to generation
0 or the mother droplet, the orange color represents generation 1 or the �rst daughter
droplet, and the yellow color corresponds to generation 2, or the granddaughter droplet.
The solid lines are �ts of Eq. (3.6) for generation 0 and Eq. (3.15) for generations 1 and
2. The dashed line is the �t of Eq. (3.11). These models describe e�ectively the di�erent
dynamics for all generations. The positions of each droplet tend to converge towards the
same value, indicating the merging of the droplets. After this merging event, the re�lled
mother droplet continues its descent. The experimental conditions for this graph are a
droplet volume Ω = 5 µl, viscosity ν = 50 cSt, and �ber diameter d = 0.35 mm.

Landau-Levich-Derjaguin theory [150] adapted for a cylindrical �ber as provided
in [81],

e0 = cdryd

(
νρ

γ
ż0

)2/3

, (3.3)

where cdry is a coe�cient, with theoretical developments leading to cdry = 0.67 [81].
The �lm thickness depends on the droplet speed, which decreases as the droplet
descends along the vertical �ber, resulting in a non-uniform �lm. Using all these
relationships, the following di�erential equation is obtained

z̈0 = −w0ż
5/3
0 , (3.4)

with

w0 = π
cdry
ξdry

g

ν
d

(
νρ

γ

)2/3

. (3.5)

Solving this equation yields

z0 =
ż
1/3
0,i −

(
ż
−2/3
0,i + 2

3w0t
)−1/2

w0/3
, (3.6)

where ż0,i is the initial speed of the droplet generation 0. The model accurately
depicts the observed dynamic for generation 0, as shown in Fig. 3.3 (solid line). The
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ξdry ξwet cdry cwet

ν = 50 cSt 173 95 1.42 0.39

ν = 100 cSt 173 95 1.84 0.48

Table 3.1: Table comparing the values of ξ and c for di�erent �ber states (dry and wet)
and �uid viscosities. The parameter ξ is estimated using theoretical calculations (see,
Eqs. (3.7) and (3.8)), while the coe�cient c is obtained from the �tted prefactor ξ/c and
the theoretical estimation of ξ for both dry and wet conditions. Both ξ and c are smaller
in the wet state compared to the dry state.

experimental conditions are the same as in [98]. The initial speed is obtained by
adjusting a slope at the beginning of the trajectory, with an arbitrary choice to �t
the �rst 50 experimental data points. The factor cdry/ξdry is unknown and used as
a �tting parameter. This parameter is plotted in Fig. 3.4 as a function of the �ber
diameter d and for several droplet volumes Ω and �uid viscosity ν. This prefactor
is found to be independent of the diameter of the �ber, slightly dependent on the
droplet volume, and increases with the viscosity. The mean value of cdry/ξdry is
0.008 for ν = 50 cSt and 0.011 for ν = 100 cSt. According to [40] and [147], the
friction coe�cient ξ can be estimated by integrating the dissipation over both the
front and the rear of the droplet, leading to

ξ = Cvπ
L

l
Γ, (3.7)

with

Γ = ln

(
L2

4afar

)
, (3.8)

where af and ar are the shortest lengths at the front and rear of the droplet,
respectively. At the front, where the droplet is in contact with a dry �ber, af
is estimated to be around 10−9 m [40]. At the rear, a liquid �lm is left, with a
thickness approximated as ar ≈ 10−5 m. In the literature, values of Cv = 1 and
L/l = 3 are found [98, 147]. Considering a droplet length of L = 2 10−3 m, we
obtain Γ = 18 and thus ξdry = 173. The logarithm factor for a dry surface is
typically accepted to be Γ = 15 [41, 99], and ξdry values reported in [147] are in
the same range as the value obtained here. The value of cdry can therefore be
found, yielding cdry = 1.42 for ν = 50 cSt and cdry = 1.84 for ν = 100 cSt. In
[98], similar values were found, with cdry = 1.5. The obtained values of ξdry and
cdry are summarized in Table 3.1. The value of cdry will be used in section 3.4.3 to
predict the number of generations created.
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Figure 3.4: Fitted prefactor cdry/ξdry from Eqs. (3.6) and (3.5) as a function of the �ber
diameter d, for di�erent volumes Ω and �uid viscosities ν. This prefactor is independent
of the �ber diameter. However, the prefactor increases with both the droplet volume and
the �uid viscosity.

3.4.2 Daughter droplet

Generation 1 is the �rst droplet formed due to the Rayleigh-Plateau instability.
This droplet slides on a non-uniform liquid �lm left by the previous generation (0,
mother). The dynamic of this new generation droplet di�ers from the previous one,
as illustrated in Fig. 3.3. In the �rst instance, this droplet grows by accumulating
liquid from the �lm on which it slides. This process is observed in Fig. 3.1 (a),
where the generation 1 droplet grows in volume as it descends. This �rst regime is
called the "growth phase" as the new droplet feeds from the liquid �lm left by the
previous droplet. Although the droplet also leaves a liquid �lm behind, the �lm
is relatively thin compared to the one in front of the droplet due to the droplet's
lower speed at this stage. As the droplet travels a certain distance, it begins to lose
more liquid at its rear than it gains at its front. This is because the coating �lm is
not uniform; it is relatively thick near the initial release point and becomes thinner
further along the �ber. The growth phase ends and the droplet enters a new phase,
termed the "decline phase". In Fig. 3.3, the change in curvature of the droplet's
position over time clearly indicates the transition from an accelerating phase to a
decelerating one. The decline phase mirrors the dynamics observed in the mother
droplet. Here under we propose two models to describe these distinct regimes.

Growth phase The forces acting on the generation 1 droplet are similar to those
acting on the mother droplet, except that the dissipative coe�cient is reduced
because the droplet slides on a liquid �lm. The dissipative coe�cient for this
generation is written ξwet. The speed of the �rst daughter droplet is therefore
given by

ż1 =
g

ξwetνd
Ω1, (3.9)
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where the subscript 1 refers to the �rst generation. As the droplet slides, its volume,
Ω1, increases. The droplet gains volume from the liquid coating in front of it while
losing a negligible amount at its rear. The rate of volume gained is expressed as

Ω̇1,growth = +πd
ē0ztr
ttr

, (3.10)

where ē0 is the average �lm thickness left by the previous droplet, ztr and ttr are
the length and time over which the droplet grows. By combining Eq. (3.9) and
Eq. (3.10) we obtain,

z1,growth =
1

2

(
At2 + 2ż1,it+ 2z1,i

)
, (3.11)

with A a parameter given by

A = π
g

ξwetν

ē0ytr
ttr

. (3.12)

To �t the model to the growth phase of the data, ē0 is used as a �tting parameter,
while the initial speed ż1,i is determined by �tting a slope on the �rst 5% of the
data corresponding to the growth phase. The position ztr and time ttr are related
to the transition between regimes and are extracted from the experimental data,
as explained at the end of this section. This model captures well the initial part of
the droplet's trajectory, as shown by the dotted line in Fig. 3.3. Once the liquid
�lm is no longer thick enough to sustain the increase in droplet volume, the droplet
transitions into a di�erent phase where its volume begins to decrease.

Decline phase In this second phase, the droplet loses more liquid at its rear than
it gains at the front from the �ber coating. To describe this dynamic, we neglect
the input from the front of the droplet since the output at the rear dominates. The
model is therefore similar to the one of Gilet et al., which was used to describe the
mother droplet. The rate of volume loss is given by,

Ω̇1,decline = −πde1ż1, (3.13)

where e1 is the �lm thickness left at the rear of the generation 1 droplet. This
thickness is expressed as

e1 = cwetd

(
νρ

γ
ż1

)2/3

, (3.14)

with cwet being a coe�cient. Combining Eqs. (3.9), (3.13) and (3.14), yields

z1,decline =
ż
1/3
1,max −

(
ż
−2/3
1,max + 2

3w1 (t− ttr)
)−1/2

w1/3
+ ztr, (3.15)

where ż1,max is the maximal speed of the droplet, achieved at the transition from
the growth phase to the decline phase, with ztr and ttr the coordinates of this
maximal slope, and with w1 a coe�cient given by

w1 = π
cwet

ξwet

g

ν
d

(
νρ

γ

)2/3

. (3.16)
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This model is �tted on the experimental data in the decline phase, as shown in
Fig. 3.3 (solid line), with cwet/ξwet a �tting parameter. The dynamic observed in
this phase is similar to the one of the generation 0 droplet.

In order to adjust the models, the experimental data has to be divided into a growth
and decline phase. It is achieved by identifying the point of maximum slope that
separates the accelerating and decelerating portions of the trajectory. The position
and time at which the transition occurs are denoted ztr and ttr, respectively and are
plotted as a function of the diameter in Fig. 3.5 (a) and (b). The transition position
is observed to increase as the �ber diameter decreases and is independent of the
droplet volume and liquid viscosity. The time before the transition increases with
higher viscosity, lower volume, and thinner �ber diameter. In some experimental
conditions, the droplet may move too quickly or too slowly, resulting in insu�cient
data to allow for a meaningful �t. In such extreme cases, the data are excluded
from �tting.

Figure 3.5: (a) Position of the transition ztr as a function of the �ber diameter d and
for several droplet volumes and liquid viscosities. The transition position corresponds to
the location along the �ber where the droplet shifts from the growth phase to the decline
phase. (b) Transition time ttr as a function of the �ber diameter. The transition time is
the duration from the droplet appearance to the phase change in its dynamic.

For z < ztr, the droplet is in the growth phase. Eq. (3.11) is �tted on the tra-
jectories with ē0 as the �tting parameter, which represents the mean thickness of
the liquid �lm left by generation 0. The order of magnitude of this mean thickness
is con�rmed a posteriori by calculating the ratio ē0/e0,i, where e0,i is the initial
thickness of the liquid �lm, which can be determined using Eq. (3.3) and the
experimentally estimated initial speed of the generation 0 droplet, ż0. This ratio
is plotted in Fig. 3.6 as a function of the experimental parameters. Despite the
large error bars, the mean thickness is systematically smaller than the initial max-
imum �lm thickness, which con�rms the expected decrease in liquid �lm thickness
along the �ber. The important error bars come from the �uctuations in the �tting
parameter ē0 as well as variations in the experimental initial conditions.
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Figure 3.6: Ratio of �lm thickness ē0/e0,i as a function of the �ber diameter d, and
for di�erent volumes Ω and �uid viscosities ν. The numerator, ē0, is a �tting parameter
from Eqs. (3.11) and (3.12), it represents the mean thickness of the liquid �lm left by
generation 0, which is used by generation 1 for growth. The denominator, e0,i, is the
initial thickness of the liquid �lm where generation 0 is deposited on the �ber. The �tted
mean thickness is slightly less than half the initial maximum �lm thickness, a realistic
estimate considering the non-uniformity of the liquid �lm, which decreases along the �ber.

For z > ztr, the droplet is in the decline phase. This phase is described by Eq.
(3.15), where the coe�cient cwet/ξwet is used as a �tting parameter. The resulting
values are plotted in Fig. 3.7 as a function of the �ber diameter and for several
volumes and viscosities. The �tting parameter is independent of both the volume
and the diameter, and it slightly depends on the viscosity. The mean value is
cwet/ξwet = 0.004 for ν = 50 cSt and cwet/ξwet = 0.005 for ν = 100 cSt. The
dissipative parameter ξ can be approached using Eqs. (3.7) and (3.8). In the wet
case, the values of af and ar are di�erent from those in the dry case. In front of
the droplet, there is a liquid �lm with a characteristic length of af ≈ 10−5 m. At
the rear, the droplet leaves a thinner �lm, one states ar ≈ 10−6 m. Considering a
droplet length L ≈ 10−3 m, we obtain Γ = 10.1 and ξwet = 95. As expected, the
dissipative coe�cient is smaller in the wet case than in the dry case. The literature
estimates the logarithmic factor Γ to be around 5 for a wet surface [42], and we
indeed �nd a close to �ve value, which validates the model. The value of cwet can be
found, we obtain cwet = 0.39 for ν = 50 cSt, and cwet = 0.48 for ν = 100 cSt. The
obtained values of ξwet and cwet are summarized in Table 3.1. Due to the di�erent
dynamic of generation 1 compared to generation 0, with smaller coe�cients, all
generations eventually converge, as shown in Fig. 3.1 (b) and Fig. 3.3.
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Figure 3.7: Fitted prefactor cwet/ξwet from Eqs. (3.15) and (3.16) as a function of
the �ber diameter d, for di�erent volumes Ω and �uid viscosities ν. This prefactor is
independent of both the droplet volume and the �ber diameter. However, the prefactor
slightly increases with the viscosity.

