Deep learning; Interactive contouring; Lung tumour; NSCLC; Hematology; Oncology; Radiology, Nuclear Medicine and Imaging
Abstract :
[en] [en] BACKGROUND AND PURPOSE: To evaluate the impact of a deep learning (DL)-assisted interactive contouring tool on inter-observer variability and the time taken to complete tumour contouring.
MATERIALS AND METHODS: Nine clinicians contoured the gross tumour volume (GTV) using the PET-CT scans of 10 non-small cell lung cancer (NSCLC) patients, either using DL-assisted or manual contouring tools. After contouring a case using one contouring method, the same case was contoured one week later using the other method. The contours and time taken were compared.
RESULTS: Use of the DL-assisted tool led to a statistically significant decrease in active contouring time of 23 % relative to the standard manual segmentation method (p < 0.01). The mean observation time for all clinicians and cases made up nearly 60 % of interaction time for both contouring approaches. On average the time spent contouring per case was reduced from 22 min to 19 min when using the DL-assisted tool. Additionally, the DL-assisted tool reduced contour variability in the parts of tumour where clinicians tended to disagree the most, while the consensus contour was similar whichever of the two contouring approaches was used.
CONCLUSIONS: A DL-assisted interactive contouring approach decreased active contouring time and local inter-observer variability when used to delineate lung cancer GTVs compared to a standard manual method. Integration of this tool into the clinical workflow could assist clinicians in contouring tasks and improve contouring efficiency.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Trimpl, Michael J ; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK, Department of Oncology, University of Oxford, Oxford, UK, Mirada Medical Ltd, Oxford, UK. Electronic address: michael.trimpl@wadham.ox.ac.uk
Campbell, Sorcha; Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK. Electronic address: sorcha.campbell@nhslothian.scot.nhs.uk
Panakis, Niki; Oxford University Hospitals NHS Foundation Trust, UK. Electronic address: niki.panakis@ouh.nhs.uk
Ajzensztejn, Daniel; Oxford University Hospitals NHS Foundation Trust, UK. Electronic address: daniel.ajzensztejn@ouh.nhs.uk
Burke, Emma; Oxford University Hospitals NHS Foundation Trust, UK. Electronic address: emma.burke1@ouh.nhs.uk
Ellis, Shawn ; Oxford University Hospitals NHS Foundation Trust, UK. Electronic address: shawn.ellis@ouh.nhs.uk
Johnstone, Philippa ; Peter MacCallum Cancer Centre, Melbourne, Australia. Electronic address: philippa.johnstone@petermac.org
Doyle, Emma ; Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK. Electronic address: emma.doyle@nhs.scot
Towers, Rebecca; Mirada Medical Ltd, Oxford, UK. Electronic address: rebeccajtowers@yahoo.co.uk
Higgins, Geoffrey; Department of Oncology, University of Oxford, Oxford, UK. Electronic address: geoffrey.higgins@oncology.ox.ac.uk
Bernard, Claire ; Université de Liège - ULiège > Département de physique
Hustinx, Roland ; Université de Liège - ULiège > Département des sciences cliniques > Médecine nucléaire
Vallis, Katherine A; Department of Oncology, University of Oxford, Oxford, UK. Electronic address: katherine.vallis@oncology.ox.ac.uk
Stride, Eleanor P J; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK. Electronic address: eleanor.stride@eng.ox.ac.uk
Gooding, Mark J ; Mirada Medical Ltd, Oxford, UK, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK, Inpictura Ltd, Abingdon, UK. Electronic address: mark.gooding@inpicturamedica.com
H2020 - 766276 - PREDICT - A new era in personalised medicine: Radiomics as decision support tool for diagnostics and theragnostics in oncology
Funders :
EU - European Union CRUK - Cancer Research UK
Funding text :
This project has received funding from the European Union \u2019s Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie grant agreement No. 766276 , as well as from the Google Cloud Education Pro- gram for researchers. GH and KAV acknowledge funding support from the CRUK Oxford Radnet Centre ( A28736 ).This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie grant agreement No. 766276, as well as from the Google Cloud Education Program for researchers. GH and KAV acknowledge funding support from the CRUK Oxford Radnet Centre (A28736).
