Unpublished conference/Abstract (Scientific congresses and symposiums)
Functional spaces defined via Boyd functions
Nicolay, Samuel
2024Function Spaces, Differential Operators, and Nonlinear Analysis
Editorial reviewed
 

Files


Full Text
jena24.pdf
Author postprint (1.55 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Besov spaces; Boyd functions; admissible sequences; multifractal analysis
Abstract :
[en] In this work, we present several generalized functional spaces, primarily the $T_p^u$ spaces, originally introduced in essence by Calderón and Zygmund through the lens of Boyd functions. We provide conditions that relate functions belonging to these spaces with their wavelet coefficients. Subsequently, we propose a multifractal formalism based on these spaces, which generalizes the so-called wavelet leaders method, and demonstrate that it holds on a prevalent set. We also consider potential applications to partial differential equations.
Disciplines :
Mathematics
Author, co-author :
Nicolay, Samuel  ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Functional spaces defined via Boyd functions
Publication date :
26 September 2024
Event name :
Function Spaces, Differential Operators, and Nonlinear Analysis
Event organizer :
Dorothee D. Haroske
Glenn Byrenheid
Marc Hovemann
Cornelia Schneider
Markus Weimar
Event place :
Oberhof, Germany
Event date :
du 22 septembre 2024 au 28 septembre 2024
Event number :
FSDONA-2024
By request :
Yes
Audience :
International
Peer reviewed :
Editorial reviewed
Available on ORBi :
since 19 September 2024

Statistics


Number of views
38 (8 by ULiège)
Number of downloads
22 (3 by ULiège)

Bibliography


Similar publications



Contact ORBi