3.4.3 Granddaughter droplets

We have described the dynamics of the mother and the daughter droplets (gener-
ations 0 and 1). The daughter droplet may also initiate the formation of a new
generation at the initial deposition location. In Fig. 3.3, the position over time of
generation 2 is presented. The dynamic of generation 2 is similar to generation 1
and the models can also be adapted on the data. We anticipate that all subsequent
generations will follow the same trend, with the growth phase becoming broader
for higher generations.

In this section, we propose a theoretical method to predict the number of droplet
generations. By analyzing the initial conditions at the �rst droplet deposition, it
is possible to predict the number of droplet generations that will be created at this
speci�c position. The two key physical parameters required for this prediction are
the diameter of the �ber and the volume of the generation 0 droplet. The initial
liquid �lm thickness e0,i left by the mother droplet (generation 0) near the release
point is given by Eq. (3.3) with ż0,i the initial speed of the generation 0 droplet.
The subscript i indicates the initial condition. The liquid �lm then destabilizes
into droplets following the Rayleigh-Plateau wavelength

λ = π
√
2d. (3.17)

Considering the initial liquid �lm thickness e0,i, the volume of the �rst daughter
droplet (generation 1) can be approximated by

Ω1,i = π2
√
2d

((
d

2
+ e0,i

)2

−
(
d

2

)2
)
. (3.18)

This daughter descends with an initial speed ż1,i that depends on Ω1,i, and it
leaves a liquid �lm behind with a thickness e1,i given by Eq. (3.3) with ż1,i =
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gΩ1,i/ξwetνd. This process can continue, generation 1 droplet may initiate the
formation of a subsequent generation (generation 2), and so on. However, the
Rayleigh-Plateau instability ceases when the �lm thickness e becomes less than or
equal to a critical cuto� value ec given by

ec = cc
d3

l2c
(3.19)

where cc = 0.175 and where lc is the capillary length, lc =
√
γ/ρg [83]. This implies

that the last generation will leave a liquid �lm thickness that is smaller than or
equal to this cuto� value. Using this information, we can establish an iterative
relationship to calculate the number of generations initiated by the mother droplet.
With k as the iterative parameter, we continue the iterations until ek,i = ec. The
iterated system of equations is


ek,i = cd

(
νρ
γ żk,i

)2/3
Ωk+1,i = π2

√
2d
((

d
2 + ek,i

)2 − (d2)2)
żk+1,i =

g
νdξΩk+1,i

(3.20)

For k = 0, it refers to the mother droplet, which travels down along a dry �ber. For
this case, we use the initial speed given by ż0,i = gΩ0,i/ξdryνd. For k > 0, it refers
to the kth daughter droplet, which descends along a wet �ber. Here, the initial
speed is given by żk,i = gΩk,i/ξwetνd. In sections 3.4.1 and 3.4.2, we determined
the values of ξdry, cdry, ξwet and cwet as summarized in Table 3.1. The iteration
process with parameter k provides the number of generations that a mother droplet
will create at the initial position.

Figure 3.8 shows the number of generations (indicated by a color scale) in a double
logarithmic plot, with the �ber diameter d on the x-axis and the droplet volume
Ω on the y-axis. The graph in Fig. 3.8 (a) corresponds to a viscosity of ν = 50
cSt, and the graph in Fig. 3.8 (b) is for a viscosity ν = 100 cSt. Black dots
represent experimentally tested parameters. The number of generations increases
with a larger initial droplet volume and a thinner �ber diameter. This dependence
on the �ber diameter seems counter-intuitive since a thinner �ber implies a thinner
�lm thickness, leading one to expect fewer generations. However, this is when not
considering the cuto� thickness ec, which decreases with the diameter raised to the
power of three, thereby allowing for more droplet generations before achieving �lm
stability. It is important to note that the system of equations (3.20) is independent
of the viscosity because ν can be simpli�ed when the speed is substituted into the
equation of the �lm thickness. The di�erences between the graphs for ν = 50 cSt
and ν = 100 cSt are due to the value of cdry and cwet that vary with the viscosity,
indicating a missing scaling factor in the models. These varying values of cdry and
cwet in�uence the region around the transition between k and k + 1 generation.

Experimentally, it is challenging to record the exact number of generation droplets
at the deposition point. The droplet is released using a syringe, but since it is man-
ually handled, slight variations can occur when transferring the droplet onto the
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(a) (b)

Figure 3.8: Number of generations in a double logarithmic graph of the diameter �ber d
as a function of the initial mother droplet volume Ω0,i, for a �xed viscosity (a) ν = 50 cSt
and (b) ν = 100 cSt. The di�erent colors represent di�erent generations. The black dots
indicate the parameters tested experimentally. The number of generations is calculated
by iterations of the system of equations (3.20) with a cuto� condition given by Eq. (3.19).
The number of generations created at the initial deposition point increases with the droplet
volume and thinner �ber diameters.

�ber. As a result, the liquid �lm at that position is in�uenced not only by the slid-
ing of the initial droplet but also by the contact with the syringe or by the droplet
pinching. Additionally, an unstable clamshell shape may initially appear, before
transitioning into the stable barrel shape. Although experiments with observable
clamshell shapes were excluded, this shape can still brie�y appear within the �rst
millimeter of descent. Another limitation is the small size of the subsequent gener-
ation droplets at the release point, making them di�cult to record accurately. It is
also problematic to account for droplets that form slightly further down the �ber,
where the �lm is thicker due to the daughter droplet's growth phase. It is di�cult
to ensure that these droplets originate from the initial deposition point. Finally,
thinner liquid �lms require a longer time for destabilization to occur, sometimes
taking several hours. Due to these reasons, we are unable to provide experimental
evidence of the precise number of generations formed. However, in all our experi-
ments, we have recorded at least one generation. Furthermore, other droplets may
appear at di�erent positions, namely where the daughter droplet speed is maximal
(between the growth and decline phases) and where mother and daughter droplets
merge. These other generations are more complex and di�cult to predict.

3.5 Conclusion

In this chapter, we study the motion of a droplet along a vertical �ber and the
residual liquid �lm that coats the �ber as the droplet descends. The speed of the
droplet in�uences the thickness of the liquid �lm it leaves behind; the faster the
droplet, the thicker the resulting �lm, as theoretically analyzed for a plane substrate
by Landau, Levich and Derjaguin [150] and for a cylindrical �ber by Quéré [81].
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Because of this behavior, the initial droplet, which slows down as it descends, leaves
a non-uniform liquid coating, with the thickest �lm near the initial release point.
The coating �lm is observed to destabilize under the Rayleigh-Plateau instability,
forming small droplets. The droplet that forms the fastest originates from the
thickest part of the liquid �lm, typically at the release point of the initial droplet.
This newly formed droplet grows by accumulating liquid from the �lm ahead of
it as it slides down. The initial droplet, which creates the liquid �lm, is referred
to as generation 0, while the droplet resulting from the liquid destabilization is
termed generation 1. Initially, the generation 1 droplet accelerates in a phase
termed growth phase. After reaching a given position, the liquid input from the
front becomes negligible compared to the volume lost at the rear of the droplet,
leading to a deceleration phase named the decline phase. This phase mirrors the
dynamics of the initial generation 0 droplet. The model proposed by Gilet et al.
[98] is used to describe the motion of the initial generation 0 droplet. Then, two
models are provided to describe both the growth and decline phases observed in the
generation 1 droplet trajectory. The dynamics of generation 0 and 1 are distinct,
with generation 0 sliding on a dry �ber and generation 1 descending on a wet
�ber. This di�erence leads to the merging of both generations after traveling a
certain distance. Finally, generation 1 also leaves behind a liquid �lm, which may
destabilize and form a new generation, called generation 2, and so on. We provide
a theoretical estimation of the number of generations created at the release point
of the initial droplet. However, with our current experimental setup, the analysis
of the generation 2 droplet represents the limit of our observations.

This study contributes to the extensive literature on droplet behavior on �bers.
It serves as an initial step towards understanding the predator-prey dynamics of
self-sustaining droplets on �bers and opens up several avenues for further research.
For instance, what occurs after the merging of the mother and daughter droplets?
The "re-fed" mother droplet may initiate a new cycle, and analyzing the long-term
behavior, including potential oscillations and increases in the period, could provide
interesting insights. Such studies have potential applications in liquid coatings on
�bers, where the formation of new generations needs to be controlled or avoided,
as well as in �ber-based micro�uidic devices, where this phenomenon must be
considered.
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4

Droplets on twisted

cylindrical �bers

In this chapter, we investigate the impact of helical structures on the motion of
asymmetrical droplets along vertical twisted �bers. The droplet adopts a helical
motion around the bundle, driven by gravity. This complex motion can be manip-
ulated by varying the twist turns of the �bers. When the droplet size is smaller
than the characteristic length of the helix (pitch), the droplet adopts a predom-
inant helical motion correlated with the groove of the twisted �bers. When the
droplet size exceeds the pitch length, a mixed motion of vertical sliding and helical
movement emerges. A model describes rotational and linear speeds as a function
of the �ber twist turns number.

Partially under review as

J. Van Hulle, C. Delforge, M. Leonard, E. Follet, and N. Vandewalle, Droplet helical
motion on twisted �bers, under review.
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4.1 Introduction

Our focus lies on investigating the behavior of droplets traveling down two twisted
�bers. The torsion of a bundle of two �bers creates a helical structure with a convex
groove along the vertical bundle. We thereby create a system with a macrostruc-
ture, the vertical �bers, to guide vertically the droplet along with a microstructure,
the helical convex groove. We aim to study the in�uence of this substructure on
the motion of asymmetrical-shaped droplets, commonly referred to as clamshell
shape, illustrated in Fig. 4.1.

Our investigation intersects with the recent research conducted by Kern and Carl-
son [100], which similarly examines the behavior of droplets along two twisted
�bers. Their �ndings reveal distinct droplet trajectories, unveiling signi�cant im-
plications for droplet control and collection applications. It is important to note
that our study operates within di�erent experimental conditions. Furthermore,
our contribution complements their work by delving deeper into the nuanced dy-
namics of these particular droplet trajectories. The di�erences and similarities are
explained and highlighted throughout the chapter.

4.2 Experimental section

We use nylon �bers (�shing thread) with a �xed diameter, d = 0.25 mm. To
achieve the desired stretching and twisting of the �bers, a single �ber is threaded
through a buckle and �xed at the top on a manual rotation stage. By rotating the
screw, both parts of the bundle can be twisted e�ectively. This helical structure is
classi�ed as a twisted double helix [151, 152]. The vertical length of the bundle is
�xed at L = 40 cm. Each rotation of the screw corresponds to one twist turn of the
�bers, denoted as n. A schematic representation of all de�ned lengths is presented
in Fig. 4.2. The number of twists is given by

n =
L

2πb
(4.1)

where 2πb is the pitch of the helical pattern, with b the reduced helix pitch. Note
that twisting of the �bers creates a helical convex groove along the entire bundle.
We conducted experiments with up to n = 200 twists. As the number of twists
increases, so does the tension in the �bers, creating a highly compact structure.
However, at higher twist counts, there is a risk of �ber deformation, which can
result in non-uniform bundles, or in �ber breaking.

