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A B S T R A C T

Background and Purpose: To evaluate the impact of a deep learning (DL)-assisted interactive contouring tool on 
inter-observer variability and the time taken to complete tumour contouring.
Materials and Methods: Nine clinicians contoured the gross tumour volume (GTV) using the PET-CT scans of 10 
non-small cell lung cancer (NSCLC) patients, either using DL-assisted or manual contouring tools. After con-
touring a case using one contouring method, the same case was contoured one week later using the other 
method. The contours and time taken were compared.
Results: Use of the DL-assisted tool led to a statistically significant decrease in active contouring time of 23 % 
relative to the standard manual segmentation method (p < 0.01). The mean observation time for all clinicians 
and cases made up nearly 60 % of interaction time for both contouring approaches. On average the time spent 
contouring per case was reduced from 22 min to 19 min when using the DL-assisted tool. Additionally, the DL- 
assisted tool reduced contour variability in the parts of tumour where clinicians tended to disagree the most, 
while the consensus contour was similar whichever of the two contouring approaches was used.
Conclusions: A DL-assisted interactive contouring approach decreased active contouring time and local inter- 
observer variability when used to delineate lung cancer GTVs compared to a standard manual method. Inte-
gration of this tool into the clinical workflow could assist clinicians in contouring tasks and improve contouring 
efficiency.

Introduction

Tumour segmentation is an important step in radiotherapy (RT) 
planning but is subject to substantial inter-observer variability [1,2,3]. 

Inaccurate target volume segmentation may result in incomplete 
coverage of the tumour and, therefore, a greater risk of local recurrence 
and poor outcome. It may also result in unintended excessive irradiation 
of surrounding healthy tissue which carries the risk of significant 
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toxicity [4,5,6,7].
Automatic and semi-automatic contouring approaches have been 

used to reduce inter-observer variability [8,9]. In clinical practice, the 
resulting segmentations often require manual editing. Deep Learning 
(DL)-assisted methods can reduce the effort of manual contouring by 
combining DL methods with the expert knowledge of clinicians 
[10,11,12]. Such methods can incorporate user interaction in various 
ways. For example, manual placement of bounding boxes around a 
structure of interest can improve predicted segmentations 
[13,14,15,16]. Other user interactions such as clicks, scribbles, or drag 
points can be used to indicate areas incorrectly segmented by the DL 
algorithm [17,9,18]. As a further example, contextual DL is an inter-
active contouring approach that enables 3D segmentation once the user 
has contoured the structure of interest on a single or very small number 
of image slices [19,20].

Previous studies have investigated inter- and intra-observer vari-
ability for lung tumour delineation. Louie et al. reported that inter- 
observer variability for 4D-CT as measured by 3D Dice Similarity Co-
efficient (DSC) was 0.80 for the primary tumour and 0.70 for lymph 
nodes. The 3D DSC value for intra-observer variability was 0.80 for the 
primary tumour and 0.64 for lymph nodes [21]. A review of fully 
automatic DL methods for lung tumour delineation using PET/CT re-
ported 3D DSC ranging from 0.64 to 0.87 for primary tumour segmen-
tation [22]. Note that this review summarized studies that used different 
DL methods and various datasets.

Inter-observer variability is only one aspect of the clinical accept-
ability of a contouring tool. Segmentation accuracy is often used to 
evaluate automatic and semi-automatic tools but practical implications, 
such as their impact on the time taken to complete contouring, are not 
always considered [23,24,25,26,27]. Clinical acceptability does not 
depend solely on the demonstration of model accuracy, as measured by 
established endpoints such as DSC, as geometric similarity does not 
alone predict the impact of a new tool on clinical workflow [28]. 
Additionally, if only a single set of expert contours is available for 
reference, as is sometimes the case, then it is not possible to assess the 
important parameter of inter-observer variability associated with the 
model under evaluation.

For a contouring tool to be clinically viable, it should maintain or 
improve contour quality, while saving time compared to standard con-
touring tools − but this aspect is often not investigated [28]. While some 
evaluation measures, such as Added Path Length (APL) correlate better 
with contouring time than others, such as DSC, they are inadequate 
substitutes for direct measurement of the time taken by experienced 
clinicians to contour specific structures [29].

