[en] Middle Cambrian offshore deposits of the Marjum Formation, Utah, USA, are characterized by four scales of superimposed cyclicity defined by varying fine siliciclastic versus limestone abundances; these include limestone-marl couplets (rhythmites; 5–10 cm), which are bundled into parasequences (1–2 m) and small-scale (5–10 m) and large-scale (20–40 m) sequences. Time series analysis of SiO2 and lithologic rank stratigraphic series reveal cycles consistent with Milankovitch periods corresponding to Cambrian orbital eccentricity (20 m, 405 k.y.; 6 m, 110 k.y.), obliquity (1.8 m, 30 k.y.), climatic precession (1.15 m, 18 k.y.), and half-precession (0.64 m, 7 k.y.). Astronomical calibration of the lithologic rank series indicates that the main sub-Milankovitch cycle at 0.065 m represents ∼1 k.y. and corresponds to the basic rhythmite couplet. All scales of cyclicity are interpreted as the result of wet versus dry monsoonal climate oscillations controlling the abundance of fine siliciclastic sediment influx to the basin. A plausible millennial-scale climate driver is solar activity. These results describe one of the oldest known geological candidates for solar-influenced climate change modulated by Milankovitch forcing.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Pas, Damien ; Université de Liège - ULiège > Département de géologie > Pétrologie sédimentaire ; Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
Elrick, Maya; Earth and Planetary Sciences Department, University of New Mexico, Albuquerque, United States
Silva, Anne-Christine Da; Laboratoire de Pétrologie Sédimentaire, Département de Géologie, Université de Liège, Liège, Belgium
Hinnov, Linda; Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, United States
Jamart, Valentin ; Université de Liège - ULiège > Geology ; Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
Thaureau, Marion; Natural History Museum, University of Oslo, Oslo, Norway
D. Pas acknowledges the Swiss National Sciences Foundation grant PZ00P2-193520. L. Hinnov was partially supported by Heising Simons Foundation grant 2021\u20132796. A.C. Da Silva is thankful for the Fonds de la Recherche Scientifique grants J.0037.21, T.0051.19, T.0037.22, and R.5541-J-F-B. This is a contribution to UNESCO Project IGCP 652. Grant T.0051.19 supported M. Arts. We are grateful to Sebastien Wouters for field assistance. We thank Kathleen Benison for her editorial work, and David De Vleeschouwer and two anonymous reviewers for their thoughtful reviews.D. Pas acknowledges the Swiss National Sciences Foundation grant PZ00P2-193520. L. Hinnov was partially supported by Heising Simons Foundation grant 2021-2796. A.C. Da Silva is thankful for the Fonds de la Recherche Scientifique grants J.0037.21, T.0051.19, T.0037.22, and R.5541-J-F-B. This is a contribution to UNESCO Project IGCP 652. Grant T.0051.19 supported M. Arts. We are grateful to Sebastien Wouters for field assistance. We thank Kathleen Benison for her editorial work, and David De Vleeschouwer and two anonymous reviewers for their thoughtful reviews.
Anderson, R.Y., 2011, Enhanced climate variability in the tropics: A 200 000 yr annual record of monsoon variability from Pangea’s equator: Climate of the Past, v. 7, p. 757–770, https://doi.org/10.5194/cp-7-757-2011.
Arts, M., 2023, WaverideR: Extracting signals from wavelet spectra: https://cran.r-project.org/package=WaverideR (accessed January 2024)/
Bond, G.C., Kominz, M.A., and Beavan, J., 1991, Evidence for orbital forcing of Middle Cambrian peritidal cycles: Wah Wah range, south-central Utah, in Franseen, E.K., et al., eds., Sedimentary Modeling—Computer Simulations and Methods for Improved Parameter Definition: Kansas Geological Survey Bulletin 233, p. 293–317.
Boulila, S., Galbrun, B., Gardin, S., and Pellenard, P., 2022, A Jurassic record encodes an analogous Dansgaard–Oeschger climate periodicity: Scientific Reports, v. 12, 1968, https://doi.org/10.1038/s41598-022-05716-8; correction available at https://doi.org/10.1038/s41598-022-08065-8.