When a droplet adheres to a vertical �ber, it can adopt two distinct con�gurations:
a barrel shape, where the droplet symmetrically engulfs the �ber, or a clamshell
shape, where the droplet rests on one side of the �ber, creating an asymmetrical
shape [73, 74]. Previous work by Gabbard et al. showed that a liquid �lm de-
scending along a vertical �ber may undergo a destabilization process, resulting in
a train of beads exhibiting either a symmetrical (barrel shape) or an asymmetric
morphology (clamshell shape) [92]. The occurrence of these con�gurations depends
on factors such as �ber diameter and droplet surface tension. Speci�cally, the study
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Figure 4.1: Superposition of successive pictures of an asymmetrically shaped droplet
traveling down on twisted �bers with a helical motion. From left to right, the number
of �ber twists increases, n = 40, 80, 120. The dashed horizontal lines represent the
�ber pitch. For small n, the droplet follows exactly the substructure, displaying a helical
motion, see (a). However, at a larger number of twist values, the droplet exhibits reduced
adherence to the tight substructure, resulting in an additional vertical motion, see (b)
and (c). The motion is a mix of translations and rotations but the helical motion is no
longer correlated with the helical groove of the twisted �bers. The time interval between
consecutive pictures is constant at ∆t = 0.2 s. The volume of the droplet is 5 µl and the
diameter of one �ber is 0.25 mm. The scale bars on picture (a) correspond to 1 mm. (d)
QR code to access to the three experimental videos.

showed that the asymmetric con�guration consistently arises for surface tensions
exceeding 50 mN/m (see Fig. 1.14). The liquid we choose to use is glycerol with
a surface tension of γ ≈ 55 mN/m. The clamshell shape is therefore the more
stable droplet con�guration. The density of glycerol is ρ = 1190 kg/m3. We have
noticed an important sensibility of the glycerol with temperature. As reported in
the literature, the viscosity can decrease by half with an increase of 10◦C [153].
Unfortunately, our lab equipment does not allow for precise control of the ambient
lab temperature. Furthermore, glycerol manipulations are also suspected to warm
the solution. Nonetheless, we measured a dynamic viscosity of η ≈ 1.2 Pa.s at
around 18◦C, and η ≈ 0.8 Pa.s at around 25◦C. The di�erence factor is about 1.5.
The volume of the droplet is �xed at Ω = 5 µl. The droplet is gently deposited
on the bundle thanks to an electronic pipette (Eppendorf Xplorer plus). Before
each experiment, the bundle is prewetted with several droplets to coat the grooves.
For the initialization, at small twist number, 10 droplets are deposited to ensure
complete prewetting of the �bers. This prewetting procedure ensures the studied
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droplets keep a conserved volume. Subsequently, 5 droplets are measured. As the
twist turn is increased, 2 prewetting droplets are deposited before the measure-
ment of the subsequent 5 droplets. The contact length of the glycerol droplet on
the �bers is constant and is measured, l = 2.64 mm. One can also approximate this
length with the diameter of a spherical droplet, we have l ∼ 2 (3Ω/4π)

1/3
= 2.1

mm. The length between the center of the bundle of �bers and the center of the
droplet is labeled a and is measured, a = 0.76 mm. This length is measured to be
constant in all our experiments, the capillary force Fγ that acts at the surface of the
droplet overcomes eventual deformations in the droplet shape due to centrifugal
forces Fcf , the ratio of both forces is estimated Fcf/Fγ ∼ ρΩϕ̇2a/4πγΩ2/3 ≈ 0.6.

Figure 4.2: (a) Sketch of the twisted �bers. We de�ne several lengths, L is the total
bundle length, Lw is the portion of the twisted �bers captured by the camera. An increase
in the number of turns n leads to a reduction in the half-pitch πb of the helical pattern.
(b) Sketch of a spherical droplet on twisted �bers. The distance between the droplet
center and the bundle center is labeled a. The length of the droplet is noted l. When
the droplet performs a helical motion around the bundle axis with a 2πb pitch length, the
droplet center describes a helix with a radius a which is comprised in a cylinder of radius
a and height 2πb. The motion is recorded with a camera placed in front of the bundle of
�bers. The volume of the droplet is Ω = 5 µl and the diameter of one �ber is d = 0.25
mm.

In front of the �bers, a CCD camera (Coupled-Charge Device) is positioned to
record the droplet motion. The camera captures a portion of the bundle Lw = 8
cm. This �eld of view is 15 cm under the release point of the droplet. A white
lighting source is placed behind the �bers to ensure a good contrast of the droplet,
and the glycerol is slightly dyed with yellow food coloring. An original Python
code is employed to track the linearly increasing position of the droplet over time
and to extract the slope to study the linear speed ż. Additionally, as the droplet
is traveling around the bundle, one can also count the number of turns of the
droplet. The number of turns made by the droplet is denoted τw. Consequently,
one extracts the angular speed of the droplet ϕ̇.

To reveal key physical parameters, several nondimensional quantities are calcu-
lated. The Bond number de�ned as Bo = ρgΩ/γl, compares gravitational and
capillary e�ects. In our experiment, we have a Bo value of around 0.5, indicating
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that the droplet dynamic is led by both gravitational and capillary e�ects, such
conditions are similar to [147]. The Capillary number estimates viscous e�ects to
surface tension ones, Ca = żνρ/γ. One obtains values in the range 0.1 to 0.5 with
the typical speed values ż in our experiments. Surface tension overcomes viscous
dissipation, allowing the descent of droplets along the �bers. The Weber number
compares inertial and surface tension e�ects, We = ρż2l/γ, yielding a We number
smaller than 0.03, signifying a negligible role of inertia in the present study.

In this experimental setup lies two signi�cant di�erences with the experiment con-
ducted by Kern and Carlson [100]: the choice of liquid and the prewetting of the
�bers. Their research centered on silicone oil droplets, a low surface tension liquid
(γ ≈ 20mN/m), descending along dry twisted �bers. In our experiment, prewetting
the �bers not only conserves droplet volume but also improves drainage e�ciency.
These divergent experimental approaches lead to complementary investigations,
that expand the understanding of droplet dynamics on twisted �bers.

4.3 Results

The descending motion of the asymmetrical droplet is signi�cantly in�uenced by
the substructure created by the twist, as shown in Fig. 4.1. Indeed, the droplet
exhibits a helicoidal motion along the twisted �bers. We observe that when the
twist turns, denoted n, is small, the droplet follows exactly the twist of the �bers
(Fig. 4.1 (a)). More precisely, one observes the droplet to follow the convex
groove. This motion is labeled groove �ow by [100]. However, as the number of
twist turns increases, the droplet exhibits a combination of helical and vertical
motions, as depicted in Fig. 4.1 (c), labeled as skipping �ow [100]. Notably, the
distance for one complete turn of the droplet is not correlated with the helical pitch
of the twisted �bers. In our experiments, we discern instances where the droplet
alternates between rotational and translation motion along several �ber pitches. In
Fig. 4.1 (c), one shows that, at the end of the superposition, the droplet undergoes
a vertical descent. The experimental videos are available thanks to the QR code
present in Fig. 4.1 (d).

To describe this transition between both dynamical regimes, we measure the num-
ber of turns made by the droplet, τw. The count is done along the length Lw

captured by the camera. We subsequently normalize it to the total length, result-
ing in

τ =

(
L

Lw

)
τw (4.2)

In Fig. 4.3, we plot τ as a function of the number of twist turns n. For small
values of n, the rotation of the droplet increases linearly with n, this is regime I
(groove �ow). As n surpasses approximately 80, marking the transition to a second
regime, regime II (skipping �ow), the number of turns made by the droplet falls to
a smaller value that decreases with n.
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Figure 4.3: Number of droplet turns τ as function of �bers twist turns n. Data with
black circles (•) are for a low viscosity, around 0.8 Pa.s, and data with blue triangles
(▼) are for a higher viscosity, around 1.2 Pa.s. One observes two distinct regimes. In
regime I, for n < 76, the droplet follows the helical pattern. The number of turns made
by the droplet is directly correlated with the �ber twists. The red line is a line of slope 1,
i.e. τ = n. In regime II, n > 76, the droplet is not following the substructure anymore.
The number of turns made by the droplet decreases with n. The grey region depicts the
transition between both regimes.

We assume that the transition to regime II is linked with the portion of the �ber
that the droplet covers. Indeed, as can be seen in Fig. 4.4, for small values of n,
the droplet length l is smaller than the half-pitch of the helical pattern πb (Fig.
4.4 (a)). On the other hand, for larger n values, the droplet spans several pitches,
l > πb (Fig. 4.4 (c)). When the length of the droplet equals the half-pitch, a
transition occurs (Fig. 4.4 (b)). To quantitatively describe this transition, one
introduces dimensionless parameter α, which is the ratio between the length of the
droplet and the half-pitch [100],

α =
l

πb
=

2nl

L
. (4.3)

At the transition, we assume that α = 1. We can thus theoretically approximate
the number of twists needed to induce the transition ntr = 76. This transition
value is well estimated, as can be observed in Fig. 4.3. The theoretical transition
is described in each plot with a vertical grey range. The width of this range is
calculated by considering the error made on the droplet length l, we have l =
2.64± 0.16 mm.

One can examine the droplet dynamics in both regimes. Note that both the angular
speed and the vertical speed are constant for a given value of twists n thanks to
the prewetting of the bundle. First, in Fig. 4.5 (a), we plot the angular speed ϕ̇
of the droplet as a function of α, for two di�erent viscosities of the same mixture
at di�erent temperatures. In regime I, the angular speed increases with the twist
turns, while in regime II, it decreases. This trend is also observed in [100] for the
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Figure 4.4: Pictures of a droplet on several twisted �bers. From left to right, the number
of �ber twists increases, n = 40, 80, 120. This emphasizes the covered length of the
droplet l on the twisted �bers (green), a key parameter to distinguish the motions adopted
by the droplet. The half-pitch of the helical pattern created by the twisted �bers is
depicted in blue. (a) The droplet's length is shorter than half the pitch. Under such
conditions, the droplet exhibits a purely helical motion. (b) The droplet's length is the
same as the half-pitch. (c) The droplet's length is longer than the half-pitch, which induces
a combined behavior of helical motion and vertical sliding. The volume of the droplet is
5 µl and the diameter of the �ber is 0.25 mm. The scale bar corresponds to 1 mm.

groove and skipping �ows. Next, in Fig. 4.5 (b), we plot the linear speed ż as a
function of the dimensionless parameter α (see Eq. (4.3)). Interestingly, in regime
I (α < 1), we observe an important decrease in the linear speed with α, while in
regime II (α > 1), it decreases more slowly with α. Surprisingly, this in�uence of
the twists on the linear speed is not observed when the �bers are not prewetted
[100]. In both Fig. 4.5 (a) and (b), one notices that a change in viscosity does not
a�ect the trend of the data, a decrease in the viscosity only results in an increase of
the angular and vertical speeds. In the following section, we describe the observed
trends thanks to one model for each regime.
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Figure 4.5: (a) Angular speed ϕ̇ as a function of α. In regime I, α < 1, the angular
speed increases with α. In regime II, α > 1, it is slightly decreasing. The colored curves
are �t of Eq. (4.8) and Eq. (4.10) on the respective regime. (b) Linear speed ż as a
function of α. In regime I, α < 1, the linear speed decreases with α. In regime II, α > 1,
it decreases more gently. The orange curves are �t of Eq. (4.9) and Eq. (4.11). Data
with black circles (•) are for a low viscosity and data with blue triangles (▼) are for a
higher viscosity. The grey region both in (a) and (b) depicts the transition between the
two regimes.

4.4 Discussion

In the �rst instance, to di�erentiate the motions in both regimes, the ratio ż/(bϕ̇)
is plotted in Fig. 4.6 (a). The relation ż/(bϕ̇) = 1 is characteristic of a helical
motion. In the �rst regime, for α < 1, this ratio is approximately 1, with a mean
value of 0.9. This regime is dependent on the characteristic length of the helix, 2πb.
Interestingly, in the second regime, the relationship between vertical and angular
speed is not correlated with the helix length. When the droplet size is larger
than the half-pitch, it changes the characteristic length. In the second regime, the
capillary length of the droplet lc and the relative size of the droplet compared to the
helix, α, are important parameters. This is depicted in Fig. 4.6 (b) where the ratio
ż/(αlcϕ̇) is plotted. It shows a constant value in the second regime, with a mean
value of 0.4. The transition between regimes signi�es a change in the dominant
parameter, the �rst regime is governed by the helix pitch 2πb (Fig. 4.6 (a)), while
the second regime is dominated by the capillary length and the relative size of the
droplet compared to the half-pitch (Fig. 4.6 (b)). This transition marks a shift
from a regime where the helical structure dictates the motion to one where capillary
length controls the descent, combining helical motion with vertical sliding.