Building on the work of Trimpl et al., this study investigates the 
clinical impact of a DL-assisted model [19]. The goal was to investigate 
the impact on tumour contouring time, contouring workflow, and inter- 
and intra-observer variability when clinicians used the DL-assisted 
interactive contouring tool compared to a standard manual method.

Material and methods

Deep learning-assisted interactive contouring tool

The investigated DL-assisted tool [19] makes predictions on adjacent 
image slices from user-provided input. The model was trained on a set of 
19 structures (2000 image slices per structure) which incentivizes it to 
make predictions based on the previous user input rather than to predict 
based on structure-specific information. The data included for the 
evaluation by clinicians in the current study were not included in the 
training dataset or prior testing of the DL-assisted tool.

The DL-assisted tool uses three different inputs: the image slice to be 
contoured, a contoured image slice, as well as the corresponding contour 
information (Fig. 1a,b). The latter two are the contextual inputs. The 
model can generalize because the label information was deliberately 
omitted during training and thus the model relies on information from 
the contextual inputs to make a prediction. The network uses a Residual- 
Recurrent U-Net with Attention Gates [30,31,32], as illustrated in 
Fig. 1c. Attention gates replace the skip connections in the standard U- 
Net. The attention gates serve as soft self-attention to highlight salient 
image regions implicitly [33,34]. The last layer applies a sigmoid acti-
vation. Full details on the model architecture, training data and training 
method may be found in [19].

Data

The radiotherapy treatment planning CT scans, including manually 
drawn organs-at-risk (OAR) and tumour contours, of 50 NSCLC patients 
who were treated at Le Centre Hospitalier Universitaire de Liege, were 
reviewed. PET whole-body computerised tomography attenuation 
correction (WB-CTAC) scans were also available. The radiotracer used 
was [18F]Fluorodeoxyglucose ([18F]FDG). Of the 50 cases, 7 were 
selected for inclusion in this study by a thoracic radiation oncologist to 
include tumours that varied in size and location. Additionally, three 
more cases were chosen from a publicly available dataset [35] to include 
large tumours, as the Liege dataset consisted mainly of smaller tumours. 
The final selection represented a good cross-section of primary lung 
cancers, differing in size and location and the sample size of 10 cases was 
an adequate and pragmatic choice given the constraints on clinicians’ 
time.

Clinicians were presented with the planning CT to contour the pri-
mary tumour. The diagnostic PET was registered to the planning CT and 
the clinician was able to refer to it by toggling through slices as needed.

The only clinical information given to the clinicians were the plan-
ning CT and PET images themselves. This was done so that the clini-
cian’s focus would be entirely on contouring the primary lesion and so 
they would not need to take time to absorb additional clinical 
information.

Fig. 1. Illustration of 3D segmentation using the DL-assisted tool. (a) After contouring the first slice, (b) the contoured slice and the slice to be contoured are used to 
predict the segmentation by (c) running the model. (d) The predicted contour is used as an input to predict the next adjacent slice. This is repeated for all 
remaining slices.
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Experimental details

Nine clinicians contoured 10 NSCLC cases using manual and DL- 
assisted contouring tools in two sessions. The participating clinicians 
were radiation oncologists with 7 to 17 years of experience at consultant 
level (4), clinical oncology trainees in their final year of training (4) and 
a senior dosimetrist with 19 years of experience. These clinicians were 
selected to represent the radiation oncology professional groups 
involved in contour delineation. In the first session, the 10 cases were 
contoured by the clinicians alternating between DL-assisted and manual 
contouring. After contouring a case using one method, the same case 
was contoured at least one week later using the other method. The case 
order was the same for all clinicians. To mitigate the effect of familiar-
isation favouring a specific tool set, half the cases were first contoured 
using the manual tools and half using the DL-assisted tool.

The contouring workflow, impact on contouring time, and contour 
consistency were compared for manual and DL-assisted contouring 
tools. The two tools shared the same user interface and a typical basic 
contouring tool set. When working on a case to be contoured with the 
DL-assisted tool the linear interpolation tool was disabled and vice 
versa. The Graphical User Interface (GUI) is illustrated and explained in 
detail in Supplemental Material 1.

