ALE meta‐analysis; cognitive functions; domain‐general; encoding; network; predictive processing; violation; Humans; Brain/diagnostic imaging; Brain/physiology; Magnetic Resonance Imaging; Nerve Net/diagnostic imaging; Nerve Net/physiology; Brain Mapping/methods; Cognition/physiology; Brain; Brain Mapping; Cognition; Nerve Net; Anatomy; Radiological and Ultrasound Technology; Radiology, Nuclear Medicine and Imaging; Neurology; Neurology (clinical)
Abstract :
[en] Predictive processing (PP) stands as a predominant theoretical framework in neuroscience. While some efforts have been made to frame PP within a cognitive domain-general network perspective, suggesting the existence of a "prediction network," these studies have primarily focused on specific cognitive domains or functions. The question of whether a domain-general predictive network that encompasses all well-established cognitive domains exists remains unanswered. The present meta-analysis aims to address this gap by testing the hypothesis that PP relies on a large-scale network spanning across cognitive domains, supporting PP as a unified account toward a more integrated approach to neuroscience. The Activation Likelihood Estimation meta-analytic approach was employed, along with Meta-Analytic Connectivity Mapping, conjunction analysis, and behavioral decoding techniques. The analyses focused on prediction incongruency and prediction congruency, two conditions likely reflective of core phenomena of PP. Additionally, the analysis focused on a prediction phenomena-independent dimension, regardless of prediction incongruency and congruency. These analyses were first applied to each cognitive domain considered (cognitive control, attention, motor, language, social cognition). Then, all cognitive domains were collapsed into a single, cross-domain dimension, encompassing a total of 252 experiments. Results pertaining to prediction incongruency rely on a defined network across cognitive domains, while prediction congruency results exhibited less overall activation and slightly more variability across cognitive domains. The converging patterns of activation across prediction phenomena and cognitive domains highlight the role of several brain hubs unfolding within an organized large-scale network (Dynamic Prediction Network), mainly encompassing bilateral insula, frontal gyri, claustrum, parietal lobules, and temporal gyri. Additionally, the crucial role played at a cross-domain, multimodal level by the anterior insula, as evidenced by the conjunction and Meta-Analytic Connectivity Mapping analyses, places it as the major hub of the Dynamic Prediction Network. Results support the hypothesis that PP relies on a domain-general, large-scale network within whose regions PP units are likely to operate, depending on the context and environmental demands. The wide array of regions within the Dynamic Prediction Network seamlessly integrate context- and stimulus-dependent predictive computations, thereby contributing to the adaptive updating of the brain's models of the inner and external world.
Disciplines :
Neurosciences & behavior
Author, co-author :
Costa, Cristiano ; Padova Neuroscience Center, Padua, Italy
Pezzetta, Rachele; IRCCS Ospedale San Camillo, Venice, Italy
Masina, Fabio; IRCCS Ospedale San Camillo, Venice, Italy
Lago, Sara; Padova Neuroscience Center, Padua, Italy ; IRCCS Ospedale San Camillo, Venice, Italy
Gastaldon, Simone; Padova Neuroscience Center, Padua, Italy ; Dipartimento di Psicologia dello Sviluppo e della Socializzazione, Università degli Studi di Padova, Padua, Italy
Frangi, Camilla; Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
Genon, Sarah ; Université de Liège - ULiège > Département des sciences cliniques ; Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
Arcara, Giorgio; IRCCS Ospedale San Camillo, Venice, Italy
Scarpazza, Cristina; IRCCS Ospedale San Camillo, Venice, Italy ; Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
Language :
English
Title :
Comprehensive investigation of predictive processing: A cross- and within-cognitive domains fMRI meta-analytic approach.
This work was supported by the Italian Ministry of Health (Ricerca Corrente), by Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN 2022) to CS under the grant agreement no. 2022XKZBFC, and by Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale del Piano Nazionale di Ripresa e Resilienza (PRIN 2022 PNRR) to CS under the grant agreement no. P2022LC5AK. Open access funding provided by BIBLIOSAN.