To describe the particular motion of the droplet, one can notice that the center of
mass of the droplet follows a helical path inscribed on the surface of a cylinder.
The height of the cylinder is 2πb and its radius is a, as illustrated in Fig. 4.2 (b).
Two capillary forces act at both ends of the droplet. These capillary forces act
as adhesive forces, promoting rotation around the bundle by creating a resultant
force directed toward the cylinder's interior. To describe the helical motion of the
center of mass, one can unroll the cylinder into a rectangular representation with
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Figure 4.6: (a) Ratio ż/(bϕ̇) as a function of α. For α < 1, the ratio is constant, with a
mean value close to one. The �rst regime is linked with the characteristic length of the
helical groove of the bundle. For α > 1, the vertical and the angular speeds relation is not
de�ned by the helix pitch 2πb, showing an increasing trend with α. (b) Ratio ż/(αlcϕ̇) as
a function of α. This ratio is constant in the second regime (α > 1), with a mean value
of 0.4. This is indicative that the capillary length times the droplet's relative size to the
half-pitch is the relevant characteristic length in this regime. One observes no in�uence
of the viscosity.

a length 2πa, corresponding to the perimeter of the cylinder base, and a width
2πb, corresponding to the pitch of the helix, as represented in Fig. 4.7. This
representation also includes the grooves between the �bers, which are parallel to
the diagonal of the rectangle. Two grooves are represented, the one in front of
the bundle and the one at the rear. Depending on the relative size of the droplet
compared to the half-pitch, the droplet may either sit on a single groove (α < 1,
see Fig. 4.7 (a)) or span on multiple grooves (α > 1, see Fig. 4.7 (b)).

To model the behavior observed in the di�erent regimes, we use a balanced force
model. The droplet motion is driven by its weight, which is balanced by viscous
dissipation. Inertia can be neglected due to the Weber number and the constant
velocities observed during helical motion at �xed torsion. We therefore consider a
balance between the dissipation force and the driving gravitational force along the
�ber groove, as sketched in Fig. 4.7 (a) and (b). The dissipation force is given by

Fη = ξηlv (4.4)

with ξ a geometrical parameter and v the total speed of the droplet which is given
by

v =

√
ż2 + (aϕ̇)2. (4.5)

The gravitational component along the groove is given by

Fg,h = ρgΩsin(θ), (4.6)

where θ is the slope of the helix and is given by tan θ = b/a. This leads to

Fg,h = ρgΩ
b√

b2 + a2
. (4.7)
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Balancing both forces allows to describe the observed trend of ż and ϕ̇ as explained
in the following sections.

Figure 4.7: Representation of the unrolled cylinder on which the helical motion is in-
scribed. The length is given by the perimeter of the cylinder base, 2πa, and the width
by the pitch of the helix, 2πb. The grooves of the �ber bundle are depicted as grey lines
parallel to the diagonal of the rectangle. The slope of the helix is labeled θ. In regime I,
where the droplet length l is smaller than the half-pitch πb, the droplet sits on one groove,
as shown in (a). In regime II, the droplet spans several grooves, as shown in (b). In both
cases, the motion is attributed to a balance between the driving gravitational force and
the dissipating friction force.

4.4.1 Regime I

In this subsection, we model the droplet motion when it adheres to the spiral
pattern of the twisted �bers. We assume the motion of the droplet to be a helix
with (i) a reduced pitch bdrop equal to the reduced pitch of the twisted �bers,
bdrop = b, and with (ii) a radius a given by the length between the center of the
bundle of �bers and the center of the droplet. In the regime I, the relation between
the vertical speed and the angular speed is given by ż = bϕ̇ as shown in Fig. 4.6 (a).
Injecting this relation into Eq. (4.5) and balancing the weight and the dissipation,
leads to the expression of the angular speed,

ϕ̇I =
ρgΩ

ξIηl

b

b2 + a2
. (4.8)

Then, one obtains the vertical speed,

żI = bϕ̇I =
ρgΩ

ξ′Iηl

b2

b2 + a2
. (4.9)
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In these two relations, we have two unknown parameters ξI and ξ′I for dissipation,
that are used as �tting parameters. These two coe�cients account for the di�erent
dissipation in angular motion and vertical motion.

4.4.2 Regime II

In this subsection, we describe the motion of a droplet in the second regime where
an intermittent vertical sliding is observed. The droplet sometimes adheres to the
helical �ber substructure and sometimes slides along the bundle. The ingredients
are the same as before except for the relation between the vertical speed and
the angular speed. As shown in Fig. 4.6 (b), one has the following relationship
ż = αlcϕ̇. We obtain the following expressions,

ϕ̇II =
ρgΩ

ξIIηl

b√
(αlc)2 + a2

√
b2 + a2

, (4.10)

and

żII = αlcϕ̇II =
ρgΩlc
ξ′IIηl

αb√
(αlc)2 + a2

√
b2 + a2

, (4.11)

with ξII and ξ′II two dissipation coe�cients for the dissipation in the second regime.

4.4.3 Analysis

The previously described models can be adjusted on the experimental data for each
regime. We divide the data into both regimes: regime I with α < 1 and regime
II with α > 1, to �t the corresponding model on each regime. In Fig. 4.5 (a)
and Fig. 4.5 (b), we plot the angular speed and the vertical speed as a function
of α, with the orange lines representing the model �ttings. The models depict
well the observed behaviors. In the model, ξη and ξ′η are the �tting parameters.
As the temperature is not well controlled in our laboratory, we let the viscosity η
remain as a free �tting parameter. We �nd that the �tting parameters are of the
same order of magnitude across both regimes. The �tting parameters are given in
Table 4.1. One notices that the �tting parameter is systematically larger for the
higher viscosity. We also show the ratio of the �tting parameters, which highlights
the in�uence of the viscosity variation. This ratio is approximately equal to the
expected viscosity ratio, around 1.5, as described in section 4.2. Although the �t-
ted values are similar, the di�erence can be attributed to a di�erent dissipation
between helical and vertical motions. Speci�cally, in regime II, the droplet slides
along multiple pitches and grooves, which can result in a higher dissipative coe�-
cient for the vertical motion. Indeed, it is known that horizontally oriented �bers
intersecting the path of a vertically descending droplet have a signi�cant in�uence
on its behavior [80, 98]. The droplet may either continue its motion or stop, hung
on the horizontal �ber. In our case, the droplet moves along a �ber with periodic
bumps, due to the substructure, which may act as obstacles along the droplet's
path, explaining the di�erent dissipation in the angular and vertical motions in
the second regime. Also, the lack of precise temperature control may a�ect the
viscosity and, consequently, the �tting parameters.

79



Low viscosity High viscosity Ratio

ξIη 0.83 Pa.s 1.8 Pa.s 2.2

ξIIη 0.47 Pa.s 0.91 Pa.s 1.9

ξ′Iη 0.84 Pa.s 1.32 Pa.s 1.6

ξ′IIη 1.13 Pa.s 1.82 Pa.s 1.6

Table 4.1: Comparison of the obtained �tting parameters. The �tting values ob-
tained for the angular speed in regimes I and II, ξIη and ξIIη respectively, are
compared with the ones for the vertical speed in regimes I and II, ξ′Iη and ξ′IIη,
respectively. It is observed that the values are systematically higher for the high
viscosity �uid. The last column shows the ratio of the values for high viscosity to
those of low viscosity. The ratio values are similar.

4.5 Application: Manipulation and fog collection

For further insights into the practical applications of twisted �bers, the recent
paper by Kern and Carlson [100] provides interesting demonstrations of droplet
manipulation and collection on twisted �bers. This section reviews their work.

Twisted �bers o�er the opportunity to manipulate droplets with carefully designed
�ber meshes. As discussed in section 1.4.6 of the State of the Art, droplets de-
scending along �ber networks with horizontal �ber crossings, result in a reduction
in the droplet speed and leave small liquid deposits at the intersections. This phe-
nomenon occurs also with clamshell shape droplets and when using a bundle of two
parallel �bers vertically instead of a single �ber, as illustrated in Fig. 4.8 (a) (left).
To avoid the slowdown and liquid loss, twisted �bers can be employed as a solution.
In this setup, two twisted �bers are placed vertically with a small number of twist
turns, while the horizontal �ber alternates between being positioned in front of and
behind the twisted �bers. Experimental images from [100], shown in Fig. 4.8 (a)
(right), demonstrate that on such a network, a clamshell shape droplet can follow
the helical twist (regime I) and avoid �ber crossings. Consequently, no liquid is left
behind when the horizontal �ber is on the opposite side of the droplet path and
the descent is faster.

Regarding fog collection, twisted �bers show interesting collection ability when
placed in a fog chamber. Fig. 4.8 (a) (left) compares a single �ber with a twisted
bundle with collected water droplets. On a single �ber, several droplets form and
become pinned along the �ber. In contrast, on two twisted �bers, the absence of
visible droplets suggests the existence of a liquid �lm within the helical groove.
This enables an increased collection e�ciency. The e�ciency is quanti�ed by the
capture e�ciency of each twisted bundle, Eπb which is de�ned as the ratio between
the amount of water collected and the amount of fog in the �ow. The graph in
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Fig. 4.8 (b) (right) shows the ratio of the measured deposition e�ciency Eπb to the
theoretical one Ed (for a smooth �ber), Eπb/Ed, as a function of the twisting ratio,
d/πb. For d/πb = 0, the �bers are parallel (πb tends to in�nity), the e�ciency
ratio is larger than one, indicating enhanced e�ciency compared to the theoretical
prediction for a single �ber without grooves. As the number of �ber twists increases
(i.e., decreasing half-pitch πb), the capture e�ciency increases. Within a fog �ow,
the twisted �bers become wetted, which facilitates fog capture and liquid drainage
through the wetted grooves.

Figure 4.8: (a) Clamshell shape droplet descending along a �ber network composed of a
bundle of two vertical �bers, with horizontal �bers alternately placed in front of or behind
the bundle. The vertical �bers in the bundle are either parallel (left) or twisted (right).
When the vertical �bers are parallel, the droplet slows down at �ber crossings and leaves a
liquid residue at the crossing. When the vertical �bers are slightly twisted (regime I), the
droplet follows the helical groove which prevents slowdown and liquid loss. (b) Twisted
�bers demonstrate e�ective water collection from fog. While droplets tend to cling to a
single �ber, no visible droplets appear on twisted �bers, suggesting the formation of a
liquid �lm within the grooves. The graph on the right shows the ratio of the measured
deposition e�ciency Eπb to the theoretical deposition e�ciency for a single smooth �ber
Ed as a function of the twisting ratio d/πb. When d/πb = 0, the �bers in the bundle are
parallel. Increasing the twist of the �bers enhances the e�ciency of fog collection. From
[100].
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4.6 Conclusion

In this chapter, we study the helicoidal and translational dynamics exhibited by
a droplet traveling along vertical twisted �bers for two di�erent viscosities. The
droplet exhibits an asymmetric clamshell shape due to the high surface tension
of glycerol. Twisting two cylindrical �bers creates a speci�c bundle with a heli-
cal convex shape groove. This substructure considerably in�uences the droplet's
motion. Indeed, depending on the twist turns, the droplet is seen to adopt a pre-
dominantly helical trajectory or a predominantly vertical one. These reveal two
regimes that depend on the relative dimensions of the droplet and of the helical
pitch, as also observed in [100]. When the droplet size is smaller than the pitch,
the droplet has a high tendency to adhere to the helical substructure. Conversely,
when the droplet size surpasses the pitch length, then the droplet that spans on
several grooves exhibits a mixture of motion composed of vertical sliding and he-
lical motion. Furthermore, we show that increasing the viscosity decreases both
speeds but does not a�ect their trends with the twist turns. We develop a model
that describes the experimental data of the rotational speed and the linear speeds.
In addition, we observe a larger dissipative coe�cient for the vertical motion in the
second regime explained by the fact that the droplet encounters several bumps due
to the helical structure of the �bers.

This study shed light on the importance of substructures that can change the be-
havior of the droplet's motion. We achieve the rotation of the droplet along a verti-
cal �ber, thereby opening avenues for three-dimensional manipulation of droplets.
It enables the droplet to go from either the right-left or front-back side of the
�ber. Additionally, this rotational motion a�ords the droplet an expanded interac-
tion area with the surrounding gas phase, which holds promise for application in
droplet-gas interaction [154, 155]. This experiment is also a creative adaptation of
a bead moving along a helical wire, a usual problem taught in classical mechanics.
Indeed, the soft matter bead leads to transitional behavior and unusual motions.
Finally, this study has potential implications for enhancing droplet drainage of
droplets along �bers. Speci�cally, we highlight that small torsions in a bundle of
�bers induce larger vertical speeds than high twisted bundles. Draining e�ciency
is a key problem in water-harvesting structures, particularly in �ber-based con�gu-
rations such as harps or nets [135, 125]. Twisted �bers hold promise for optimizing
the performance of such structures in water collection applications. This study also
opens potential avenues for future research on liquid retention on twisted �bers.
Performing an experiment of a twisted bundle outward from a liquid bath could
be interesting to investigate the thickness and the stability of the prewetting liquid
inside the helical convex groove.
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5

Droplets on a

conical �ber

In this chapter, we focus on describing droplets moving on conical �bers. The
experiment consists of a horizontal cone and a silicone oil droplet placed at its tip.
We describe the motion of the droplet along the cone and consider the transition
in the shape of the droplet. When the droplet is near the tip, its shape is a barrel
while when the droplet encounters larger radii it has a clamshell shape. Depending
on the droplet's shape, the dynamic di�ers. We also investigate the in�uence of
the cone half-angle and the droplet volume on the dynamic.