Cardenas, C.E., Blinde, S.E., Mohamed, A.S.R., Ng, S.P., Raaijmakers, C., Philippens, M., et al. Comprehensive quantitative evaluation of variability in magnetic resonance-guided delineation of oropharyngeal gross tumor volumes and high-risk clinical target volumes: An r-ideal stage 0 prospective study. Int. J. Radiat. Oncol. Biol. Phys. 113 (2022), 426–436, 10.1016/j.ijrobp.2022.01.050.
Njeh, C.F., Tumor delineation: The weakest link in the search for accuracy in radiotherapy. J. Med. Phys., 33, 2008, 136, 10.4103/0971-6203.44472.
Das, I.J., Compton, J.J., Bajaj, A., Johnstone, P.A., Intra- and inter-physician variability in target volume delineation in radiation therapy. J. Radiat. Res. 62 (2021), 1083–1089, 10.1093/JRR/RRAB080.
Vinod, S.K., Min, M., Jameson, M.G., Holloway, L.C., A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology. J. Med. Imaging Radiat. Oncol. 60 (2016), 393–406, 10.1111/1754-9485.12462.
Morarji, K., Fowler, A., Vinod, S.K., Shon, I.H., Laurence, J.M., Impact of fdg-pet on lung cancer delineation for radiotherapy. J. Med. Imaging Radiat. Oncol. 56 (2012), 195–203, 10.1111/J.1754-9485.2012.02356.X.
M. A. Pitka¨nen, K. A. Holli, A. T. Ojala, P. Laippala, Quality assurance in radiotherapy of breast cancer–variability in planning target volume delineation. Acta oncologica (Stockholm, Sweden) 40 (2001), 50–55, 10.1080/028418601750071055.
Jansen, E.P., Nijkamp, J., Gubanski, M., Lind, P.A., Verheij, M., Interobserver variation of clinical target volume delineation in gastric cancer. Int. J. Radiat. Oncol. Biol. Phys. 77 (2010), 1166–1170, 10.1016/J.IJROBP.2009.06.023.
Olabarriaga, S.D., Smeulders, A.W.M., Interaction in the segmentation of medical images: A survey. Med. Image Anal. 5 (2001), 127–142.
Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., et al. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37 (2018), 1562–1573, 10.1109/TMI.2018.2791721.
Wang, G., Zuluaga, M.A., Li, W., Pratt, R., Patel, P.A., Aertsen, M., et al. Deepigeos: A deep interactive geodesic framework for medical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 41 (2019), 1559–1572, 10.1109/TPAMI.2018.2840695.
T. Sakinis F. Milletari H. Roth P. Korfiatis P. Kostandy K. Philbrick et al. Interactive segmentation of medical images through fully convolutional neural networks ArXiv abs/1903.0 (2019).
Wei, Z., Ren, J., Korreman, S.S., Nijkamp, J., Towards interactive deep-learning for tumour segmentation in head and neck cancer radiotherapy. Physics and Imaging in Radiation Oncology, 25, 2023.
Outeiral, R.R., Bos, P., Al-Mamgani, A., Jasperse, B., Simões, R., van der Heide, U.A., Oropharyngeal primary tumor segmentation for radiotherapy planning on magnetic resonance imaging using deep learning. Phys. Imaging Radiat. Oncol. 19 (2021), 39–44, 10.1016/J.PHRO.2021.06.005.
L. Castrejón, K. Kundu, R. Urtasun, S. Fidler, Annotating object instances with a polygon-rnn, 2017 IEEE CVPR (2017).
D. Acuna, H. Ling, A. Kar, S. Fidler, Efficient interactive annotation of segmentation datasets with polygon-rnn++,2018 IEEE CVPR (2018).