Brett, C.E., Allison, P.A., DeSantis, M.K., Liddell, W.D., and Kramer, A., 2009, Sequence stratigraphy, cyclic facies, and lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 277, p. 9–33, https://doi.org/10.1016/j.palaeo.2009.02.010.
Da Silva, A.C., Dekkers, M.J., De Vleeschouwer, D., Hladil, J., Chadimova, L., Slavík, L., and Hilgen, F.J., 2018, Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: Geology, v. 47, p. 19–22, https://doi.org/10.1130/G45511.1.
De Vleeschouwer, D., Percival, L.M.E., Wichern, N.M.A., and Batenburg, S.J., 2024, Pre-Cenozoic cyclostratigraphy and palaeoclimate responses to astronomical forcing: Nature Reviews Earth & Environment, v. 5, p. 59–74, https://doi.org/10.1038/s43017-023-00505-x.
Elrick, M., and Hinnov, L.A., 1996, Millennial-scale climate origins for stratification in Cambrian and Devonian deep-water rhythmites, western USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 123, p. 353–372, https://doi.org/10.1016/0031-0182(95)00106-9.
Elrick, M., and Hinnov, L.A., 2007, Millennial-scale paleoclimate cycles recorded in widespread Palaeozoic deeper water rhythmites of North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 243, p. 348–372, https://doi.org/10.1016/j.palaeo.2006.08.008.
Elrick, M., and Snider, A.C., 2002, Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Cambrian Marjum Formation, House Range, Utah, USA: Sedimentology, v. 49, p. 1021–1047, https://doi.org/10.1046/j.1365-3091.2002.00488.x.
Foster, J.R., and Gaines, R.R., 2016, Taphonomy and paleoecology of the “Middle” Cambrian (Series 3) formations in Utah’s West Desert: Recent finds and new data, in Comer, J.B., et al., eds., Resources and Geology of Utah’s West Desert: Utah Geological Association Publication 45, p. 291–336.
Franco, D.R., Hinnov, L.A., and Ernesto, M., 2012, Millennial-scale climate cycles in Permian–Carboniferous rhythmites: Permanent feature throughout geologic time?: Geology, v. 40, p. 19–22, https://doi.org/10.1130/G32338.1.
Garrison, R.E., and Fischer, A.G., 1969, Deep-water limestones and radiolarites of the Alpine Jurassic, in Friedman, G.M., ed., Depositional Environments in Carbonate Rocks: SEPM (Society for Sedimentary Geology) Special Publication 14, p. 20–54, https://doi.org/10.2110/pec.69.03.0020.
Hinnov, L.A., 2013, Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences: Geological Society of America Bulletin, v. 125, p. 1703–1734, https://doi.org/10.1130/B30934.1.
Hinnov, L.A., 2018, Cyclostratigraphy and astrochronology in 2018, in Montenari, M., ed., Stratigraphy & Timescales, Volume 3: Cyclostratigraphy and Astrochronology: New York, Academic Press, p. 1–80, https://doi.org/10.1016/bs.sats.2018.08.004.
Huang, C., 2018, Astronomical time scale for the Mesozoic, in Montenari, M., ed., Stratigraphy & Timescales, Volume 3: Cyclostratigraphy and Astrochronology: New York, Academic Press, p. 81–150, https://doi.org/10.1016/bs.sats.2018.08.005.
Kochhann, M.V.L., Cagliari, J., Kochhann, K.G.D., and Franco, D.R., 2020, Orbital and millennial-scale cycles paced climate variability during the Late Paleozoic Ice Age in the southwestern Gondwana: Geochemistry, Geophysics, Geosystems, v. 21, https://doi.org/10.1029/2019GC008676.
Langenburg, E.S., 2003, The Middle Cambrian Wheeler Formation: Sequence stratigraphy and geochemistry across a ramp-to-basin transition [M.S. thesis]: Logan, Utah State University, 133 p., https://doi.org/10.26076/0f21-5c8b.
Martinez, M., Kotov, S., De Vleeschouwer, D., Pas, D., and Pälike, H., 2016, Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series: Climate of the Past, v. 12, p. 1765–1783, https://doi.org/10.5194/cp-12 -1765-2016.