Partially published as

J. Van Hulle, F. Weyer, S. Dorbolo, and N. Vandewalle, Capillary transport from
barrel to clamshell droplets on conical �bers, Phys. Rev. Fluids 6, 024501 (2021).

83



5.1 Motivations

Several works [99, 114, 112] have proposed that spine shapes could trigger the mo-
tion of droplets. Indeed, a droplet on a conical �ber is known to move toward
large radii, as it can be seen in Fig. 5.1, due to the imbalance between surface
tension forces acting on the droplet surface. This e�ect was �rst characterized by
Lorenceau et al. [99], as described in the State of the Art, section 1.5.1. They stud-
ied this phenomenon for speci�c materials and scales, namely, microliter silicone
oil droplets on prewetted conical copper wires with a half-angle α ≈ 0.38◦ and a
length L = 3 cm. Those cones were created by pulling a cylindrical copper wire out
of an acid bath. Other studies used di�erent ways to manufacture conical �bers
like pulling glass [115, 118, 120, 156], using an electrochemical corrosion gradient
[113] or even polishing brass [121].

According to the relative size of the �ber and of the droplet, the droplet on cylindri-
cal and conical �bers can present two distinct geometries: barrel or clamshell [73].
A droplet with a barrel shape fully wraps the section of the �ber while a droplet
in a clamshell shape covers only one side of the �ber, as explained in section 1.4.1.
In all experimental studies listed above, the droplets adopt a barrel shape, except
for two studies which focus on droplets showing a clamshell shape [121, 156]. The
in�uence of gravity on the droplet shape is neglected in their models because its
size is below the capillary length. Note also that all those previous studies used
prewetted conical �bers. A table comparing the experimental parameters used in
this study to the recent publications is presented in Table 5.1 in order to position
our work.

Figure 5.1: Superposition of successive pictures emphasizing the motion of a droplet on
a 3D-printed conical structure. The motion is shown at time t = 0 s, 2 s, 7 s, 20 s and 45 s.
(a) α = 4◦, Ω = 4 µl, (b) α = 4◦, Ω = 2 µl and (c) α = 6◦, Ω = 2 µl. The vertical black
line indicates the estimated position of transition x∗

t which is the distance after which
the droplet should switch from the barrel shape to the clamshell shape. This value is
calculated from Eq. (5.2). (d) QR code to access the three experimental videos.
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Half-angle α (◦) Cone length L (cm)

B
ar
re
l

Lorenceau [99] 0.38 3.0

Li [115] 0.89 0.4

Michielsen [120] 10.5, 14.2, 16 1.0

Fournier [118] ≈ 0.05 ≈ 0.5

C
la
m Lv [156] 3.2 1.0

McCarthy [121] 5, 10, 20, 45 1.5

B
ar
re
l
&

C
la
m

This chapter 3, 4, 5, 6, 7, 8, 9, 10 2.0

Table 5.1: Table comparing previous studies of droplets moving along conical �bers.
This table shows the experimental parameters used, namely, half-angles α of the apex
and the length L of the conical �ber. The studies are categorized by the shape adopted
by the droplet on those �bers, either barrel or clamshell shape. This chapter is placed in
another category as both barrel and clamshell shapes are experimentally observed on a
single conical �ber.
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The major motivation of this work is to achieve an extensive study on capillary
transport of droplets lying on larger dry conical structures. Moreover, as can be
seen in Table 5.1, we use conical �bers with a wide variety of large half-angles and
with a relatively long length compared to other studies. We observe that such �bers
allow droplet transportation. Fig. 5.1 shows a superposition of pictures emphasiz-
ing the motion of large droplets in three di�erent cases that will be discussed in
section 5.3. In all the situations shown in Fig. 5.1, the droplet spontaneously moves
from the tip to the base of the cone. In addition to this directional motion, a shape
transition of the droplet is observed during this motion. The droplet switches from
the barrel shape to the clamshell shape. Previous experimental studies focused on
either the barrel shape or the clamshell shape but none has experimentally observed
this change of geometry (without any wetting gradient). We were able to witness
this transition of shapes thanks to the properties of the cones we use (dry cones,
long length, large half-angles). In this chapter, we perform an experimental study
of this motion driven by capillarity, as well as by the geometry switch. Our results
allow us to estimate the position of the geometrical transition and to propose two
models for macroscopic capillary transport of both the barrel and the clamshell
shape droplets on conical �bers.

5.2 Methods

In order to make an extensive experimental study, we 3D-printed several conical
structures using Object Prime 30 from Stratasys, the same 3D printer as used in
Chapter 2. This 3D-printing technology o�ers an easy and controllable way of
manufacturing cones. On top of it, the �exibility of the 3D-printing technique
o�ers the opportunity to explore various cone angles. We considered half-angles α
from 3◦ to 10◦. Those cones were slightly inclined for the experiment: the cone
axis is tilted with the angle α in order to ensure that the lowest part of the cone
was horizontal. Therefore, the droplet motion cannot be only attributed to gravity
e�ects. A sketch of the experimental setup is shown in Fig. 5.2.

Prior to each experiment, we cleaned the cones with isopropanol and water and let
them dry. The droplet was dropped o� on the cone's tip thanks to a micropipette
(Eppendorf Xplorer). We used silicone oil (Dow Corning), with a viscosity ν = 50
cSt. The static contact angle between silicone oil and ABS is θ ≈ 0◦. Therefore, we
were in the case of total wetting. We chose to focus on a range of droplet volumes Ω
from 2 µl to 4 µl. Higher volumes could not be tested because such larger droplets
drop o� the �ber (in particular near the tip).

Perpendicular to the cone's axis of symmetry, a CCD camera recorded the motion
of the droplet (at 20 fps). A white background was lighted to achieve a good
contrast. By image treatment, the left and right positions x− and x+ of the droplet
from the apex were determined. The position of the droplet center is de�ned by
x = (x+ + x−)/2, as shown in the inset of Fig. 5.3.
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Figure 5.2: Sketch of the experimental setup. Cones are 3D printed and positioned with
the lowest part horizontal. The half-angle of the cone α ranges from 3◦ to 10◦. A droplet
is deposited at the tip of the cone using a syringe and its motion towards the larger �ber
radius is recorded with a camera in front of the cone axis. The tested droplet volumes
are Ω = 2 µl, 3 µl and 4 µl.

5.3 Results

The typical evolution of the droplet position over time is shown in Fig. 5.3. This
shows that the position x increases, at �rst rapidly and then more slowly. Moreover,
we plot the position over time for di�erent half-angles α and di�erent volumes Ω
in order to highlight the in�uence of both parameters on the droplet motion. For
the same interval of time, the droplet with the largest volume, moving on the cone
with the smallest half-angle, goes further than the other ones.

Figure 5.3: Position from the apex of the droplet center x along a cone as a function of
time t. Di�erent half-angles and volumes are shown : α = 4◦, Ω = 4 µl; α = 4◦, Ω = 2 µl
and α = 6◦, Ω = 2 µl. The error bars coming from repeated experiments for each data
set are in light color. The inset de�nes the half-angle α of the cone as well as the position
from the apex of the droplet center de�ned by x = (x+ + x−)/2.

In our experiments, the motion of the droplet is characterized by the capillary
number Ca = ẋνρ/γ ≈ 2 × 10−3, where ẋ is the droplet speed, γ is the surface
tension and ρ is the density. This value indicates that the surface tension force
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overcomes viscous one. The Weber number can also be calculated We = ρẋ2L/γ ≈
7× 10−5, where L is the characteristic length of the system. Here, L is the typical
diameter of a droplet : L ≈ 1.5×10−3 m. It tells us that surface tension e�ects also
dominate inertial forces. The Reynolds number, de�ned as Re = ẋL/ν, compares
inertial forces to viscous forces. For our experiments, its value is Re ≈ 0.03,
therefore viscous forces are larger than inertial ones. The Bond number Bo is the
ratio of gravitational forces to capillary forces, Bo = ρgL2/γ ≈ 1.04, where g is the
gravitational acceleration. It reveals that gravity a�ects the barrel shape droplets.

To evidence the droplet motion, we compute the speed of the droplet ẋ as a function
of the inverse of position 1/x. This speed is obtained using a �ve-point derivative
of the data x(t) from Fig. 5.3. This is illustrated with a double logarithmic graph
in Fig. 5.4 for the same cases as presented in Fig. 5.3. The speed decreases as
the position on the �ber increases, i.e. as the inverse position decreases. The
three curves clearly indicate that the motion is a�ected by the half-angle α and the
volume Ω. Furthermore, it can be seen that as the half-angle increases, the speed
decreases. Changing the volume reveals that the higher the volume is, the higher
the speed is.

Figure 5.4: Double logarithmic graph of the speed ẋ of the droplet as a function of the
inverse position 1/x, for di�erent half-angles and volumes : α = 4◦, Ω = 4 µl; α = 4◦,
Ω = 2 µl and α = 6◦, Ω = 2 µl. The short vertical colored lines are the inverse of the
transition position 1/x∗

t (see Eq. (5.2)). The grey lines are �tting curves corresponding
to the barrel shape model (see Eq. (5.11)), straight line, and to the clamshell model (see
Eq. (5.12)), dashed line.

5.4 Discussion

In order to describe the dynamics of the droplet, we have to inspect the geometry
of the system. Although both position and speed are smooth curves, the droplet
is submitted to a major change of geometry, as it can be seen from Fig. 5.5. This
image is obtained using ImageJ [157] and is the result of the di�erence between
Fig. 5.1 (b) and the picture of the cone without any droplet. Consequently, the
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geometry of the droplet is highlighted. We tuned the contrast of the picture to
emphasize the top liquid �lm. Close to the tip of the cone, the droplet has a barrel
shape, i.e. wraps the cone, with a deformation due to gravity (the droplet has
a thin �lm above the cone and a hanging part under the cone). As the droplet
moves, the droplet switches to a clamshell shape: the droplet does not wrap the
cone any longer but sits on the bottom of it. Whatever the shape of the droplet,
it moves towards the base of the cone. The change of geometry is the opposite
of a roll-up transition [78, 74, 73]. It occurs on a �ber when the volume of the
droplet is reduced or the radius of the �ber is getting larger. Here, we observe
this transition with a constant droplet volume and on a �ber that has a conical
shape. Thus, as the droplet moves, the local radius of the �ber increases. In the
case of cylindrical �bers, an adimensional number, called the reduced volume V ∗,
has been introduced to predict the transition from one shape to the other [73]. It
is the ratio between the volume of the droplet and the cube of the �ber radius and
is de�ned as

V ∗ =
Ω

r3f
. (5.1)

If this number is large, the droplet is expected to adopt a barrel shape and if this
number is small, the droplet should have a clamshell shape. In our case, we can use
this adimensional number to estimate the position where the transition between
barrel and clamshell shapes occurs. Let us note V ∗

t the reduced volume at the
transition. We can then obtain the transition position given by,

x∗
t =

1

sinα
3

√
Ω

V ∗
t

. (5.2)

Below this transition position, the shape adopted by the droplet should be a barrel
and beyond, the droplet should switch to a clamshell shape. Experimentally, it is
di�cult to track the contact line because the droplet is transparent and the shape
transition is a smooth process. Therefore, we can experimentally approximate the
range of positions where the switch in shape occurs. We found an empirical value
for the reduced volume at the transition, V ∗

t = 8. This value is kept constant for
all the post-treatment of our data. In section 5.4.3 there is a discussion about how
this empirical value is obtained. The transition positions are denoted in Fig. 5.1,
5.4, 5.5 with vertical lines.

This shape transition is in good agreement with the simulations made by Liang et
al. [112] using Surface Evolver [79]. They also observed, in their simulations, a
transition from a barrel shape to a clamshell shape (without gravity) and, whatever
the shape, the droplet goes towards large radii of curvature.

