[en] Phosphotidylinositol (PtdIns) signaling is tightly regulated both spatially and temporally by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events1. Joubert syndrome is characterized by a specific midbrain-hindbrain malformation (‘molar tooth sign’), variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly2 and is included in the newly emerging group of ‘ciliopathies’. In individuals with Joubert disease genetically linked to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected by Joubert syndrome, and mutations promoted premature destabilization of cilia in response to stimulation. These data link PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly recognized for its role in mediating cell signals and neuronal function
Vicinanza, M., D'Angelo, G., Di Campli, A. & De Matteis, M.A. Phosphoinositides as regulators of membrane trafficking in health and disease. Cell. Mol. Life Sci. 65, 2833-2841 (2008).
Valente, E.M., Brancati, F. & Dallapiccola, B. Genotypes and phenotypes of Joubert syndrome and related disorders. Eur. J. Med. Genet. 51, 1-23 (2008). (Pubitemid 351163186)
Saar, K. et al. Homozygosity mapping in families with Joubert syndrome identifies a locus on chromosome 9q34.3 and evidence for genetic heterogeneity. Am. J. Hum. Genet. 65, 1666-1671 (1999). (Pubitemid 30468679)
Valente, E.M. et al. Distinguishing the four genetic causes of Joubert syndrome-related disorders. Ann. Neurol. 57, 513-519 (2005).
Tsujishita, Y., Guo, S., Stolz, L.E., York, J.D. & Hurley, J.H. Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell 105, 379-389 (2001). (Pubitemid 32455344)
Kong, A.M. et al. Phosphatidylinositol 3-phosphate (PtdIns3P) is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane. Mol. Cell. Biol. 26, 6065-6081 (2006).
Kisseleva, M.V., Cao, L. & Majerus, P.W. Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits Akt/protein kinase B phosphorylation and leads to apoptotic cell death. J. Biol. Chem. 277, 6266-6272 (2002). (Pubitemid 34968418)
Jiang, X.R. et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111-114 (1999).
Nachury, M.V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201-1213 (2007).
Cantagrel, V. et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. Am. J. Hum. Genet. 83, 170-179 (2008).
Caspary, T., Larkins, C.E. & Anderson, K.V. The graded response to Sonic hedgehog depends on cilia architecture. Dev. Cell 12, 767-778 (2007). (Pubitemid 46667745)
Alieva, I.B., Gorgidze, L.A., Komarova, Y.A., Chernobelskaya, O.A. & Vorobjev, I.A. Experimental model for studying the primary cilia in tissue culture cells. Membr. Cell Biol. 12, 895-905 (1999).
Higginbotham, H., Bielas, S., Tanaka, T. & Gleeson, J.G. Transgenic mouse line with green-fluorescent protein-labeled Centrin 2 allows visualization of the centrosome in living cells. Transgenic Res. 13, 155-164 (2004). (Pubitemid 38995229)
Chizhikov, V.V. et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J. Neurosci. 27, 9780-9789 (2007).
Tucker, R.W., Pardee, A.B. & Fujiwara, K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17, 527-535 (1979). (Pubitemid 9242330)
De Donatis, A. et al. Proliferation versus migration in platelet-derived growth factor signaling: the key role of endocytosis. J. Biol. Chem. 283, 19948-19956 (2008).
Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861-1866 (2005).
Pugacheva, E.N., Jablonski, S.A., Hartman, T.R., Henske, E.P. & Golemis, E.A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351-1363 (2007).
Santagata, S. et al. G-protein signaling through tubby proteins. Science 292, 2041-2050 (2001). (Pubitemid 32691568)
Rohatgi, R. & Scott, M.P. Arrestin' movement in cilia. Science 320, 1726-1727 (2008).
Valente, E.M. et al. AHI1 gene mutations cause specific forms of Joubert syndromerelated disorders. Ann. Neurol. 59, 527-534 (2006).
Murray, S.S. et al. A highly informative SNP linkage panel for human genetic studies. Nat. Methods 1, 113-117 (2004).
Hoffmann, K. & Lindner, T.H. easyLINKAGE-Plus-automated linkage analyses using large-scale SNP data. Bioinformatics 21, 3565-3567 (2005). (Pubitemid 41236002)
Gleeson, J.G. et al. Genetic and neuroradiological heterogeneity of double cortex syndrome. Ann. Neurol. 47, 265-269 (2000).
Valente, E.M. et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38, 623-625 (2006).
Inglis, P.N., Boroevich, K.A. & Leroux, M.R. Piecing together a ciliome. Trends Genet. 22, 491-500 (2006).
Gherman, A., Davis, E.E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961-962 (2006). (Pubitemid 44325911)
Caldwell, K.K., Lips, D.L., Bansal, V.S. & Majerus, P.W. Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate. J. Biol. Chem. 266, 18378-18386 (1991).
Vandeput, F., Backers, K., Villeret, V., Pesesse, X. & Erneux, C. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity. Cell. Signal. 18, 2193-2199 (2006). (Pubitemid 44636162)
Zhang, X., Hartz, P.A., Philip, E., Racusen, L.C. & Majerus, P.W. Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 273, 1574-1582 (1998). (Pubitemid 28133682)
Kisseleva, M.V., Wilson, M.P. & Majerus, P.W. The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J. Biol. Chem. 275, 20110-20116 (2000).
Kim, J., Krishnaswami, S.R. & Gleeson, J.G. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum. Mol. Genet. 17, 3796-3805 (2008).