[en] Gallium-68-labeled FAPI-46 has recently been proposed as a novel positron emission tomography imaging probe to diagnose and monitor a wide variety of cancers. Promising results from several ongoing clinical trials have led to a soaring demand for this radiotracer. Typical [68Ga]Ga-FAPI-46 labeling protocols do not cope with multiple generator elutions, leaving radiopharmacies unable to scale-up the production and meet the demand. Here, we propose a robust and efficient automated radiosynthesis of [68Ga]Ga-FAPI-46 on the Trasis miniAllinOne synthesizer, featuring a prepurification step which allows multiple generator elutions and ensures compatibility with a wide range of gallium-68 generators. Our approach was to optimize the prepurification step by first testing five different cationic cartridge chemistries. Only the strong cationic exchange (SCX) cartridges tested had sufficient affinities for quantitative trapping of >99.9%, while the weak cationics did not exceed 50%. Packaging, rinsing, or flowing of the selected SCX cartridges was not noticeable, but improvements in fluidics managed to save time. Based on our previous development experience of [68Ga]Ga-FAPI-46, radiolabeling optimization was also carried out at different temperatures during 10 min. At temperatures above 100°C, radiochemical yield (RCY) > 80% was achieved without significantly increasing the chemical impurities (<5.5 μg mL-1). The optimized sequence was reproducibly conducted with three different brands of widely used generators (RCY >88%). A comparison with radiosyntheses carried out without prepurification steps was also conclusive in terms of RCY, radiochemical yield, and chemical purity. Finally, high-activity tests using elutions from three generators were also successful for these parameters. [68Ga]Ga-FAPI-46 was consistently obtained in good radiochemical yields (>89%, n = 3), and the final product quality was compliant with internal specifications based on European Pharmacopoeia. This process is suitable for GMP production and allows scaling-up of routine productions, higher throughput, and, ultimately, better patient care.
Disciplines :
Chemistry
Author, co-author :
Paty, Louis-Paul; Département de Radiopharmacologie, Ensemble Hospitalier de l'Institut Curie, Saint-Cloud, France
Degueldre, Simon; Trasis, Rue Gilles Magnée, Ans, Belgium
Provost, Claire; Département de Radiopharmacologie, Ensemble Hospitalier de l'Institut Curie, Saint-Cloud, France ; Centre de Recherche de l'Institut Curie, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Orsay, France
Schmitt, Camille; Département de Radiopharmacologie, Ensemble Hospitalier de l'Institut Curie, Saint-Cloud, France
Trump, Laura ; Université de Liège - ULiège ; Département de Radiopharmacologie, Ensemble Hospitalier de l'Institut Curie, Saint-Cloud, France ; Centre de Recherche de l'Institut Curie, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Orsay, France
Fouque, Julien; Département de Radiopharmacologie, Ensemble Hospitalier de l'Institut Curie, Saint-Cloud, France ; Centre de Recherche de l'Institut Curie, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Orsay, France
Vriamont, Charles; Trasis, Rue Gilles Magnée, Ans, Belgium
Valla, Frank; SOFIE, iTheranostics, Dulles, VA, United States
Gendron, Thibault ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organique-nucléaire ; Trasis, Rue Gilles Magnée, Ans, Belgium
Madar, Olivier; Département de Radiopharmacologie, Ensemble Hospitalier de l'Institut Curie, Saint-Cloud, France ; Centre de Recherche de l'Institut Curie, Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), Orsay, France
Language :
English
Title :
Development of a versatile [68Ga]Ga-FAPI-46 automated synthesis suitable to multi-elutions of germanium-68/gallium-68 generators.