Aitchison, L., & Lengyel, M. (2017). With or without you: Predictive coding and Bayesian inference in the brain. Current Opinion in Neurobiology, 46, 219–227.
Alexander, W. H., & Brown, J. W. (2018). Frontal cortex function as derived from hierarchical predictive coding. Scientific Reports, 8(1), 3843.
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5, No. 5). American psychiatric association.
Auksztulewicz, R., & Friston, K. (2016). Repetition suppression and its contextual determinants in predictive coding. Cortex, 80, 125–140.
Baker, K. S., Johnston, P., Yamamoto, N., & Pegna, A. J. (2023). Event-related potentials index prediction error Signalling during perceptual processing of emotional facial expressions. Brain Topography, 36(3), 419–432.
Baker, K. S., Yamamoto, N., Pegna, A. J., & Johnston, P. (2022). Violated expectations for spatial and feature attributes of visual trajectories modulate event-related potential amplitudes across the visual processing hierarchy. Biological Psychology, 174, 108422.
Barrós-Loscertales, A. (2018). Processing internal and external stimuli in the insula: A very rough simplification. In M. Turgut, C. Yurttaş, & R. S. Tubbs (Eds.), Island of Reil (Insula) in the human brain: Anatomical, functional, clinical and surgical aspects (pp. 179–189). Springer.
Bastin, J., Deman, P., David, O., Gueguen, M., Benis, D., Minotti, L., Hoffman, D., Combrisson, E., Kujala, J., Perrone-Bertolotti, M., Kahane, P., Lachaux, J. P., & Jerbi, K. (2016). Direct recordings from human anterior insula reveal its leading role within the error-monitoring network. Cerebral Cortex, 27, 1545–1557.
Benarroch, E. E. (2021). What is the role of the claustrum in cortical function and neurologic disease? Neurology, 96(3), 110–113.
Billeke, P., Ossandon, T., Perrone-Bertolotti, M., Kahane, P., Bastin, J., Jerbi, K., Lachaux, J. P., & Fuentealba, P. (2020). Human anterior insula encodes performance feedback and relays prediction error to the medial prefrontal cortex. Cerebral Cortex, 30(7), 4011–4025.
Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annual Review of Neuroscience, 27, 581–609.
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290.
Brown, H., Friston, K., & Bestmann, S. (2011). Active inference, attention, and motor preparation. Frontiers in Psychology, 2, 218.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.
Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.
Clos, M., Amunts, K., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Tackling the multifunctional nature of Broca's region meta-analytically: co-activation-based parcellation of area 44. NeuroImage, 83, 174–188.
Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251.
Corlett, P. R., Mollick, J. A., & Kober, H. (2022). Meta-analysis of human prediction error for incentives, perception, cognition, and action. Neuropsychopharmacology, 47(7), 1339–1349.
Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12(1), 43–56.
Deluca, C., Golzar, A., Santandrea, E., Gerfo, E. L., Eštočinová, J., Moretto, G., Fiaschi, A., Panzeri, M., Mariotti, C., Tinazzi, M., & Chelazzi, L. (2014). The cerebellum and visual perceptual learning: Evidence from a motion extrapolation task. Cortex, 58, 52–71.
Den Ouden, H. E., Kok, P., & De Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3, 548.
D'Mello, A. M., & Rozenkrantz, L. (2020). Neural mechanisms for prediction: From action to higher-order cognition. Journal of Neuroscience, 40(27), 5158–5160.
Dołęga, K., & Dewhurst, J. E. (2021). Fame in the predictive brain: A deflationary approach to explaining consciousness in the prediction error minimization framework. Synthese, 198, 7781–7806.
Downing, K. L. (2013). Neural predictive mechanisms and their role in cognitive incrementalism. New Ideas in Psychology, 31(3), 340–350.
Dreneva, A., Chernova, U., Ermolova, M., & MacInnes, W. J. (2021). Attention trade-off for localization and saccadic remapping. Vision, 5(2), 24.
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361.
