[en] Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neurallike environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZV eGFP-ORF23) or Sendai virus (SeV eGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZV eGFP-ORF23 infection throughout the NSPHs, while SeV eGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeV eGFP-infected NSPHs activated a clear Type-I IFN response, Frontiers in Immunology frontiersin.org 01
Disciplines :
Immunology & infectious disease
Author, co-author :
Govaerts, Jonas; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium ; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
Van Breedam, Elise; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
De Beuckeleer, Sarah; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium ; µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
Goethals, Charlotte; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
Peter D'incal, Claudio; Cell Death Signaling -Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Di Stefano, Julia; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
Van Calster, Siebe; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
Buyle-Huybrecht, Tamariche; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium ; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
Boeren, Marlies; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium ; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
De Reu, Hans; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
Paludan, Søren; Department of Biomedicine, Aarhus University, Aarhus, Denmark
Thiry, Marc ; Université de Liège - ULiège > Département des sciences de la vie > Service collectif des enseignements de biologie en bachelier
Lebrun, Marielle ; Université de Liège - ULiège > Département des sciences de la vie > Virologie - Immunologie
Sadzot, Catherine ; Université de Liège - ULiège > Département des sciences de la vie
Motaln, Helena; Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
Rogelj, Boris; Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia ; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
Van Weyenbergh, Johan; Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
De Vos, Winnok; Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium ; µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
Vanden Berghe, Wim; Cell Death Signaling -Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
Ogunjimi, Benson; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium ; Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium ; University of Antwerp, Antwerp, Belgium
Delputte, Peter; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
Ponsaerts, Peter; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium ; Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
Lum KK Cristea IM. Host innate immune response and viral immune evasion during alphaherpesvirus infection. Curr Issues Mol Biol. (2021) 42:635–86. doi: 10.21775/cimb.042.635
Grose C. Pangaea and the out-of-Africa model of varicella-zoster virus evolution and phylogeography. J Virol. (2012) 86:9558–65. doi: 10.1128/JVI.00357-12
Zerboni L Sen N Oliver SL Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol. (2014) 12:197–210. doi: 10.1038/nrmicro3215
Gershon AA Breuer J Cohen JI Cohrs RJ Gershon MD Gilden D et al. Varicella zoster virus infection. Nat Rev Dis Primers. (2015) 1:15016. doi: 10.1038/nrdp.2015.16
Van Breedam E Buyle-Huybrecht T Govaerts J Meysman P Bours A Boeren M et al. Lack of strong innate immune reactivity renders macrophages alone unable to control productive Varicella-Zoster Virus infection in an isogenic human iPSC-derived neuronal co-culture model. Front Immunol. (2023) 14:1177245. doi: 10.3389/fimmu.2023.1177245