Alfteimi A. Lützen U. Helm A. Jüptner M. Marx M. Zhao Y. et al. (2022). Automated synthesis of [68Ga]Ga-FAPI-46 without pre-purification of the generator eluate on three common synthesis modules and two generator types. EJNMMI Radiopharm. Chem. 7 (1), 20. 10.1186/s41181-022-00172-1
Brennen W. N. Isaacs J. T. Denmeade S. R. (2012). Rationale behind targeting fibroblast activation protein–expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 11 (2), 257–266. 10.1158/1535-7163.MCT-11-0340
Da Pieve C. Costa Braga M. Turton D. R. Valla F. A. Cakmak P. Plate K. H. et al. (2022). New fully automated preparation of high apparent molar activity 68Ga-FAPI-46 on a Trasis AiO platform. Mol. (Basel, Switz.) 27 (3), 675. 10.3390/molecules27030675
de Blois E. Sze Chan H. Naidoo C. Prince D. Krenning E. P. Breeman W. A. (2011). Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl. Radiat. Isotopes 69 (2), 308–315. 10.1016/j.apradiso.2010.11.015
Edosada C. Y. Quan C. Wiesmann C. Tran T. Sutherlin D. Reynolds M. et al. (2006). Selective inhibition of fibroblast activation protein protease based on dipeptide substrate specificity. J. Biol. Chem. 281 (11), 7437–7444. 10.1074/jbc.M511112200
Fitzgerald A. A. Weiner L. M. (2020). The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 39 (3), 783–803. 10.1007/s10555-020-09909-3
Jussing E. Milton S. Samén E. Moein M. M. Bylund L. Axelsson R. et al. (2021). Clinically applicable cyclotron-produced gallium-68 gives high-yield radiolabeling of DOTA-based tracers. Biomolecules 11 (8), 1118. 10.3390/biom11081118
Kratochwil C. Flechsig P. Lindner T. Abderrahim L. Altmann A. Mier W. et al. (2019). 68 Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J. Nucl. Med. 60 (6), 801–805. 10.2967/jnumed.119.227967
Mona C. E. Benz M. R. Hikmat F. Grogan T. R. Lueckerath K. Razmaria A. et al. (2022). Correlation of 68Ga-FAPi-46 PET biodistribution with FAP expression by immunohistochemistry in patients with solid cancers: interim analysis of a prospective translational exploratory study. J. Nucl. Med. Official Publ. Soc. Nucl. Med. 63 (7), 1021–1026. 10.2967/jnumed.121.262426
Mori Y. Kratochwil C. Haberkorn U. Giesel F. L. (2023). Fibroblast activation protein inhibitor theranostics: early clinical translation. Pet. Clin. 18 (3), 419–428. 10.1016/j.cpet.2023.02.007
Mueller D. Klette I. Baum R. P. Gottschaldt M. Schultz M. K. Breeman W. A. P. (2012). Simplified NaCl based 68Ga concentration and labeling procedure for rapid synthesis of 68Ga radiopharmaceuticals in high radiochemical purity. Bioconjugate Chem. 23 (8), 1712–1717. 10.1021/bc300103t
Nader M. Valla D. Vriamont C. Masset J. Pacelli A. Herrmann K. et al. (2022). [68Ga]/[90Y]FAPI-46: automated production and analytical validation of a theranostic pair. Nucl. Med. Biol. 110–111, 37–44. 10.1016/j.nucmedbio.2022.04.010
Ocak M. Antretter M. Knopp R. Kunkel F. Petrik M. Bergisadi N. et al. (2010). Full automation of [68]Ga labelling of DOTA-peptides including cation exchange prepurification’, applied radiation and isotopes: including data, instrumentation and methods for use in agriculture. Industry Med. 68 (2), 297–302. 10.1016/j.apradiso.2009.10.006
Park J. E. Lenter M. C. Zimmermann R. N. Garin-Chesa P. Old L. J. Rettig W. J. (1999). Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 274 (51), 36505–36512. 10.1074/jbc.274.51.36505
Schultz M. K. Mueller D. Baum R. P. Leonard Watkins G. Breeman W. A. (2013). A new automated NaCl based robust method for routine production of gallium-68 labeled peptides’, Applied Radiation and Isotopes: including Data, Instrumentation and Methods for Use in Agriculture. Industry Med. 76, 46–54. 10.1016/j.apradiso.2012.08.011
Šimeček J. Hermann P. Wester H. Notni J. (2013). How is 68 Ga labeling of macrocyclic chelators influenced by metal ion contaminants in 68 Ge/68 Ga generator eluates? ChemMedChem 8 (1), 95–103. 10.1002/cmdc.201200471
Spreckelmeyer S. Balzer M. Poetzsch S. Brenner W. (2020). Fully-automated production of [68Ga]Ga-FAPI-46 for clinical application. EJNMMI Radiopharm. Chem. 5 (1), 31. 10.1186/s41181-020-00112-x
Treglia G. Albano D. (2023). FAPI PET/CT in infectious, inflammatory, and rheumatological diseases: “watch it like a hawk” or “one swallow does not make a summer”. Eur. J. Nucl. Med. Mol. Imaging 50 (7), 1848–1850. 10.1007/s00259-023-06179-3
Velikyan I. (2015). 68Ga-Based radiopharmaceuticals: production and application relationship. Mol. (Basel, Switz.) 20 (7), 12913–12943. 10.3390/molecules200712913