Eickhoff, S. B., Bzdok, D., Laird, A. R., Roski, C., Caspers, S., Zilles, K., & Fox, P. T. (2011). Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. NeuroImage, 57(3), 938–949.
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.
Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., Bzdok, D., & Eickhoff, C. R. (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage, 137, 70–85.
Eickhoff, S. B., Paus, T., Caspers, S., Grosbras, M. H., Evans, A. C., Zilles, K., & Amunts, K. (2007). Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage, 36(3), 511–521.
Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–1335.
Euler, M. J. (2018). Intelligence and uncertainty: Implications of hierarchical predictive processing for the neuroscience of cognitive ability. Neuroscience & Biobehavioral Reviews, 94, 93–112.
Feeney, E. J., Groman, S. M., Taylor, J. R., & Corlett, P. R. (2017). Explaining delusions: Reducing uncertainty through basic and computational neuroscience. Schizophrenia Bulletin, 43(2), 263–272.
Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215.
Ficco, L., Mancuso, L., Manuello, J., Teneggi, A., Liloia, D., Duca, S., Costa, T., Kovacs, G. Z., & Cauda, F. (2021). Disentangling predictive processing in the brain: A meta-analytic study in favour of a predictive network. Scientific Reports, 11(1), 16258.
Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352.
Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), e1000211.
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138.
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29(1), 1–49.
Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159, 417–458.
Gastaldon, S., Busan, P., Arcara, G., & Peressotti, F. (2023). Inefficient speech-motor control affects predictive speech comprehension: Atypical electrophysiological correlates in stuttering. Cerebral Cortex, 33(11), 6834–6851.
Geng, J. J., & Vossel, S. (2013). Re-evaluating the role of TPJ in attentional control: Contextual updating? Neuroscience & Biobehavioral Reviews, 37(10), 2608–2620.
Genon, S., Li, H., Fan, L., Müller, V. I., Cieslik, E. C., Hoffstaedter, F., Reid, A. T., Langner, R., Grefkes, C., Fox, P. T., Moebus, S., Caspers, S., Amunts, K., Jiang, T., & Eickhoff, S. B. (2017). The right dorsal premotor mosaic: Organization, functions, and connectivity. Cerebral Cortex, 27(3), 2095–2110.
Genon, S., Reid, A., Langner, R., Amunts, K., & Eickhoff, S. B. (2018). How to characterize the function of a brain region. Trends in Cognitive Sciences, 22(4), 350–364.
Goodwill, A. M., Low, L. T., Fox, P. T., Fox, P. M., Poon, K. K., Bhowmick, S. S., & Chen, S. A. (2023). Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders. Brain Imaging and Behavior, 17(2), 257–269.
Guidali, G., Pisoni, A., Bolognini, N., & Papagno, C. (2019). Keeping order in the brain: The supramarginal gyrus and serial order in short-term memory. Cortex, 119, 89–99.
Hartwigsen, G., Bestmann, S., Ward, N. S., Woerbel, S., Mastroeni, C., Granert, O., & Siebner, H. R. (2012). Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming. Journal of Neuroscience, 32(46), 16162–16171.
Herbet, G., & Duffau, H. (2020). Revisiting the functional anatomy of the human brain: Toward a meta-networking theory of cerebral functions. Physiological Reviews, 100(3), 1181–1228.
Hohwy, J. (2013). The predictive mind. OUP Oxford.
Hohwy, J., & Seth, A. (2020). Predictive processing as a systematic basis for identifying the neural correlates of consciousness. Philosophy and the Mind Sciences, 1(II), 3.
Iijima, K., & Sakai, K. L. (2014). Subliminal enhancement of predictive effects during syntactic processing in the left inferior frontal gyrus: An MEG study. Frontiers in Systems Neuroscience, 8, 217.
Inkster, A. B., Milton, F., Edmunds, C. E., Benattayallah, A., & Wills, A. J. (2022). Neural correlates of the inverse base rate effect. Human Brain Mapping, 43(4), 1370–1380.
Jin, H., Liu, H. L., Mo, L., Fang, S. Y., Zhang, J. X., & Lin, C. D. (2009). Involvement of the left inferior frontal gyrus in predictive inference making. International Journal of Psychophysiology, 71(2), 142–148.