Nagel MA Niemeyer CS Bubak AN. Central nervous system infections produced by varicella zoster virus. Curr Opin Infect Dis. (2020) 33:273–8. doi: 10.1097/QCO.0000000000000647
Depla JA Mulder LA de Sa RV Wartel M Sridhar A Evers MM et al. Human brain organoids as models for central nervous system viral infection. Viruses. (2022) 14(3):634. doi: 10.3390/v14030634
LaNoce E Dumeng-Rodriguez J Christian KM. Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. Front Virol. (2022) 2. doi: 10.3389/fviro.2022.869657
Gordon A Yoon SJ Tran SS Makinson CD Park JY Andersen J et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci. (2021) 24:331–42. doi: 10.1038/s41593-021-00802-y
Pineda ET Nerem RM Ahsan T. Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture. Cells Tissues Organs. (2013) 197:399–410. doi: 10.1159/000346166
Sloan SA Darmanis S Huber N Khan TA Birey F Caneda C et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron. (2017) 95:779–90.e6. doi: 10.1016/j.neuron.2017.07.035
Smith I Silveirinha V Stein JL de la Torre-Ubieta L Farrimond JA Williamson EM et al. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks. J Tissue Eng Regener Med. (2017) 11:1022–33. doi: 10.1002/term.2001
Krenn V Bosone C Burkard TR Spanier J Kalinke U Calistri A et al. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell. (2021) 28:1362–79.e7. doi: 10.1016/j.stem.2021.03.004
Qian X Nguyen HN Song MM Hadiono C Ogden SC Hammack C et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. (2016) 165:1238–54. doi: 10.1016/j.cell.2016.04.032
Rybak-Wolf A Wyler E Pentimalli TM Legnini I Oliveras Martinez A Glazar P et al. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. Nat Microbiol. (2023) 8:1252–66. doi: 10.1038/s41564-023-01405-y
Martinez-Marmol R Giordano-Santini R Kaulich E Cho AN Przybyla M Riyadh MA et al. SARS-CoV-2 infection and viral fusogens cause neuronal and glial fusion that compromises neuronal activity. Sci Adv. (2023) 9:eadg2248. doi: 10.1126/sciadv.adg2248
Pellegrini L Albecka A Mallery DL Kellner MJ Paul D Carter AP et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell. (2020) 27:951–61.e5. doi: 10.1016/j.stem.2020.10.001
Ostermann PN Schaal H. Human brain organoids to explore SARS-CoV-2-induced effects on the central nervous system. Rev Med Virol. (2023) 33:e2430. doi: 10.1002/rmv.2430
Su X Yue P Kong J Xu X Zhang Y Cao W et al. Human brain organoids as an in vitro model system of viral infectious diseases. Front Immunol. (2021) 12:792316. doi: 10.3389/fimmu.2021.792316
Harschnitz O Studer L. Human stem cell models to study host-virus interactions in the central nervous system. Nat Rev Immunol. (2021) 21:441–53. doi: 10.1038/s41577-020-00474-y
Markus A Grigoryan S Sloutskin A Yee MB Zhu H Yang IH et al. Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol. (2011) 85:6220–33. doi: 10.1128/JVI.02396-10
Markus A Lebenthal-Loinger I Yang IH Kinchington PR Goldstein RS. An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons. PLoS Pathog. (2015) 11:e1004885. doi: 10.1371/journal.ppat.1004885
Kennedy PGE Mogensen TH. Varicella-zoster virus infection of neurons derived from neural stem cells. Viruses. (2021) 13(3):485. doi: 10.3390/v13030485
Sadaoka T Schwartz CL Rajbhandari L Venkatesan A Cohen JI. Human embryonic stem cell-derived neurons are highly permissive for varicella-zoster virus lytic infection. J Virol. (2018) 92(10):1128. doi: 10.1128/JVI.01108-17
Boeren M Van Breedam E Buyle-Huybrecht T Lebrun M Meysman P Sadzot-Delvaux C et al. Activation of interferon-stimulated genes following varicella-zoster virus infection in a human iPSC-derived neuronal in vitro model depends on exogenous interferon-alpha. Viruses. (2022) 14(11):2517. doi: 10.3390/v14112517