To explain these observations, a model taking into account the balance of the forces
exerted on the droplet is developed. The droplet experiences two types of force:
the capillary force and the viscous force. In our problem, we have two geometrical
con�gurations, therefore we have to describe both cases independently.
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  Barrel shape                     Clamshell shape

  *

Figure 5.5: Image treatment of the superposition shown in Fig. 5.1 (a). This image
treatment, which removes the image of the cone without any droplet, allows to highlight
the geometry of the droplet and the contact area of the droplet with the cone as well as
the contact line. We tuned the contrast to emphasize the top liquid �lm. The droplet
position along the cone is shown at time t = 0 s, 2 s, 7 s, 20 s and 45 s and the experimental
parameters are : α = 4◦ and Ω = 4 µl. One can see that the droplet has a barrel shape
close to the tip of the cone and then, as the droplet gets closer to the base, we see a change
in geometry from a barrel to a clamshell shape. The vertical black line is the position of
transition x∗

t calculated from Eq. (5.2).

5.4.1 Barrel shape

Most of the previous studies consider the motion of axisymmetrical barrel shape
droplets moving on conical substrates. The models are based on a driving force
coming from a gradient of the Laplace pressure along the surface of the droplet [99,
115]. In our case, the barrel shape is not axisymmetrical due to gravitational e�ects.
Finding the gradient of Laplace pressure in such a non-symmetrical geometry is a
signi�cant problem. This is why we use, for the driving force, the external force
applying along the contact line of the droplet. This driving force has been used
in the model of Fournier et al. [118] to describe the motion of sub-millimetric
symmetrical barrel shape droplets on prewetted conical glass �bers. In opposition
to Fournier et al. [118], we do not consider the two contact lines of the barrel as
our conical �ber is not prewetted. In fact, in our case, the advancing contact line
of the droplet is wetting a dry surface while, along the receding contact line, the
surface is not dewet, the droplet is leaving a thin �lm. Therefore, the wetting by
the advancing contact line is the slower process leading the motion. This is why
we only consider the wetting force along the advancing contact line as the main
contribution to the driving force. Along the advancing contact line, one can see
an apparent contact angle (see Fig. 5.1), we note it θapp. This angle is maximum
just after the release of the droplet. The angle decreases as the droplet spreads.
The dynamics of the wedge angle of a droplet θ on a �at surface is given by the
law of Tanner θ ∼ (νρΓẋ/γ)1/3, where Γ is a constant that takes the value 15
if liquid slides on a dry surface as showed by Ho�man [41]. Figure 5.6 shows a
double logarithmic graph of the apparent contact angle as a function of the speed.
We �nd a slope of 1/2 instead of 1/3 as Tanner's law provides. Therefore, to
characterize the dynamics of the apparent contact angle on a cone, we use this law:
θapp ∼ (νρΓẋ/γ)1/2. The capillary length, lc, describes the competition between
capillary e�ects and gravitational e�ects. We have lc =

√
γ/(ρg) = 1.5 10−3 m.

With a bottom view of the �ber, one observes that the width of the hanging part of
the barrel shape droplet is roughly constant as shown in Figure 5.7 (a). Actually,
it has the same order of magnitude as the capillary length. This width, noted ξ,
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can be scaled thanks to the volume of the droplet with the relation ξ ∼ Ω1/3, as
illustrated in Figure 5.7 (b). So, we assume that the capillary force is acting on
a length scale comparable to this characteristic length. This leads to a constant
driving force given by

Fγ,barrel ∼ γΩ1/3. (5.3)

Figure 5.6: Double logarithmic graph of the apparent contact angle of barrel shape
droplets θapp as a function of the droplet speed ẋ, for di�erent half-angles and volumes:
α = 4◦, Ω = 4 µl; α = 4◦, Ω = 2 µl; α = 6◦, Ω = 4 µl; α = 6◦, Ω = 2 µl. The experimental
data points are �tted with a power law with exponent 1/2.

Now, let us look at the expression of the viscous force. We manage to perform
experiments with droplets full of �uorescent particles (Fluostar EBM, 15 µm) in
order to see the motion of the liquid inside the droplet. A movie is available in
the video accessible via the QR code in Fig. 5.8. We observe a circulation of
the �uorescent particles towards the advancing liquid wedge. Therefore we assume
that the dissipation in the front liquid wedge is dominating. Lorenceau et al. [99]
explained that the viscous stress is given by ρνẋrfΓ/θ. For our system, one obtains
the following dissipating force in the liquid wedge,

Fwedge ∼ γx sinα

(
νρΓẋ

γ

)1/2

. (5.4)

The balance of these forces acting on the droplet can be written as

γΩ1/3 − γx sinα

(
νρΓẋ

γ

)1/2

= ρΩẍ, (5.5)

where ẍ is the acceleration of the droplet. We study the stationary equation that
gives the speed limit of the droplet for each position along the cone. One obtains

ẋ ∼ γ

νρΓ

Ω2/3

(x sinα)2
. (5.6)
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Figure 5.7: (a) Superpositions of pictures of a droplet moving along the cone with two
di�erent views, side view and bottom view, taken simultaneously. With the bottom
view one can see that the width ξ of the barrel shape droplet is roughly constant. The
experimental parameters are : α = 4◦ and Ω = 3 µl. (b) Graph of the width of the
barrel shape droplet to the power three as a function of the volume of the droplet and
for di�erent half-angles. The width of the droplet can be scaled by the cube root of the
volume.

Figure 5.8: QR code to access an experimental video of a silicone oil droplet full of
�uorescent particles moving along a conical cone (α = 6◦, Ω = 4 µl). The �uorescent
particles inside the droplet facilitate the visualization of the internal liquid motion. The
vertical red line marks the expected position where the droplet's shape transitions. On the
left of this line, the droplet exhibits a barrel shape, while on the right, it has a clamshell
shape.

The model for the barrel shape predicts a linear dependency between the speed
and the square of the inverse position. In Fig. 5.4, one can observe a slope of two
for large values of 1/x, namely when the droplet adopts a barrel shape. We will
check the scaling in section 5.4.3.

5.4.2 Clamshell shape

A droplet with a clamshell shape set only on one side of the �ber. That kind of
droplet hanging under a cone has a non-symmetrical front-rear contact line. If the
droplet goes from the tip to the base of the cone, the radius of curvature at the
front of the droplet is larger than the one at the rear. The droplet with a clamshell
shape is thin, it is a �at droplet. For the driving force, we assume that it is the
same expression as the one developed for thin symmetrical barrel shape droplets.
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We have
Fγ,clam ∼ γΩ/(x2 sinα). (5.7)

This expression comes from the Laplace law applied in the case of thin barrel shape
droplets (see Eqs. (1.58) and (1.59)) [99].

For the viscous force, we assume that the dissipation inside the liquid close to the
�ber dominates. Indeed, as we can see in the video accessible with the QR code
in Fig. 5.8, when the droplet has a clamshell shape, the �uorescent particles are
stretched in the �uid layers during the motion. This �lm dissipation is given by,

Ffilm ∼ νρΓ
e

ω
xẋ sinα, (5.8)

where e is the spread of the droplet (e = x+−x−) and ω is the thickness of the thin
liquid �lm where the dissipation occurs [99]. For the description of the position
over time for a droplet experiencing a �lm dissipation, we have

γ

sinα

Ω

x2
− νρΓ sinα

e

ω
xẋ = ρΩẍ. (5.9)

The stationary expression is therefore given by

ẋ ∼ γ

νρΓ

ω

e

1

sin2 α

Ω

x3
. (5.10)

This is the same model as the one developed by Lorenceau et al. to explain the
motion of symmetrical barrel shape droplets. With the present description, we
extend this model to the case of clamshell shape droplets. The model for the
clamshell shape predicts a speed proportional to the cube of the inverse position,
as can be seen in Fig. 5.4 (range of small values of 1/x). Also, the speed is linked
to the droplet volume and the half-angle of the cone. We will check this scaling in
the following section.

5.4.3 Analysis of the models

We have proposed in the previous sections two speci�c models for both regimes
corresponding to di�erent shapes. We now have to �x the range of x corresponding
to each geometry. Therefore, we need to estimate the transition position x∗

t . To �nd
the empirical value of the reduced volume at the transition, we tune the boundary
between the two regimes until the models �t best the data for both regimes. Then,
we con�rm the given position transition (Eq. (5.2)) by looking at the experimental
movies and see that the found range is well approximated. Indeed, thanks to image
treatments like the one illustrated in Fig. 5.5, we can see where the droplet has
a barrel shape or a clamshell shape. Also, the reduced volume at the transition
can be con�rmed by the fact that the droplet should change its shape when the
width of the droplet corresponds to the diameter of the �ber. Therefore, we have
r∗t ≈ 3

√
Ω/2, and with Eq. (5.1), we have V ∗

t = Ω/r∗3t ≈ 8. With that we obtain the
range of positions corresponding to the barrel shape and to the clamshell shape.
We can �t the data of the speed as a function of the inverse position for both
regions with the corresponding model.
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For the barrel shape, the model predicts that the speed goes as the square of the
inverse position (Eq. (5.6)). The proportionality coe�cient is the �tting parameter
noted ab. We have,

ẋ =
ab
x2

. (5.11)

This �tting law is plotted with a straight grey line in Fig. 5.4, and we see that it is
in good agreement with our experimental data. The �ts are in excellent agreement
for all our data except for the half-angle α = 3◦ (determination coe�cient of those
�ts are r2 ≈ 0.94). In Fig. 5.9, we have plotted ab Ω−2/3 sin2 α as a function of
α. We have ab Ω−2/3 sin2 α ≈ 0.08 mm/s. According to Eq. (5.6), this expression
can also be estimated with γ/(νρΓ) ≈ 0.03 mm/s, which is the same order of
magnitude. In Fig. 5.9, one observes that the ratio ab Ω−2/3 sin2 α is independent
of the volume. The in�uence of the volume is well described by the model. One
can also observe that this ratio increases with the half-angle. This highlights a
limitation of the model, it overestimates the in�uence of the half-angle. Di�erent
reasons could explain this observation. The capillary force acts mainly where the
apparent contact angle is the largest and we have scaled this length with the width
of the droplet. The barrel shape has a symmetrical shape neither rear-front nor
top-bottom. Moreover, the advancing contact line is inclined as the droplet is
moving. A more precise description of the shape and the length of the contact line
should provide a better scaling for the half-angle of the cone.
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Figure 5.9: Graph of ab Ω
−2/3 sin2 α, where ab is the �tting parameter for the barrel shape

description, as a function of the half-angle and for di�erent volumes. This parameter ab

represents the proportionality factor between the speed and the inverse of position to
the power two (Eq. (5.11)). Therefore, the higher it is, the higher the speed is. It
increases with the droplet volume and decreases with the half-angle of the cone. The
model overestimates the in�uence of the half-angle. The error bars are smaller than the
size of the symbols. The horizontal lines correspond to an average.

For the clamshell shape, the model predicts that the speed goes as the cube of the
inverse of the position (Eq. (5.10)). We note the proportionality coe�cient ac and
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it is the �tting parameter. We obtain

ẋ =
ac
x3

. (5.12)

This �tting law is plotted with a dashed grey line in Fig. 5.4. Our model for
the clamshell shape seems to depict the good trend of our experimental data. On
the graph presented in Fig. 5.10, showing ac sin

2 α as a function of the half-angle,
one can see that the speed of a droplet with a clamshell shape decreases with the
half-angle and increases with the volume, as predicted by our model. By looking at
the expression of the speed (Eq. (5.10)), one can see that the speed tends to zero
for very large positions. It is known that there is no equilibrium position for the
clamshell shape if no external forces apply (gravity or contact angle hysteresis) [158,
121]. We reinforce this result with our observations. With the �tting parameter
ac, the ratio ω/e can be calculated. We have ω/e ≈ acνρΓ sin2 α /(γΩ) ≈ 10−2.
It is a realistic order of magnitude because the spread is e ≈ 10−3 m and ω is the
thickness of the layers of �uid where �lm dissipation occurs, having ω ≈ 10−5 m is
acceptable.
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Figure 5.10: Graph of ac sin
2 α, where ac is the �tting parameter for the clamshell shape

description, as a function of the half-angle and for di�erent volumes. This parameter ac

represents the slope of the speed as a function of the cube of the inverse position (Eq.
(5.12)). Therefore, the higher this coe�cient is, the higher the speed is. The speed of a
clamshell shape droplet increases with the droplet volume and decreases with the half-
angle of the cone. The error bars are smaller than the size of the symbols. The horizontal
lines correspond to an average and give the trend expected by the model.
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5.5 Discussion: Grooved conical �bers

We have described the motion of both barrel and clamshell shaped droplets along
a conical �ber. In Chapter 2, we discussed the in�uence of curved grooves with
epicycle (convex) and hypocycle (concave) grooves, on droplet spreading. One
potential enhancement involves adding such grooves to conical �bers, as explored
by Hu et al [122] and Li et al. [123], who studied concave and convex grooves on
cones, respectively. Let us now compare our study with these two recent works
from the literature.