Meyers, S., 2014, Astrochron: An R Package for Astrochronology: https://cran.r-project.org/web/packages/astrochron/index.html (accessed January 2024).
Misra, P., Farooqui, A., Sinha, R., Khanolkar, S., and Tandon, S.K., 2020, Millennial-scale vegetation and climatic changes from an Early to Mid-Holocene lacustrine archive in Central Ganga Plains using multiple biotic proxies: Quaternary Science Reviews, v. 243, https://doi.org/10.1016/j.quascirev.2020.106474.
Montañez, I.P., and Osleger, D.A., 1993, Parasequence stacking patterns, third-order accommodation events, and sequence stratigraphy of Middle to Upper Cambrian platform carbonates, Bonanza King Formation, southern Great Basin, in Loucks, R.G., and Sarg, J.F., eds., Carbonate Sequence Stratigraphy: Recent Developments and Applications: American Association of Petroleum Geologists Memoir 57, p. 305–326, https://doi.org/10.1306/M57579C12.
Muller, R.A., and MacDonald, G.J., 2000, Ice Ages and Astronomical Causes: Data, Spectral Analyses and Mechanisms: Chichester, UK, Springer-Praxis, 318 p.
Munnecke, A., and Samtleben, C., 1996, The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden: Facies, v. 34, p. 159–176, https://doi.org/10.1007/BF02546162.
Nederbragt, A.J., and Thurow, J., 2005, Geographic coherence of millennial-scale climate cycles during the Holocene: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 221, p. 313–324, https://doi.org/10.1016/j.palaeo.2005.03.002.
Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A., 2001, Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago: Nature, v. 411, p. 290–293, https://doi.org/10.1038/35077048.
Peng, S.C., Babcock, L.E., and Ahlberg, P., 2020, The Cambrian Period, in Gradstein, F.M., et al., eds., Geologic Time Scale 2020: Amsterdam, Elsevier, p. 565–629, https://doi.org/10.1016/B978-0-12-824360-2.00019-X.
Riechelson, H., Bova, S.C., Rosenthal, Y., Meyers, S., and Bu, K., 2023, Solar cycles forced Southern Westerly Wind migrations during the Holocene: Geophysical Research Letters, v. 50, https://doi.org/10.1029/2023GL104148.
Scafetta, N., and Bianchini, A., 2022, The planetary theory of solar activity variability: A review: Frontiers in Astronomy and Space Sciences, v. 9, https://doi.org/10.3389/fspas.2022.937930.
Steinhilber, F., et al., 2012, 9, 400 years of cosmic radiation and solar activity from ice cores and tree rings: Proceedings of the National Academy of Sciences of the United States of America, v. 109, p. 5967–5971, https://doi.org/10.1073/pnas.1118965109.
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., Mc-Cormac, G., Van Der Plicht, J., and Spurk, M., 1998, INTCAL98 radiocarbon age calibration, 24, 000–0 cal BP: Radiocarbon, v. 40, p. 1041–1083, https://doi.org/10.1017/S0033822200019123.
Waltham, D., 2015, Milankovitch period uncertainties and their impact on cyclostratigraphy: Journal of Sedimentary Research, v. 85, p. 990–998, https://doi.org/10.2110/jsr.2015.66.
Westerhold, T., et al., 2020, An astronomically dated record of Earth’s climate and its predictability over the last 66 million years: Science, v. 369, p. 1383–1387, https://doi.org/10.1126/science.aba6853.
Wu, H., Fang, Q., Hinnov, L.A., Zhang, S., Yang, T., Shi, M., and Li, H., 2023, Astronomical time scale for the Paleozoic Era: Earth-Science Reviews, v. 244, https://doi.org/10.1016/j.earscirev.2023.104510.
Zhang, T., Li, Y., Fan, T., Da Silva, A.-C., Shi, J., Gao, Q., Kuang, M., Liu, W., Gao, Z., and Li, M., 2022, Orbitally-paced climate change in the early Cambrian and its implications for the history of the Solar System: Earth and Planetary Science Letters, v. 583, https://doi.org/10.1016/j.epsl.2022.117420.