Boers, T.G., Hu, Y., Gibson, E., Barratt, D.C., Bonmati, E., Krdzalic, J., et al. Interactive 3d u-net for the segmentation of the pancreas in computed tomography scans. Phys. Med. Biol., 65, 2020, 065002, 10.1088/1361- 6560/ab6f99.
Smith, A.G., Petersen, J., Terrones-Campos, C., Berthelsen, A.K., Forbes, N.J., Darkner, S., et al. Root- painter3d: Interactive-machine-learning enables rapid and accurate contouring for radiotherapy. Med. Phys. 49 (2022), 461–473, 10.1002/MP.15353.
Trimpl, M.J., Boukerroui, D., Stride, E.P., Vallis, K.A., Gooding, M.J., Interactive contouring through contextual deep learning. Med. Phys. 48 (2021), 2951–2959, 10.1002/mp.14852.
M. J. Trimpl, S. Primakov, P. Lambin, E. P. Stride, K. A. Vallis, M. J. Gooding, Beyond automatic medical image segmentation-the spectrum between fully manual and fully automatic delineation, Phys. Med. Biol. 67 (6 2022). doi:10.1088/1361-6560/AC6D9C. URL https://pubmed.ncbi.nlm.nih.gov/35523158/.
Louie, A.V., Rodrigues, G., Olsthoorn, J., Palma, D., Yu, E., Yaremko, B., et al. Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4d-ct era. Radiother. Oncol. 95 (2010), 166–171, 10.1016/J.RADONC.2009.12.028.
Kao, Y.S., Yang, J., Deep learning-based auto-segmentation of lung tumor pet/ct scans: a systematic review. Clin. Transl. Imaging. 10 (2022), 217–223, 10.1007/S40336-022-00482-Z/METRICS.
T. Heimann, B. V. Ginneken, M. A. Styner, Y. Arzhaeva, V. Aurich, C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes, F. Bello, G. Binnig, H. Bischof, A. Bornik, P. M. Cashman, Y. Chi, A. Córdova, B. M. Dawant, M. Fidrich, J. D. Furst, D. Furukawa, L. Grenacher, J. Hornegger, D. Kainmu¨ller, R. I. Kitney, H. Kobatake, H. Lamecker, T. Lange, J. Lee, B. Lennon, R. Li, S. Li, H. P. Meinzer, G. Németh, D. S. Raicu, A. M. Rau, E. M. V. Rikxoort, M. Rousson, L. Ruskó, K. A. Saddi, G. Schmidt, D. Seghers, A. Shimizu, P. Slagmolen, E. Sorantin, G. Soza, R. Susomboon, J. M. Waite, A. Wimmer, I. Wolf, Comparison and evaluation of methods for liver segmentation from ct datasets, IEEE Trans. Med. Imaging 28 (2009) 1251–1265. doi:10.1109/TMI.2009.2013851. URL https://pubmed.ncbi.nlm.nih.gov/19211338/.
Stapleford, L.J., Lawson, J.D., Perkins, C., Edelman, S., Davis, L., McDonald, M.W., et al. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 77 (2010), 959–966.
A. K. H. Duc, G. Eminowicz, R. Mendes, S. L. Wong, J. McClelland, M. Modat, M. J. Cardoso, A. F. Mendelson, C. Veiga, T. Kadir, D. D'Souza, S. Ourselin, Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer, Med. Phys. 42 (9 2015). doi:10.1118/1.4927567. URL https://pubmed.ncbi.nlm.nih.gov/26328953/.
Reed, V.K., Woodward, W.A., Zhang, L., Strom, E.A., Perkins, G.H., Tereffe, W., et al. Automatic segmentation of whole breast using atlas approach and deformable image registration. Int. J. Radiat. Oncol. Biol. Phys. 73 (2009), 1493–1500, 10.1016/J.IJROBP.2008.07.001.