Liu LR Liu JC Bao JS Bai QQ Wang GQ. Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol. (2020) 11:1024. doi: 10.3389/fimmu.2020.01024
Van Breedam E Nijak A Buyle-Huybrecht T Di Stefano J Boeren M Govaerts J et al. Luminescent human iPSC-derived neurospheroids enable modeling of neurotoxicity after oxygen-glucose deprivation. Neurotherapeutics. (2022) 19(4):1433. doi: 10.1007/s13311-022-01235-6
Lebrun M Thelen N Thiry M Riva L Ote I Conde C et al. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates. Virology. (2014) 454-455:311–27. doi: 10.1016/j.virol.2014.02.023
Sloutskin A Goldstein RS. Infectious focus assays and multiplicity of infection (MOI) calculations for Alphaherpesviruses. Bio-protocol. (2014) 4(22):e1295. doi: 10.21769/BioProtoc.1295
Le Blon D Hoornaert C Daans J Santermans E Hens N Goossens H et al. Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain. Immunol Cell Biol. (2014) 92:650–8. doi: 10.1038/icb.2014.49
Barbar L Jain T Zimmer M Kruglikov I Sadick JS Wang M et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron. (2020) 107:436–53.e12. doi: 10.1016/j.neuron.2020.05.014
Barbar L Rusielewicz T Zimmer M Kalpana K Fossati V. Isolation of human CD49f(+) astrocytes and in vitro iPSC-based neurotoxicity assays. STAR Protoc. (2020) 1:100172. doi: 10.1016/j.xpro.2020.100172
Hoornaert CJ Luyckx E Reekmans K Dhainaut M Guglielmetti C Le Blon D et al. In vivo interleukin-13-primed macrophages contribute to reduced alloantigen-specific T cell activation and prolong immunological survival of allogeneic mesenchymal stem cell implants. Stem Cells. (2016) 34:1971–84. doi: 10.1002/stem.2360
Assone T Menezes SM de Toledo Goncalves F Folgosi VA da Silva Prates G Dierckx T et al. Systemic cytokines and GlycA discriminate disease status and predict corticosteroid response in HTLV-1-associated neuroinflammation. J Neuroinflammation. (2022) 19:293. doi: 10.1186/s12974-022-02658-w
Cuypers L Keyaerts E Hong SL Gorissen S Menezes SM Starick M et al. Immunovirological and environmental screening reveals actionable risk factors for fatal COVID-19 during post-vaccination nursing home outbreaks. Nat Aging. (2023) 3:722–33. doi: 10.1038/s43587-023-00421-1
Fukutani KF Nascimento-Carvalho CM Bouzas ML Oliveira JR Barral A Dierckx T et al. In situ immune signatures and microbial load at the nasopharyngeal interface in children with acute respiratory infection. Front Microbiol. (2018) 9:2475. doi: 10.3389/fmicb.2018.02475
Menezes SM Braz M Llorens-Rico V Wauters J Van Weyenbergh J. Endogenous IFNbeta expression predicts outcome in critical patients with COVID-19. Lancet Microbe. (2021) 2:e235–e6. doi: 10.1016/S2666-5247(21)00063-X
Boeren M Meysman P Laukens K Ponsaerts P Ogunjimi B Delputte P. T cell immunity in HSV-1- and VZV-infected neural ganglia. Trends Microbiol. (2023) 31:51–61. doi: 10.1016/j.tim.2022.07.008
Ablasser A Schmid-Burgk JL Hemmerling I Horvath GL Schmidt T Latz E et al. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. (2013) 503:530–4. doi: 10.1038/nature12640
Nguyen TA Pang KC Masters SL. Intercellular communication for innate immunity. Mol Immunol. (2017) 86:16–22. doi: 10.1016/j.molimm.2016.10.002
Ogunjimi B Zhang SY Sorensen KB Skipper KA Carter-Timofte M Kerner G et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J Clin Invest. (2017) 127:3543–56. doi: 10.1172/JCI92280
Daniels BP Jujjavarapu H Durrant DM Williams JL Green RR White JP et al. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest. (2017) 127:843–56. doi: 10.1172/JCI88720
Hwang M Bergmann CC. Alpha/Beta interferon (IFN-alpha/beta) signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-gamma-dependent responses. J Virol. (2018) 92(10):e01901-17. doi: 10.1128/JVI.01901-17