Johansen, J. P., Tarpley, J. W., LeDoux, J. E., & Blair, H. T. (2010). Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nature Neuroscience, 13(8), 979–986.
Keller, G. B., & Mrsic-Flogel, T. D. (2018). Predictive processing: A canonical cortical computation. Neuron, 100(2), 424–435.
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8, 159–166.
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.
Kok, P., Mostert, P., & De Lange, F. P. (2017). Prior expectations induce prestimulus sensory templates. Proceedings of the National Academy of Sciences, 114(39), 10473–10478.
Króliczak, G., Piper, B. J., & Frey, S. H. (2016). Specialization of the left supramarginal gyrus for hand-independent praxis representation is not related to hand dominance. Neuropsychologia, 93, 501–512.
Laird, A. R., Eickhoff, S. B., Kurth, F., Fox, P. M., Uecker, A. M., Turner, J. A., Robinson, J. L., Lancaster, J. L., & Fox, P. T. (2009). ALE meta-analysis workflows via the brainmap database: Progress towards a probabilistic functional brain atlas. Frontiers in Neuroinformatics, 3, 598.
Langner, R., Rottschy, C., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Meta-analytic connectivity modeling revisited: Controlling for activation base rates. NeuroImage, 99, 559–570.
Lau, E. F., & Namyst, A. (2019). fMRI evidence that left posterior temporal cortex contributes to N400 effects of predictability independent of congruity. Brain and Language, 199, 104697.
Lee, K. M., Ferreira-Santos, F., & Satpute, A. B. (2021). Predictive processing models and affective neuroscience. Neuroscience & Biobehavioral Reviews, 131, 211–228.
Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 20(7), 1434–1448.
Lupyan, G., & Clark, A. (2015). Words and the world: Predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24(4), 279–284.
Malekshahi, R., Seth, A., Papanikolaou, A., Mathews, Z., Birbaumer, N., Verschure, P. F., & Caria, A. (2016). Differential neural mechanisms for early and late prediction error detection. Scientific Reports, 6(1), 24350.
Manjaly, Z. M., Harrison, N. A., Critchley, H. D., Do, C. T., Stefanics, G., Wenderoth, N., Lutterotti, A., Müller, A., & Stephan, K. E. (2019). Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 90(6), 642–651.
Maran, M., Numssen, O., Hartwigsen, G., & Zaccarella, E. (2022). Online neurostimulation of Broca's area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Frontiers in Psychology, 13, 968836.
Masina, F., Pezzetta, R., Lago, S., Mantini, D., Scarpazza, C., & Arcara, G. (2022). Disconnection from prediction: A systematic review on the role of right temporoparietal junction in aberrant predictive processing. Neuroscience & Biobehavioral Reviews, 138, 104713.
Medaglia, J. D., Harvey, D. Y., Kelkar, A. S., Zimmerman, J. P., Mass, J. A., Bassett, D. S., & Hamilton, R. H. (2021). Language tasks and the network control role of the left inferior frontal gyrus. Eneuro, 8(5), ENEURO.0382-20.2021.
Meirhaeghe, N., Sohn, H., & Jazayeri, M. (2021). A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron, 109(18), 2995–3011.
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214, 655–667.
Merkley, T. L., Larson, M. J., Bigler, E. D., Good, D. A., & Perlstein, W. M. (2013). Structural and functional changes of the cingulate gyrus following traumatic brain injury: Relation to attention and executive skills. Journal of the International Neuropsychological Society, 19(8), 899–910.
Migeot, J. A., Duran-Aniotz, C. A., Signorelli, C. M., Piguet, O., & Ibáñez, A. (2022). A predictive coding framework of allostatic–interoceptive overload in frontotemporal dementia. Trends in Neurosciences, 45, 838–853.
Miller, M., & Clark, A. (2018). Happily entangled: Prediction, emotion, and the embodied mind. Synthese, 195(6), 2559–2575.