Firstly, we examine the case of droplets moving on concave grooved conical �bers.
Hu et al. manufacture these concave grooved �bers using a casting technique, with
a conical angle of 11.4◦ and a length of 2 mm. They name their �bers PCCF, which
stands for Pyramid-structured with Concave Curved surface Fibers. Four �bers are
studied, a plain conical �ber and conical �bers with three, four and �ve concave
grooves, termed tri-PCCF, tetra-PCCF and penta-PCCF, respectively. Images of
the �bers are shown in Fig. 5.11 (a). One notices that the cross-sections have large
concave grooves with smaller microridges along the longitudinal direction. The
plain conical �ber's cross-section exhibits a convex curvature with microridges.

They release water droplets at the tip of the �bers and observed a directional
motion towards the base of the cone, see Fig. 5.11 (b). More speci�cally, the tri-
PCCF demonstrates the highest droplet velocity compared to the other PCCFs or
even natural �bers, as shown in Fig. 5.11 (c). The recorded speed is 28.79 mm/s
on dry tri-PCCF and 47.34 mm/s on wet tri-PCCF. Comparing the tri-PCCF to
the plain conical �ber, they observe a longer precursor �lm on the PCCF than
on the conical �ber, with liquid spreading inside the concave groove upstream of
the droplet. Also, the advancing meniscus has a convex shape on PCCF and a
concave one on the plain conical �ber, as sketched in Fig. 5.11 (b). The highest
velocity observed on tri-PCCF, compared to the other PCCFs (tetra and penta),
is attributed to the decreasing cross-sectional surface as the number of grooves
increases. They state this cross-sectional surface in�uences the droplet length on
the PCCF, which is assumed to increase as the number of grooves decreases, leading
to the longest droplet on the tri-PCCF. A longer droplet results in a larger capillary
force. Unfortunately, this is the only empirical explanation provided in the article,
no further study of the curvature radius is explored. Nevertheless, this article
highlights an important observation, concave grooves indeed increase droplet speed
on conical �bers, and this speed is in�uenced by the cross-sectional surface of the
conical �ber.
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Figure 5.11: (a) Images of the conical �bers with concave grooves, from left to right with
three, four and �ve grooves, termed as tri-, tetra-, penta-PCCFs. On the far right, it is a
plain conical �ber. The images below are SEM images showing the microridges present on
the surface. The bottom pictures show the cross-section of each conical �ber, highlighting
the major concave grooves and smaller microridges. (b) A water droplet is released at
the tip of a dry tri-PCCF (left) and a dry plain conical �ber (right). The droplet moves
faster on the tri-PCCF, attributed to three factors: the upstream precursor �lm that
invades the grooves, the convex shape of the meniscus, and the smaller cross-section of
the �ber that induces a longer droplet. (c) Comparison of water droplet velocities on
various conical �bers. Light grey bars are natural and arti�cial conical �bers, taken from
previous literature (see [122]). Dark grey bars show the velocity values observed in the
study of Hu et al., with both dry and wet tri-PCCF allowing the fastest droplet motion.
From [122].

Secondly, we examine the case of droplets moving on convex grooved conical �bers.
Li et al. use 3D printing technology to create conical �bers with two to �ve grooves,
having a conical angle of 9◦ and a length of 20 mm. These conical �bers possess
the same circumscribed radius, as shown in Fig. 5.12 (a). In their experiment, the
cones are oriented downward and are immersed in water, with an oil droplet (1.2-
dichloroethane) placed at the tip. This setup enables an anti-gravity study, and
one observes the 6 µl droplet to move towards the base of the cone. Experimental
images are shown in Fig. 5.12 (b). The highest droplet velocity is observed on
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conical �bers with two grooves, with an average velocity of 8.28mm/s. The velocity
decreases as the number of grooves increases, as seen in Fig. 5.12 (d). Also,
on a conical �ber without any grooves, the droplet initially moves upward before
becoming pinned, resulting in a null average speed. Similar to the observations with
concave grooves, the precursor �lm invades the grooves upstream of the droplet and
the �ber cross-section decreases as the number of grooves decreases, which increases
the droplet length.

Figure 5.12: (a) 3D-printed conical �bers with convex grooves, arranged from top to
bottom: 2 grooves, 3 grooves, 4 grooves, 5 grooves and a non-grooved conical �ber. The
term BGCS stands for Bioinspired Grooves Conical Spine. The images on the right side
show the cross-section of each cone. (b) In the experiment, the cones are placed downward
under water, and an oil droplet (Ω = 6 µl) is deposited at the tip of the 2-grooved conical
�ber (top) and on a non-grooved conical �ber (bottom). The droplet moves upward along
the all cone on the 2-grooved cone. On the non-grooved conical �ber, the droplet initially
moves upward and then stops at a certain position. (c) Schematic illustration of the
droplet motion on a cone with two convex grooves, highlighting the precursor �lm that
rises ahead of the droplet. (d) Measured average droplet velocity for each type of conical
�ber. The velocity decreases as the number of grooves increases. The velocity is null for
the non-grooved conical �ber (none case) and is small for grooved cylindrical �ber (G. C.
case). From [123].

Direct comparison with our work is complex due to the use of di�erent liquids
(water for Hu et al., 1.2-dichloroethane oil for Li et al., and silicone oil for us).
In our study, the maximal speed of silicone oil droplets on a 12◦ dry conical �ber
is 1 mm/s (see Fig. 5.4). In Hu's study, the observed speed on dry plain conical
�ber is also around 1 mm/s, while on a dry tri-PCCF, it is about 30 times higher.
Consequently, one might expect silicone oil droplets to move signi�cantly faster
on 3D-printed conical �bers with concave grooves. In Li's study, the experimental
setup involves immersed conical �bers, which di�ers from our approach. The oil
droplet on their conical �ber is pinned, resulting in a null velocity, likely due to a
remaining e�ect of gravity. This di�erence prevents any direct comparison.
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5.6 Application for fog collection

Conical �bers can be used for fog harvesting as discussed in section 1.6.3. The spon-
taneous motion of droplets could enhance collection e�ciency by rapidly delivering
water droplets. E�ective drainage is a crucial aspect of fog collection systems, that
could be improved by using conical �bers. In a fog chamber, conical �bers are
observed to harvest droplets, with initial droplet formation at the cone tip. The
droplet grows and moves towards the base, allowing new droplets to form at the
cone tip. As the droplet moves, it coalesces with other droplets deposited on the
cone surface. This behavior is signi�cantly di�erent from that of a horizontal cylin-
drical �ber, where droplets form periodically along the �ber without collisions or
motion. This experimental observation is shown in a video accessible via the QR
code in Fig. 5.13.

Figure 5.13: QR code to access to an experimental video comparing fog collection on
cylindrical and conical �bers. The fog enters from the bottom of the video, and the �bers
are observed from beneath. Both �bers are 3 cm long. The cylindrical �ber has a radius
of 1.58 mm, while the conical �ber has a half-angle of 6◦. The video is accelerated 5 times.
This experiment has been performed in the Frugal lab at Université libre de Bruxelles in
collaboration with Denis Terwagne.

Regarding cone fog collection, Gurera and Bhushan [16] showed that two 3D-printed
cones with the same length but di�erent conical angles (10◦ and 45◦) have the
same collection rate, see Fig. 5.14. As discussed in this chapter, the smaller the
cone angle, the faster and further the droplet travels. Smaller cone angles are
expected to harvest more by allowing faster droplet motion. However, under fog
conditions, the experiment di�ers as droplets are deposited on the entire surface,
favoring coalescence. Larger cone angles provide a larger surface area to catch fog
droplets. This explains the same water collection rate, although the Laplace force
is larger for small cone angles, more droplets are formed on the surface of larger
angle cones. Moreover, the droplets fall with the same frequency, regardless of the
cone angle and the projected surface area in the fog �ow. The falling droplets also
have the same weight, which is understandable with the capillarity versus gravity
perspective.
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Figure 5.14: (a) and (b) Experimental images of 3D printed cones in a fog chamber. In
(a), the cone has a 10◦ tip angle, while in (b), it has a 45◦ tip angle. Both cones are of the
same length (15 mm). It is observed that the �bers collect water, with droplet formation
at their tip, which then moves towards the base and falls. (c) (top) Graph showing the
water collection rate for the two di�erent tip angles, note that the surface areas of the
�ber di�er due to the same cone length. The water collection rate is dependent on the
cone length, regardless of the tip angle or surface area. (c) (bottom) Graph of the weight
of the fallen droplets and the falling frequency for the two �bers. Despite the di�erent
cone angles, the weight of the fallen droplets and their falling frequency remains the same.
From [16].

5.7 Conclusion

Conical �bers are manufactured in a highly controllable way using 3D-printing
techniques. When a droplet is placed on those synthetic cones, a motion of the
droplet is observed from the tip toward the base of the cone. Beyond the capillary
length, the shape of the barrel shape droplet is in�uenced by gravity. We have
observed a switch in the geometry of the droplet. This transition is witnessed
thanks to the use of dry cones (so that a clamshell shape can be de�ned) and
thanks to a su�ciently long cone or a large half-angle so the position transition
can be reached. For small radii, the droplet tends to adopt a barrel shape (deformed
by gravity, meaning we have a thin �lm above the cone and a hanging part under
the cone), but if the radius of the �ber is larger, the droplet adopts a clamshell
shape. The two di�erent shapes induce two di�erent dynamics. These dynamics
are explained with two separate models based on the balance of forces exerted on
the droplet. For the barrel shape, the dissipation in the wedge dominates. A study
of the evolution of the apparent contact angle with the speed of the droplet allows
to adapt Tanner's law for conical �bers. For the driving force, as the barrel shape
is not symmetrical, an external capillary force is developed. For the clamshell
shape, the dissipation in the thin �lm layers close to the �ber dominates. The
driving force used is the Laplace law applied on thin barrel drops, this expression
has been developed by Lorenceau et al. [99]. We actually obtain the same model
as Lorenceau et al. They developed it to explain the motion of symmetrical barrel
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shape droplets but we extend it to the case of clamshell shape droplets. If the
volume of the droplet is higher, the speed of the droplet is higher too, for both the
barrel shape and the clamshell shape droplets. The smaller the half-angle of the
cone, the higher the speed for both barrel and clamshell shapes. Note that some
experimental dependencies in the barrel shape model are yet to be described. In
conclusion, capillary transport is enhanced if the volume of the droplet is large and
if the half-angle of the cone is small.

The perspectives of this work are numerous. We could change the surface roughness
of the cones by adding grooves, scales or spikes which could be done thanks to 3D-
printing. As analyzed in recent literature, both concave and convex grooves improve
droplet motion [122, 123]. Another application of conical �bers is in fog harvesting.
Utilizing conical �bers could enhance fog collection e�ciency by increasing drainage
e�ciency. Additionally, another way to set a droplet into motion is to put it into a
wedge made of two smooth surfaces [159, 160]. It would be interesting to consider
curved surfaces and to see if the behavior of the droplet is changed. Duprat et
al. [107] described the shape of droplets trapped between two parallel cylindrical
�bers. Replacing these �bers with conical ones could provoke the motion of the
droplets. In conclusion, our study provides a new way for manipulating droplets
and o�ers many new perspectives.
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6

General conclusion

and perspectives

6.1 Conclusion

In this thesis, we explored the dynamics of liquid droplets interacting with various
structures, focusing on their behavior on grooved substrates, cylindrical �bers and
conical �bers. By systematically analyzing how droplets spread or move along these
surfaces, we have gained insights into the key physical parameters that enhance
droplet motion.

In Chapter 1, we provided an overview of the extensive �eld of droplet research, cov-
ering droplets in �uid environments, on �at and grooved substrates, on cylindrical
and conical �bers. We highlighted how the solid substrate geometry deeply a�ects
the droplet shape, spreading and motion. Additionally, we described natural exam-
ples of plants that achieve e�cient droplet transport, which served as inspiration
for our work. We have observed natural �bers and grooves on the plant attributes
responsible for fog collection. This background laid the foundation for further stud-
ies, we have focused on new ways to initiate and enhance droplet spreading thanks
to curved grooves and substrates.