All participants were given the same instructions: to outline the GTV 
which is defined as the visible extent of the primary tumour on the 
radiotherapy planning CT scan, utilising both lung and mediastinal 
window settings to assist in this and using the available PET scan to aid 
localisation of the tumour. When the DL-assisted tool was used, clini-
cians were instructed to contour one or multiple slices which were then 
used by the DL-assisted tool to suggest the contours for the remaining 
image slices. Additionally, following generation of predicted contours, 
the user could iteratively interact with the contours and generate new 
predictions using the DL-assisted tool. The predictions vary based on the 
provided user input.

Contouring tools were made accessible to the clinicians through a 
virtual machine with a NVIDIA T4-GPU (16 GB), that hosted the GUI and 
data on Google Cloud. The inference time is less than 0.1 s per image 
slice. After logging on to the platform and opening the GUI, the selected 
case opened with the views set at the center of the patient, and the 
clinicians were instructed to locate and contour the primary tumour.

All participating clinicians received an induction to the GUI. Each 
clinician familiarised themselves with the manual and DL-assisted tools 
on an exemplar case, before starting to work on the cases included in this 
study.

User interaction tracking

User interaction was automatically tracked by the GUI [36]. The 
drawing and editing of contours by dragging the cursor was recorded as 
active contouring time. All other behaviour was logged as observation 
time. Followingan analysis of time intervals between mouse movements 
for both active and observation time, any interaction breaks longer than 
85 s were excluded from the analysis and were attributed to in-
terruptions to the contouring task. The excluded time intervals are small 
compared to the total tracked contouring time. For details of the analysis 
leading to exclusions see Supplemental Material 2.

Local evaluation of contouring differences

A consensus contour was created from all user-created contours to 
compare the contours of individual clinicians to each other. For this, the 
STAPLE (Simultaneous truth and performance level estimation) algo-
rithm [37] was used, which was developed for the validation of image 
segmentation methods.

To identify and visualise the adjustments made by each clinician at 
specific anatomical sites, the contour of each user was aligned to the 
consensus contour and the deviation from the consensus contour was 

quantified. Statistics of deviation were reported as the median and 10th 
to 90th percentile range of difference between individual clinicians’ 
contour and the consensus contour.

The agreement between an individual clinician’s contour and the 
consensus contour was quantified using 3D DSC [38] and APL [39]. The 
DSC measures the overlap between two areas or volumes A and B and is 
defined as DSC(A, B) = 2(A∩B)/(A+B). The APL is the length of contour 
drawn when editing a segmentation. Because the absolute length of a 
contour varies between patients and structures the APL is reported 
relative to the ground truth contour length. A tolerance of 2 mm be-
tween contours was used for APL. A low relative APL means that few 
edits were necessary.

Statistical analysis

Continuous variables were summarised using mean (standard devi-
ation) or median (interquartile range or percentile ranges). The differ-
ence in contouring time, and DSC or APL between contours were 
compared using the paired Wilcoxon signed-rank test (p < 0.01). Spatial 
variations in contours were visualised showing the 10–90th percentile 
range of annotator contours deviating from the consensus shape.

Results

The relative breakdown of active time and observation time per 
clinician is shown in Fig. 2. The lasso was the most commonly used tool 
during active time, with only one clinician not using the lasso tool at all 
but relying instead on the brush and eraser. It is not possible to directly 
break down observation time into different user activities. 42 % of all 
observation time episodes were less than 1 s in duration across all users, 
whereas intervals of more than 50 s made up 19 %. Of note, 2 annotators 
had no time attributed to interruptions longer than 50 s.