Müller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., Tench, C. R., Yarkoni, T., Nichols, T. E., Turkeltaub, P. E., Wager, T. D., & Eickhoff, S. B. (2018). Ten simple rules for neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 84, 151–161.
Muthukrishna, M., & Henrich, J. (2019). A problem in theory. Nature Human Behaviour, 3(3), 221–229.
Myznikov, A., Zheltyakova, M., Korotkov, A., Kireev, M., Masharipov, R., Jagmurov, O. D., Habel, U., & Votinov, M. (2021). Neuroanatomical correlates of social intelligence measured by the Guilford test. Brain Topography, 34, 337–347.
Nave, K., Deane, G., Miller, M., & Clark, A. (2020). Wilding the predictive brain. Wiley Interdisciplinary Reviews: Cognitive Science, 11(6), e1542.
Nelson, S. M., Dosenbach, N. U., Cohen, A. L., Wheeler, M. E., Schlaggar, B. L., & Petersen, S. E. (2010). Role of the anterior insula in task-level control and focal attention. Brain Structure and Function, 214, 669–680.
Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B. (2005). Valid conjunction inference with the minimum statistic. NeuroImage, 25(3), 653–660.
Owens, A. P., Allen, M., Ondobaka, S., & Friston, K. J. (2018). Interoceptive inference: From computational neuroscience to clinic. Neuroscience & Biobehavioral Reviews, 90, 174–183.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906.
Pajani, A., Kouider, S., Roux, P., & De Gardelle, V. (2017). Unsuppressible repetition suppression and exemplar-specific expectation suppression in the fusiform face area. Scientific Reports, 7(1), 160.
Pessoa, L. (2019). Neural dynamics of emotion and cognition: From trajectories to underlying neural geometry. Neural Networks, 120, 158–166.
Pessoa, L., Medina, L., & Desfilis, E. (2022). Refocusing neuroscience: Moving away from mental categories and towards complex behaviours. Philosophical Transactions of the Royal Society B, 377(1844), 20200534.
Pezzulo, G., Zorzi, M., & Corbetta, M. (2021). The secret life of predictive brains: what's spontaneous activity for? Trends in Cognitive Sciences, 25(9), 730–743.
Poldrack, R. A., & Yarkoni, T. (2016). From brain maps to cognitive ontologies: Informatics and the search for mental structure. Annual Review of Psychology, 67, 587–612.
Potok, W., Maskiewicz, A., Króliczak, G., & Marangon, M. (2019). The temporal involvement of the left supramarginal gyrus in planning functional grasps: A neuronavigated TMS study. Cortex, 111, 16–34.
Raichle, M. E. (2009). A paradigm shift in functional brain imaging. Journal of Neuroscience, 29(41), 12729–12734.
Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.
Rauss, K., Schwartz, S., & Pourtois, G. (2011). Top-down effects on early visual processing in humans: A predictive coding framework. Neuroscience & Biobehavioral Reviews, 35(5), 1237–1253.
Rivas-Fernández, M. Á., Varela-López, B., Cid-Fernández, S., & Galdo-Álvarez, S. (2021). Functional activation and connectivity of the left inferior frontal gyrus during lexical and phonological retrieval. Symmetry, 13(9), 1655.
Rottschy, C., Caspers, S., Roski, C., Reetz, K., Dogan, I., Schulz, J. B., Zilles, K., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Differentiated parietal connectivity of frontal regions for “what” and “where” memory. Brain Structure and Function, 218, 1551–1567.
Rousseau, C., Barbiero, M., Pozzo, T., Papaxanthis, C., & White, O. (2021). Actual and imagined movements reveal a dual role of the insular cortex for motor control. Cerebral Cortex, 31(5), 2586–2594.
Sajid, N., Parr, T., Hope, T. M., Price, C. J., & Friston, K. J. (2020). Degeneracy and redundancy in active inference. Cerebral Cortex, 30(11), 5750–5766.
Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45(3), 810–823.
Seth, A. K., Suzuki, K., & Critchley, H. D. (2012). An interoceptive predictive coding model of conscious presence. Frontiers in Psychology, 2, 395.