Giovannoni F Quintana FJ. The role of astrocytes in CNS inflammation. Trends Immunol. (2020) 41:805–19. doi: 10.1016/j.it.2020.07.007
Linnerbauer M Wheeler MA Quintana FJ. Astrocyte crosstalk in CNS inflammation. Neuron. (2020) 108:608–22. doi: 10.1016/j.neuron.2020.08.012
Bubak AN Como CN Blackmon AM Jones D Nagel MA. Varicella zoster virus differentially alters morphology and suppresses proinflammatory cytokines in primary human spinal cord and hippocampal astrocytes. J Neuroinflammation. (2018) 15:318. doi: 10.1186/s12974-018-1360-9
Duval K Grover H Han LH Mou Y Pegoraro AF Fredberg J et al. Modeling physiological events in 2D vs. 3D cell culture. Physiol (Bethesda). (2017) 32:266–77. doi: 10.1152/physiol.00036.2016
Fan W Christian KM Song H Ming GL. Applications of brain organoids for infectious diseases. J Mol Biol. (2022) 434:167243. doi: 10.1016/j.jmb.2021.167243
Hopkins HK Traverse EM Barr KL. Methodologies for generating brain organoids to model viral pathogenesis in the CNS. Pathogens. (2021) 10(11):1510. doi: 10.3390/pathogens10111510
Swingler M Donadoni M Bellizzi A Cakir S Sariyer IK. iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. J Neurovirol. (2023) 29:121–34. doi: 10.1007/s13365-023-01133-3
Zhang Y Sloan SA Clarke LE Caneda C Plaza CA Blumenthal PD et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. (2016) 89:37–53. doi: 10.1016/j.neuron.2015.11.013
Di Stefano J Garcia-Pupo L Di Marco F Motaln H Govaerts J Van Breedam E et al. Transcriptomic and proteomic profiling of bi-partite and tri-partite murine iPSC-derived neurospheroids under steady-state and inflammatory condition. Brain Behav Immun. (2024) 121:1–12. doi: 10.1016/j.bbi.2024.07.008
Hyvarinen T Hagman S Ristola M Sukki L Veijula K Kreutzer J et al. Co-stimulation with IL-1beta and TNF-alpha induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci Rep. (2019) 9:16944. doi: 10.1038/s41598-019-53414-9
Phares TW Stohlman SA Hinton DR Bergmann CC. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. (2013) 87:3382–92. doi: 10.1128/JVI.03307-12
Gerada C Campbell TM Kennedy JJ McSharry BP Steain M Slobedman B et al. Manipulation of the innate immune response by varicella zoster virus. Front Immunol. (2020) 11:1. doi: 10.3389/fimmu.2020.00001
Meysman P Fedorov D Van Tendeloo V Ogunjimi B Laukens K. Immunological evasion of immediate-early varicella zoster virus proteins. Immunogenetics. (2016) 68:483–6. doi: 10.1007/s00251-016-0911-4
Vandevenne P Sadzot-Delvaux C Piette J. Innate immune response and viral interference strategies developed by human herpesviruses. Biochem Pharmacol. (2010) 80:1955–72. doi: 10.1016/j.bcp.2010.07.001
Abendroth A Slobedman B. Modulation of MHC and MHC-like molecules by varicella zoster virus. Curr Top Microbiol Immunol. (2023) 438:85–102. doi: 10.1007/82_2022_254
Abendroth A Slobedman B Lee E Mellins E Wallace M Arvin AM. Modulation of major histocompatibility class II protein expression by varicella-zoster virus. J Virol. (2000) 74:1900–7. doi: 10.1128/JVI.74.4.1900-1907.2000
Eisfeld AJ Yee MB Erazo A Abendroth A Kinchington PR. Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanisms. J Virol. (2007) 81:9034–49. doi: 10.1128/JVI.00711-07
Hertzog J Zhou W Fowler G Rigby RE Bridgeman A Blest HT et al. Varicella-Zoster virus ORF9 is an antagonist of the DNA sensor cGAS. EMBO J. (2022) 41:e109217. doi: 10.15252/embj.2021109217
Vandevenne P Lebrun M El Mjiyad N Ote I Di Valentin E Habraken Y et al. The varicella-zoster virus ORF47 kinase interferes with host innate immune response by inhibiting the activation of IRF3. PloS One. (2011) 6:e16870. doi: 10.1371/journal.pone.0016870