The DL-assisted tool reduced mean active contouring time by 23 % 
relative to the standard manual segmentation, whereas mean observa-
tion time did not change between the different contouring approaches 
across all annotators and cases. The decrease in contouring time was 
statistically significant for active contouring time (p < 0.01, one-sided 
paired Wilcoxon signed-rank test). On average the time spent contour-
ing per case was reduced from 22 min to 19 min per case when using the 
DL-assisted tool compared to the manual tool. The relative changes in 
active and observation time between contouring tools are shown as 
boxplots in Fig. 3 to highlight the distribution of changes in contouring 
time per case and per annotator. The clinician with the greatest median 
decrease in active contouring time was annotator A7 with a reduction of 
63 %. Only one annotator did not benefit from using the DL-assisted 
contouring tool with respect to active contouring time, but spent a 
similar time contouring using either tool set. The change in contouring 
time per case varied greatly as shown in Fig. 3b. There was a reduction in 
active contouring time in all but one case when the DL-assisted tool was 
used. For this case (C4), there was no change in mean active contouring 
time between the manual and DL-assisted tools. In contrast, for case C2 
the DL-assisted tool was associated with a greater than 40 % reduction in 
active contouring time. Median change in observation time by case 
ranged from an increase of nearly 50 % to a decrease of nearly 50 % 
when the DL-assisted tool was used compared to manual contouring. 
Observation time made up 67 % of contouring time when using manual 
tools and 74 % when using DL-assisted contouring tools, while the 
observation time in minutes was unchanged between the tools. The 
greatest decrease in active contouring time was a 79 % reduction when 
using the DL-assisted contouring tool compared to manual tools (case 
C10, annotator A3). In contrast the greatest increase in active contour-
ing time was 106 % (case C8, annotator A8).

The inter-observer variability with respect to the consensus contour 
in terms of mean DSC was 0.73 ± 0.10 versus 0.77 ± 0.08 for the 
manual and DL-assisted tools respectively. The mean values for the 
relative APL were 0.41 ± 0.11 versus 0.39 ± 0.10 for the manual and 
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DL-assisted tools respectively. The differences between manual and DL- 
assisted tools were not significant in terms of APL and DSC for any case, 
with the exception that a significantly higher inter-observer variability 
was observed for case C4, when using manual versus the DL-assisted 
tools. The intra-observer variability comparing the individual clini-
cian’s manual to DL contours was 0.83 ± 0.07 (DSC) across all cases, 
with the values for each case shown as a box plot in Fig. 4. A low intra- 
observer variability was observed for cases C2, C4, C6 and C8. For these 
cases, the higher inter-observer variability may be explained by the 
presence of collapsed lung, which may be difficult to distinguish from 
tumour, as both are of similar density. Further difficulties may arise 
when the tumour abuts the mediastinum. The difference between DL- 
assisted and manual consensus contours is illustrated in Supplemen-
tary Material Fig. S4, which shows the distance of the DL-assisted 
consensus contour from the manually created consensus contour for 
two example cases. The differences between the two consensus contours 
were small for each case, not exceeding 3 mm for either case shown.

The differences between the individual contours and the consensus 
contour are shown in Fig. 5, illustrating the 10th to 90th percentile 
range of the distance between individual annotator and consensus 
contour for two tumour cases (C1 and C2). The 10th to 90th percentile 
can be viewed as a measure of variability. For case C1, the variability 
was small (<3 mm) for most of the tumour, except for the inferior part 
where the 10th to 90th percentile range was 18 mm. For the second case 
C2, large variations were only observed at the inferior and superior 
borders of the tumour with otherwise little disagreement between an-
notators. Spatial variation showing median, 10, 30, 70 and 90 percen-
tiles for all annotators for each case are shown in Fig. 6. Most structures 
had a 10th to 90th percentile range of about ± 10 mm, cases C4 and C5 
showing the greatest variation with a range of − 30 mm to 40 mm for the 
manual tool.

Discussion

The integration of DL-assisted contouring tools can benefit radio-
therapy treatment planning, as demonstrated in this study when con-
touring the primary tumour for a NSCLC patient. Our study showcases a 
notable 23 % reduction in active contouring time compared to manual 
segmentation methods, highlighting a substantial improvement in con-
touring efficiency. Additionally, the DL-assisted tool effectively miti-
gates local inter-observer variability, particularly in areas prone to 

clinician disagreement, and thus fosters consensus among clinicians 
regarding tumour delineation. These findings underscore the promising 
prospect of enhancing both efficiency and accuracy in NSCLC radio-
therapy planning through DL integration. This investigation also shows 
that care needs to be taken over how inter-observer variability is eval-
uated. Geometric measures that relate to the full structure such as 3D 
DSC are not very sensitive to local variations between observers, while 
evaluation of local deviation from a consensus contour revealed a 
reduction in variability of DL-assisted compared to manual contours for 
selected areas of a structure.