In Chapter 2, we examined the spreading behavior of wetting droplets within curved
grooves inscribed on �at substrates. This study revealed that the curvature sign
(whether concave or convex) signi�cantly in�uences the spreading dynamics. We
showed that the convex grooves (epicycles) facilitate faster spreading. This en-
hanced dynamic is attributed to the convex groove cusp that pinches the droplet
front, compared to the concave groove where the liquid front spreads more broadly.
These �ndings underscore the importance of grooves on droplet motion. A feature
also observed in plants performing water collection.

In Chapter 3, we studied the complete behavior of a single droplet descending
on a vertical �ber, from its motion to the destabilization of its coating into new
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droplets. We observed that the thickness of the liquid �lm left behind the droplet
is correlated with the droplet speed, the �lm being thickest at the initial deposition
point. At this position, the �lm destabilizes rapidly due to the Rayleigh-Plateau
instability, leading to the formation of a new droplet. We developed models to
describe the dynamics of this droplet formed from the destabilized coating.

In Chapter 4, we extended our �ber-based studies to the motion of droplets along
twisted �bers. The helical grooves formed by twisting two cylindrical �bers create a
substructure that in�uences droplet descent. Depending on the droplet size relative
to the helical pitch, droplets either follow a helical path or move predominantly
vertically. Our experiments revealed that both the angular and the vertical speeds
are a�ected by the number of twists, and we proposed models to describe these
observations.

In Chapter 5, we investigated the motion of droplets on conical �bers. We showed
that the shape and motion of droplets are in�uenced by the geometry of the �ber.
As the droplet moves from the tip to the base of the conical �ber, it transitions from
a barrel shape to a clamshell shape, with each shape exhibiting di�erent dynamic
behaviors. We developed models to describe these dynamics.

These �ndings expand our understanding of liquid spreading on both macroscopic
structures like �bers and cones, as well as macroscopic substrates decorated with
grooves. The study of droplets on �bers provides practical insights for improv-
ing draining in water collection systems. Fog collection relies on three distinct
e�ciencies, this thesis focuses on enhancing drainage e�ciency. Two components
can be optimized: the droplet and the substrate. For the droplet, larger volume
and lower liquid viscosity increase the descent speed. Clamshell shape droplets
slide faster due to their smaller contact area with the substrate compared to barrel
shape droplets. Regarding the substrate, vertical �bers are an e�ective way to
drain droplets as gravity is used to drive droplet motion. In this con�guration,
smaller �ber diameter and prewetted �bers increase the droplet speed. Moreover,
adding convex grooves by placing two �bers side by side enhances droplet descent.
Namely twisted �bers could be advantageous as they promote the rotation of the
droplet around the bundle. For horizontal droplet displacement, conical �bers are
interesting as droplets on conical �bers move towards the base of the cone, with
smaller half-angle resulting in faster droplet speed. Once more, inscribing curved
grooves along the cone surface favors the droplet motion.
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6.2 Perspectives

Droplets on �ber is a vast area of study, with many intriguing phenomena yet
to be unraveled. At the end of each chapter, we discussed perspectives for each
case study. Here, we propose two main ideas for future works. Fig. 6.1 shows
an overview of the topics addressed in the thesis, as well as potential avenues for
future research.

Figure 6.1: Schematic overview of the topics addressed in the thesis and the perspectives
it opens. From top to bottom, the substrate changes, ranging from cylindrical �bers
to conical �bers and �nally to cylindrical charged �bers. From left to right, the liquid
geometry changes, depicting both droplets and liquid coatings. The thesis focuses on
droplet behavior on �bers. It opens avenues for future research about droplets on charged
�bers and liquid coatings on grooved or charged �bers.

First, it would be interesting to investigate the Landau-Levich �uid coating of
substrates with substructures, such as grooves. One could withdraw a bundle of
�bers from a liquid bath at a controlled speed and examine how grooves a�ect
the liquid �lm thickness. The bundle of �bers could consist of either two parallel
�bers or two twisted �bers. Experimentally, this would be explored by measuring
the weight of the �ber bundle to estimate the liquid entrainment. Additionally,
the presence of grooves might alter the Rayleigh-Plateau instability, potentially
delaying or even preventing the breakup of the liquid �lm.
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Second, we observed interesting phenomena when a silicone oil droplet descends
along a vertical charged �ber. A nylon �ber can accumulate static charges when
rubbed with a piece of polystyrene. As the silicone oil droplet moves down the
charged �ber, it amasses charges that induce a deformation in the droplet shape
and sometimes explodes by jumping o� the �ber, or expelling tiny jets of liquid,
as shown in Fig. 6.2 (a), (b) and (c). Additionally, the liquid coating left behind
the droplet can destabilize into a saw-tooth con�guration, with deformed barrel or
clamshell shapes, see Fig. 6.2 (d). The saw-tooth con�guration remains stable due
to the electrostatic repulsion between the droplets. Another curious observation is
symmetrical barrel shape droplets, which under no charge circumstance would catch
up and merge, instead maintaining a constant spacing forming a train of di�erent
sized beads that descends along the �ber as observed in Fig. 6.2 (b). Exploring
these behaviors could be interesting and could lead to innovative applications, such
as devices that control droplet movement between �bers based on applied electric
potentials. One could imagine devices where droplets could jump from one �ber
to another substrate. Note also the potential application for fog nets that might
accumulate charges from wind interactions.

Figure 6.2: Phenomena observed when a silicone oil droplet descends along a charged
vertical �ber. (a) The droplet accumulates charges leading to deformation of its shape
until it jumps o� the �ber. (b) Deformed barrel shape droplet due to the accumulation of
electric charges on its surface. The droplets eject tiny jets of liquid (indicated by circles).
All droplets slide down the �ber without merging. (c) The droplet transitions from a
barrel shape to an asymmetric barrel or a clamshell shape and remains stable in this
con�guration. (d) Liquid coating on a charged �ber that destabilizes into a saw-tooth
pattern. The scale bars correspond to 2 mm. Time intervals for (a), (b) and (c) are 0.04
s, 0.2s and 0.08s, respectively. (Credit: A. Grolet, F. Massoz and C. Traversin)
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More than 150 years ago, Joseph Plateau, a notable �gure from our University of
Liège, �rst observed the destabilization of liquid coatings. Since then, the interac-
tion between liquids and �bers has continued to fascinate scientists, revealing new
and intriguing behaviors. While this thesis has contributed to our understanding,
the journey to fully grasp droplet motions and interactions on structured surfaces
is far from over, and many exciting discoveries await.
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Appendix A

In this appendix, we derive the velocity pro�le of �uid layers inside a corner, as
given in Eq. (1.23) and detailed in [40]. The problem is encountered in Chapter 1,
section 1.3.3 and is the following. A droplet is spreading on a substrate, the contact
line advances with a speed U and the dynamical contact angle θD decreases as the
droplet spreads. One can zoom on one edge of the droplet and one obtains a liquid
corner, as depicted in Fig. A.1.

Figure A.1: Advancing wedge of �uid with a dynamical contact angle θD. The velocity
pro�le v of the �uid layers (in dark blue) is parabolic as demonstrated in this Appendix.

The speed is along the x-axis, and the �uid is assumed stationary and incompress-
ible. This later implies ∇⃗.v⃗ = 0, leading to v⃗ = v(z)e⃗x. To express the velocity
pro�le, we use the Navier-Stokes equation, which describes the conservation of
momentum at any point in the �uid,

ρ
∂v⃗

∂t
+ ρ

(
v⃗.∇⃗

)
v⃗ = ρg⃗ − ∇⃗p+ η∆v⃗, (A.1)

where v⃗ is the local �ow velocity and p is the local pressure. On the x-axis, one
obtains,

vx(z) =
1

η

∂p

∂x

z2

2
+ Cz + C ′ (A.2)

where C and C ′ are two integration constants. Considering two boundary con-
ditions, namely the assumption of a non-slipping �uid, vx(z = 0) = 0, and no
tangential constraints at the free surface,

(
dvx
dz

)
z=ζ

= 0, where ζ is a given thick-
ness in the corner (expressed as ζ = θDx), yields,

vx(z) =
1

η

∂p

∂x

(
z2

2
− ζz

)
(A.3)
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To �nd the expression for the derivative of the pressure, we express the mean
velocity along the pro�le, U , [40] one has

U =
1

ζ

∫ ζ

0

v(z)dz = −1

η

∂p

∂x

ζ2

3
. (A.4)

This leads to
∂p

∂x
= −Uη

3

ζ2
. (A.5)

Finally, one can rewrite the expression for vx(z) (see Eq. (A.3)) as

vx(z) =
3

2

U

ζ2
(−z2 + 2ζz). (A.6)

This is the velocity pro�le along the x-axis that establishes inside a corner of �uid
that spreads on a �at horizontal surface, as given in Chapter 1, section 1.3.3, Eq.
(1.23). The velocity pro�le of the �uid layers is parabolic, as sketched in Fig. A.1.
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Appendix B

In this Appendix, we calculate the Rayleigh-Plateau wavelength λRP using a linear
stability analysis. This wavelength appears when a liquid �lm coating a �ber
destabilizes. The �ber has a radius rf , the initial liquid �lm thickness is noted
e0. One considers the liquid �lm to be thin, e0 ≪ rf . The orientation of the �ber
de�nes the x-axis, the other coordinate is the polar r-axis which is perpendicular
to the previous one, as shown in Fig. B.1 (a).

Figure B.1: (a) Illustration of the liquid coating on a �ber. The initial thickness of the
liquid �lm is noted e0 and the radius of the �ber is rf . This liquid �lm destabilizes as
illustrated in (b). The deformation of the interface is characterized by two curvatures, R1

and R2.

Several assumptions are needed to simplify the Navier-Stokes equation (Eq. (A.1))
that governs the liquid �ow inside the liquid �lm. The calculation is made for a
stationary and incompressible �ow. The �ow is considered unidirectional along the
x-axis, with the velocity pro�le that only depends on the r-axis. Furthermore, the
pressure gradient inside the �uid only depends on the coordinate r. It yields, the
Poiseuille equation

−∂p

∂x
+ η

∂2vx
∂r2

= 0. (B.1)

Integrating this equation along the r-coordinate gives

vx(r) =
1

η

∂p

∂x

r2

2
+ Cr + C ′, (B.2)
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where C and C ′ are two integration constants. To calculate these constants, we
take the following boundary conditions:

� No slipping on the �ber : vx(r = rf ) = 0.

� No tangential constrains along the free surface : ∂vx
∂r

∣∣
r=rf+e

= 0.

One obtains the following expression for the velocity pro�le

vx(r) =
1

2η

∂p

∂x

(
r2 + r2f − 2r(rf + e) + 2erf

)
. (B.3)

Consequently, the linear �ow rate, noted q is

Q =

∫ rf+e

rf

vx(r)dr = − 1

3η

∂p

∂x
e3. (B.4)

One needs to express the pressure p and its dependence with the x-coordinate.
The pressure inside the liquid �lm comes from the deformation of the interface and
more speci�cally its curvature, as illustrated in Fig. B.1 (b). The Laplace pressure
is given by

p = γ

(
1

R1
+

1

R2

)
= γ

(
1

rf + e
− ∂2e

∂x2

)
. (B.5)

This leads to the following expression of the linear �ow rate

Q =
γ

3η
e3

(
1

r2f

∂e

∂x
+

∂3e

∂x3

)
. (B.6)

This linear �ow rate is used in the following development.

The mass conservation in a portion of �uid dx and per unit length is

∂e

∂t
= −∂Q

∂x
. (B.7)

With Eq. (B.6) and with e = e∗ + δe cos(qx) where e∗ is the average thickness and
q the wave vector related to the wavelength (λ = 2π/q), one obtains

∂δe

∂t
=

γ

3ηr2f
e∗3q2(1− q2r2f )δe. (B.8)

This expression is given for the �rst order of δe. Finally, one assumes δe ∝ exp(σt)
with σ being the rate of growth. One has

σ(q) =
γ

3ηr2f
e∗3q2(1− q2r2f ). (B.9)

The wavelength taken by the system is the one that maximizes this rate of growth.
The solution is qRP = 1/

√
2rf . The Rayleigh-Plateau wavelength is thus

λRP =
2π

qRP
= 2π

√
2rf . (B.10)
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