Lustberg, T., van Soest, J., Gooding, M., Peressutti, D., Aljabar, P., van der Stoep, J., et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother. Oncol. 126 (2018), 312–317.
Zabel, W.J., Conway, J.L., Gladwish, A., Skliarenko, J., Didiodato, G., Goorts-Matthews, L., et al. Clinical evaluation of deep learning and atlas-based auto-contouring of bladder and rectum for prostate radiation therapy. Pract. Radiat. Oncol. 11 (2021), e80–e89, 10.1016/J.PRRO.2020.05.013.
Vaassen, F., Hazelaar, C., Vaniqui, A., Gooding, M., van der Heyden, B., Canters, R., et al. Evaluation of measures for assess- ing time-saving of automatic organ-at-risk segmentation in radiotherapy. Phys. Imaging Radiat. Oncol. 13 (2020), 1–6, 10.1016/j.phro.2019.12.001.
Ronneberger, O., Fischer, P., Brox, T., U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention 9351 (2015), 234–241, 10.1007/978-3-319-24574-428.
M.Z. Alom M. Hasan C. Yakopcic T.M. Taha V.K. Asari Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation ArXiv abs/1802.0 (2018). http://arxiv.org/abs/1802.06955.
Alom, M.Z., Yakopcic, C., Taha, T.M., Asari, V.K., Nuclei segmentation with recurrent residual convolutional neural networks based u-net (r2u-net). 2018 IEEE National Aerospace and Electronics Conference (NAECON), 2018, 228–233.
O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. Mcdonagh, N. Y. Hammerla, B. Kainz, B. Glocker, D. Rueckert, Attention u-net: Learning where to look for the pancreas (2018).
Schlemper, J., Oktay, O., Schaap, M., Heinrich, M., Kainz, B., Glocker, B., et al. Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 53 (2019), 197–207, 10.1016/j.media.2019.01.012.
Li, P., Wang, S., Li, T., Lu, J., HuangFu, Y., Wang, D., A large-scale ct and pet/ct dataset for lung cancer diagnosis. 2020, The Cancer Imaging Archive.
Steenbakkers, R.J.H.M., Duppen, J., Fitton, I., Deurloo, K.E.I., van Herk, M., Rasch, C.R.N., Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a ’big brother’ evaluation. Radiother. Oncol. 77 (2005), 182–190.
Warfield, S.K., Zou, K.H., Wells, W.M., Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23 (2004), 903–921, 10.1109/TMI.2004.828354.
Dice, L.R., Dice lr: Measures of the amount of ecologic association between species. Ecology 26 (1945), 297–302.
Vaassen, F., Boukerroui, D., Looney, P., Canters, R., Verhoeven, K., Peeters, S., et al. Real-world analysis of manual editing of deep learning contouring in the thorax region. Phys. Imaging Radiat. Oncol. 22 (2022), 104–110, 10.1016/J.PHRO.2022.04.008.
Palmer, S., Torgerson, D.J., Economic notes: definitions of efficiency. Br. Med. J. (Clin. Res. Ed.), 318, 1999, 1136, 10.1136/BMJ.318.7191.1136.
H. Baroudi, K. K. Brock, W. Cao, X. Chen, C. Chung, L. E. Court, M. D. E. Basha, M. Farhat, S. Gay, M. P. Gronberg, A. C. Gupta, S. Hernandez, K. Huang, D. A. Jaffray, R. Lim, B. Marquez, K. Nealon, T. J. Netherton, C. M. Nguyen, B. Reber, D. J. Rhee, R. M. Salazar, M. D. Shanker, C. Sjogreen, M. Woodland, J. Yang, C. Yu, Y. Zhao, Automated contouring and planning in radiation therapy: What is ‘clinically acceptable’?, Diagnostics 13 (2 2023). doi:10.3390/DIAGNOSTICS13040667. URL /pmc/articles/PMC9955359/ /pmc/articles/PMC9955359/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955359/.