Analysis of user interaction tracking data revealed clinicians’ varied 
preferences for contouring tools. The lasso tool was favored for large 
changes and initial slice contouring, while the brush and eraser tools 
were employed for finer adjustments. The scissor tool, designed for large 
section deletions, remained unused due to the generally convex shape of 
the surface of the studied tumours. Observation time of less than 1 s 
made up 42 % of overall contouring time. These short intervals show 
that the mouse was almost constantly moving and therefore these time 
intervals were likely due to interactions with the user interface, such as 
changing contouring tools, navigating through the scan or zooming. 
Longer observation time intervals may be attributed to studying the 
scans and time for decision-making. However, time intervals longer than 
10 s and particularly those that exceed 50 s likely occurred due to the 
annotator being interrupted by, for example, needing to check emails or 
because of brief interactions with colleagues. Annotators typically only 
used the DL tool for the initial interpolation or propagation of the con-
tours or to refine the predictions. Therefore, the total impact of the 
processing speed on observation time is negligible.

While DL-assisted contouring reduced active contouring time, the 
extent of reduction varied across annotators and cases. Notably, obser-
vation time remained consistent between manual and DL-assisted 
methods, indicating that differences in contouring time between the 
two approaches can be predominantly attributed to active interaction 
rather than passive observation. Mean observation time increased for 
individual cases when using the DL-assisted contouring tool (see Fig. 3). 
To eliminate bias, the order in which cases were assigned, as well as the 
order in which each of the contouring tools was used first for a given 
case was controlled in the study. The reason for the large variability in 
changes in active and observation times (Fig. 3) cannot be analyzed 
further with the user interaction tracking employed. The relationship 
between active time and observation time is shown in the 

Fig. 2. Relative composition of (a) active contouring time and (b) observation time by annotator (A1-A9). Active time is split into the proportion of time during 
which each contouring tool was used. Observation time cannot be easily subdivided into time taken for specific tasks, therefore the contouring times are grouped by 
the length of time between mouse movements.
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Supplementary Material, Fig. S5. Cases with long active time are also 
associated with longer observation time. This is attributed to the 
observation time that occurs prior to a contouring input − including, for 
example, changing contouring tools. The need for more edits results in 
longer active time which, in turn, increases the time spent interacting 
with the user interface (observation time). A clinically useful contouring 
tool should save time compared to standard tools [28,40]. Frequently, 
the analysis of automated or semi-automated DL-assisted tools focuses 
on contour evaluation metrics such as APL or DSC [41]. However, these 
cannot replace the direct measurement of the time experienced clini-
cians spend contouring specific structures [40,41].

While overall inter-observer variability did not significantly differ 
between manual and DL-assisted tools, the DL-assisted tool notably 
reduced variability in areas of disagreement among clinicians. However, 
caution is warranted regarding over reliance on AI-generated contours, 
as inaccuracies may lead to suboptimal outcomes. Moreover, the study 
highlights the challenge of evaluating inter-observer variability in 
tumour contouring, emphasizing the need for evaluation metrics that 
account for local variations. Previous studies found variability in tumour 
delineation among clinicians. Inter-observer variability, as measured by 

DSC, for 4D-CT was 0.80 for primary tumours and 0.70 for lymph nodes 
[21]. Intra-observer variability was 0.80 for primary tumours and 0.64 
for lymph nodes [21]. This is consistent with the inter- and intra- 
observer variability observed in the current study. Automatic and 
interactive contouring tools have been shown to decrease intra- and 
inter-observer variability compared to manual contouring 
[8,42,9,10,11]. More consistent and replicable contours can improve the 
treatment given to a patient. The DL-assisted tool that is investigated 
here shows no significant impact on the inter-observer variability 
compared to manual contouring, when evaluated on the full structure. 
However, if the local variance is considered, it does reduce the inter- 
observer variability in places where clinicians disagree the most, see 
Fig. 5. Generally, decreasing variability between observers is desirable 
in clinical practice, to be able to standardise treatment to optimise the 
radiotherapy plan. However, the studies that report a reduction in inter- 
and intra observer variability mostly refer to OAR contouring. OAR are 
more similar between patients and it is far easier for a DL model to be 
able to learn the rules on how to segment these structures. For OARs, 
disagreement between clinicians may be based on variations in con-
touring practices and guidelines. For tumours, on the other hand, it is 