Neumann J Eis-Hubinger AM Koch N. Herpes simplex virus type 1 targets the MHC class II processing pathway for immune evasion. J Immunol. (2003) 171:3075–83. doi: 10.4049/jimmunol.171.6.3075
Lussignol M Esclatine A. Herpesvirus and autophagy: “All right, everybody be cool, this is a robbery!” Viruses. (2017) 9(12):372. doi: 10.3390/v9120372
Heinz J Kennedy PGE Mogensen TH. The role of autophagy in varicella zoster virus infection. Viruses. (2021) 13(6):1053. doi: 10.3390/v13061053
Thomsen MM Tyrberg T Skaalum K Carter-Timofte M Freytag MR Norberg P et al. Genetic variants and immune responses in a cohort of patients with varicella zoster virus encephalitis. J Infect Dis. (2021) 224:2122–32. doi: 10.1093/infdis/jiab254
Heinz JL Hinke DM Maimaitili M Wang J Sabli IKD Thomsen M et al. Varicella zoster virus-induced autophagy in human neuronal and hematopoietic cells exerts antiviral activity. J Med Virol. (2024) 96:e29690. doi: 10.1002/jmv.29690
Van Breedam E Ponsaerts P. Promising strategies for the development of advanced in vitro models with high predictive power in ischaemic stroke research. Int J Mol Sci. (2022) 23(13):7140. doi: 10.3390/ijms23137140
McQuade A Coburn M Tu CH Hasselmann J Davtyan H Blurton-Jones M. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener. (2018) 13:67. doi: 10.1186/s13024-018-0297-x
Abud EM Ramirez RN Martinez ES Healy LM Nguyen CHH Newman SA et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. (2017) 94:278–93.e9. doi: 10.1016/j.neuron.2017.03.042
Vandoren R Boeren M Schippers J Bartholomeus E Mullan K Michels N et al. Unravelling the immune signature of herpes zoster: Insights into pathophysiology and the HLA risk profile. J Infect Dis. (2024). doi: 10.1093/infdis/jiad609
Haberthur K Engelmann F Park B Barron A Legasse A Dewane J et al. CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PloS Pathog. (2011) 7:e1002367. doi: 10.1371/journal.ppat.1002367
Boeren M de Vrij N Ha MK Valkiers S Souquette A Gielis S et al. Lack of functional TCR-epitope interaction is associated with herpes zoster through reduced downstream T cell activation. Cell Rep. (2024) 43:114062. doi: 10.1016/j.celrep.2024.114062
Ansari R Rosen LB Lisco A Gilden D Holland SM Zerbe CS et al. Primary and acquired immunodeficiencies associated with severe varicella-zoster virus infections. Clin Infect Dis. (2021) 73:e2705–e12. doi: 10.1093/cid/ciaa1274
Matsui TK Tsuru Y Hasegawa K Kuwako KI. Vascularization of human brain organoids. Stem Cells. (2021) 39:1017–24. doi: 10.1002/stem.3368
Li M Gao L Zhao L Zou T Xu H. Toward the next generation of vascularized human neural organoids. Med Res Rev. (2023) 43:31–54. doi: 10.1002/med.21922
Aazmi A Zhou H Lv W Yu M Xu X Yang H et al. Vascularizing the brain in vitro. iScience. (2022) 25:104110. doi: 10.1016/j.isci.2022.104110
Protter DSW Parker R. Principles and properties of stress granules. Trends Cell Biol. (2016) 26:668–79. doi: 10.1016/j.tcb.2016.05.004
Wolozin B Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci. (2019) 20:649–66. doi: 10.1038/s41583-019-0222-5
Motaln H Cercek U Recek N Bajc Cesnik A Mozetic M Rogelj B. Cold atmospheric plasma induces stress granule formation via an eIF2alpha-dependent pathway. Biomater Sci. (2020) 8:5293–305. doi: 10.1039/D0BM00488J
Guan Y Wang Y Fu X Bai G Li X Mao J et al. Multiple functions of stress granules in viral infection at a glance. Front Microbiol. (2023) 14:1138864. doi: 10.3389/fmicb.2023.1138864
Finnen RL Hay TJ Dauber B Smiley JR Banfield BW. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation. J Virol. (2014) 88:12727–39. doi: 10.1128/JVI.01554-14
Iseni F Garcin D Nishio M Kedersha N Anderson P Kolakofsky D. Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis. EMBO J. (2002) 21:5141–50. doi: 10.1093/emboj/cdf513