Sherman, M. T., Seth, A. K., & Kanai, R. (2016). Predictions shape confidence in right inferior frontal gyrus. Journal of Neuroscience, 36(40), 10323–10336.
Sherwood, C. C., & Gómez-Robles, A. (2017). Brain plasticity and human evolution. Annual Review of Anthropology, 46, 399–419.
Shine, J. M., Breakspear, M., Bell, P. T., Ehgoetz Martens, K. A., Shine, R., Koyejo, O., Sporns, O., & Poldrack, R. A. (2019). Human cognition involves the dynamic integration of neural activity and neuromodulatory systems. Nature Neuroscience, 22(2), 289–296.
Siman-Tov, T., Granot, R. Y., Shany, O., Singer, N., Hendler, T., & Gordon, C. R. (2019). Is there a prediction network? Meta-analytic evidence for a cortical-subcortical network likely subserving prediction. Neuroscience & Biobehavioral Reviews, 105, 262–275.
Sklar, A. Y., Kardosh, R., & Hassin, R. R. (2021). From non-conscious processing to conscious events: A minimalist approach. Neuroscience of Consciousness, 2021(2), niab026.
Söderström, P., Horne, M., Mannfolk, P., van Westen, D., & Roll, M. (2017). Tone-grammar association within words: Concurrent ERP and fMRI show rapid neural pre-activation and involvement of left inferior frontal gyrus in pseudoword processing. Brain and Language, 174, 119–126.
Sokolov, A. A. (2018). The cerebellum in social cognition. Frontiers in Cellular Neuroscience, 12, 145.
Stawarczyk, D., Bezdek, M. A., & Zacks, J. M. (2021). Event representations and predictive processing: The role of the midline default network core. Topics in Cognitive Science, 13(1), 164–186.
Stefanics, G., Heinzle, J., Horváth, A. A., & Stephan, K. E. (2018). Visual mismatch and predictive coding: A computational single-trial ERP study. Journal of Neuroscience, 38(16), 4020–4030.
Stefanics, G., Stephan, K. E., & Heinzle, J. (2019). Feature-specific prediction errors for visual mismatch. NeuroImage, 196, 142–151.
Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59(10), 929–939.
Strijkers, K., Chanoine, V., Munding, D., Dubarry, A. S., Trébuchon, A., Badier, J. M., & Alario, F. X. (2019). Grammatical class modulates the (left) inferior frontal gyrus within 100 milliseconds when syntactic context is predictive. Scientific Reports, 9(1), 4830.
Swanson, L. R. (2016). The predictive processing paradigm has roots in Kant. Frontiers in Systems Neuroscience, 10, 79.
Turak, B., Louvel, J., Buser, P., & Lamarche, M. (2002). Event-related potentials recorded from the cingulate gyrus during attentional tasks: A study in patients with implanted electrodes. Neuropsychologia, 40(1), 99–107.
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13.
van Elk, M. (2021). A predictive processing framework of tool use. Cortex, 139, 211–221.
Walsh, K. S., McGovern, D. P., Clark, A., & O'Connell, R. G. (2020). Evaluating the neurophysiological evidence for predictive processing as a model of perception. Annals of the new York Academy of Sciences, 1464(1), 242–268.
Watanabe, E., Kitaoka, A., Sakamoto, K., Yasugi, M., & Tanaka, K. (2018). Illusory motion reproduced by deep neural networks trained for prediction. Frontiers in Psychology, 9, 345.
Wilterson, A. I., Nastase, S. A., Bio, B. J., Guterstam, A., & Graziano, M. S. (2021). Attention, awareness, and the right temporoparietal junction. Proceedings of the National Academy of Sciences, 118(25), e2026099118.
Zaragoza-Jimenez, N., Niehaus, H., Thome, I., Vogelbacher, C., Ende, G., Kamp-Becker, I., Endres, D., & Jansen, A. (2023). Modeling face recognition in the predictive coding framework: A combined computational modeling and functional imaging study. Cortex, 168, 203–225.