Fig. 3. Impact on contouring time by (a) annotator (A1-A9) and (b) case (C1-C10). Relative change in active contouring time and observation time when using the 
DL-assisted tool compared to manual segmentation. The boxplots show the median relative change in contouring time. The triangles indicate the mean relative 
change in contouring time.

M.J. Trimpl et al.                                                                                                                                                                                                                               Radiotherapy and Oncology 200 (2024) 110500 

5 



much more difficult to find a representative training set and in clinical 
practice the cases may be different to those used to train the DL-assisted 
tool. This may be the reason why the DL-assisted tool did not show a 
decrease in inter- or intra-observer variability in this study.

Limitations of the study include the lack of a more detailed break-
down of observation time which would require visual tracking of the 
clinicians via a camera or eye tracking. The participating clinicians were 
asked to contour the GTV of the primary lung tumour based solely on the 
planning CT and PET images provided. It is possible that the limited 
clinical background provided to them as well as the freedom to choose 
how to use the DL-assisted tool following initial familiarisation, could 
have impacted the inter-observer variability. However, this was miti-
gated by alternating between the DL-assisted and manual tools for suc-
cessive cases, and applying the same instructions for both methods, 
making comparisons between the two methods valid.

In this study, a contouring tool and GUI that were developed in- 
house were provided to the clinicians, to allow an unbiased multi- 
centre study and to enable GPU access and user interaction tracking. 
Further work is needed to investigate how the results achieved using the 
DL-assisted tool compare to those achieved with commercially available 
contouring software that clinicians use in their everyday practice. 

Variation in the clinical expertise of users may be a factor contributing to 
local variations in contours. However, given that 9 clinicians partici-
pated in this study a sub-group analysis based on relative seniority or 
experience was not statistically meaningful and future investigation on 
the relationship between the impact of the DL-assisted tool and the 
expertise levels of users is needed. Additionally, the diverse contouring 
approaches employed by clinicians hindered comprehensive analysis of 
manual edits following DL-assisted contouring, warranting future 
research into optimal interactivity levels for clinicians. Despite these 
limitations, the study underscores the potential of DL-assisted contour-
ing tools to streamline workflows and improve consensus in NSCLC 
radiotherapy planning, paving the way for enhanced patient care in 
clinical practice.

Conclusion

The DL-assisted contouring approach was evaluated and shown to 
decrease active contouring time when used to delineate lung cancer 
GTVs. Observation time was not significantly different compared to 
manual contouring tools.

Observation time was found to make up the majority of the 

Fig. 4. Comparison of inter-observer variability for the DL-assisted tool and when using manual tools only, as well as the intra-observer variability by case. The inter- 
observer variability compares each clinician’s contour with the consensus contour, whereas the intra-observer variability compares the manual and DL-assisted tool 
segmentations by the same clinician.
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contouring time. Mouse tracking during observation time showed that 
for nearly half of the observation time the mouse is constantly moving 
(<1 s time interval), indicating that this is time spent navigating the 
GUI. Regardless of the tools used for contouring or for correcting auto-
matically generated contours, interaction with the user interface oc-
cupies considerable time. Focusing on and improving the user interface 
design may help reduce the time spent contouring.

An analysis of local variability between contours demonstrated that 
the DL-assisted tool reduced inter-observer variability at locations 
where clinicians tend to disagree, while the consensus contour does not 
change significantly depending on the contouring approach. Thus, the 
tool helps make contours consistent in critical areas, while also 
providing segmentations which the user finds acceptable.

Such an interactive tool could be integrated into the clinical work-
flow to assist clinicians in contouring tasks and to improve contouring 
efficiency, as well as consistency.
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