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Abstract

Predictive processing (PP) stands as a predominant theoretical framework in neuro-

science. While some efforts have been made to frame PP within a cognitive

domain-general network perspective, suggesting the existence of a “prediction
network,” these studies have primarily focused on specific cognitive domains or

functions. The question of whether a domain-general predictive network that

encompasses all well-established cognitive domains exists remains unanswered.

The present meta-analysis aims to address this gap by testing the hypothesis that

PP relies on a large-scale network spanning across cognitive domains, supporting

PP as a unified account toward a more integrated approach to neuroscience. The

Activation Likelihood Estimation meta-analytic approach was employed, along with

Meta-Analytic Connectivity Mapping, conjunction analysis, and behavioral decoding

techniques. The analyses focused on prediction incongruency and prediction con-

gruency, two conditions likely reflective of core phenomena of PP. Additionally,

the analysis focused on a prediction phenomena-independent dimension, regardless

of prediction incongruency and congruency. These analyses were first applied to

each cognitive domain considered (cognitive control, attention, motor, language,

social cognition). Then, all cognitive domains were collapsed into a single, cross-

domain dimension, encompassing a total of 252 experiments. Results pertaining to

prediction incongruency rely on a defined network across cognitive domains, while

prediction congruency results exhibited less overall activation and slightly more

variability across cognitive domains. The converging patterns of activation across

prediction phenomena and cognitive domains highlight the role of several brain
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hubs unfolding within an organized large-scale network (Dynamic Prediction Net-

work), mainly encompassing bilateral insula, frontal gyri, claustrum, parietal lobules,

and temporal gyri. Additionally, the crucial role played at a cross-domain, multi-

modal level by the anterior insula, as evidenced by the conjunction and Meta-

Analytic Connectivity Mapping analyses, places it as the major hub of the Dynamic

Prediction Network. Results support the hypothesis that PP relies on a domain-

general, large-scale network within whose regions PP units are likely to operate,

depending on the context and environmental demands. The wide array of regions

within the Dynamic Prediction Network seamlessly integrate context- and

stimulus-dependent predictive computations, thereby contributing to the adaptive

updating of the brain's models of the inner and external world.

K E YWORD S

ALE meta-analysis, cognitive functions, domain-general, encoding, network, predictive
processing, violation

Practitioner Points

• Predictive processing relies on a domain-general, large-scale network encompassing bilateral

insula, frontal gyri, claustrum, parietal lobules, and temporal gyri. Predictive processing units

are likely to operate within these hubs, depending on the context and environmental

demands.

• Assuming a heterarchical organization of prediction hubs would allow for the integration of

context- and stimulus-dependent predictive computations, contributing to the updating of

the brain's models of the world.

• Investigating predictive processing across cognitive domains, this study offers insights into

how this framework bridges the integrated nature of cognitive functions across well-

established domains, going beyond the conventional boundaries of mental terms.

1 | INTRODUCTION

Cognitive processes involve complex functional brain organization

and fine dynamic system-level integration (Shine et al., 2019). How-

ever, how the activity within large-scale networks links to cognitive

functioning remains an open question (Cole et al., 2014; Shine

et al., 2019). Among the theoretical models proposed to explain cogni-

tive processes and their neural correlates over the last decades, since

Rao and Ballard (1999) seminal work and up to recent theoretical

models (Friston, 2003; Friston et al., 2017; Keller & Mrsic-

Flogel, 2018; Owens et al., 2018; Pezzulo et al., 2021) and empirical

findings (Deco et al., 2011; Malekshahi et al., 2016; Rauss et al., 2011;

Stefanics et al., 2018, 2019), predictive processing (PP) (Clark, 2013;

Friston, 2010; Knill & Pouget, 2004) has emerged as a predominant

theoretical framework in sensorimotor, cognitive, computational, and

affective neuroscience. To date, several theories and models have

been proposed within the umbrella term of “PP” (see, e.g., Aitchison &

Lengyel, 2017; Euler, 2018; Nave et al., 2020; van Elk, 2021). For clar-

ity, this work will refer to Andy Clark's general view (Clark, 2013,

2015). This theoretical perspective traces its roots back to Helmholtz's

idea that perception is a process of probabilistic, knowledge-driven,

inference (Hohwy, 2013). Moving on from Kantian-influenced views

(Swanson, 2016), modern formulations of PP suggest that the infor-

mation flow, modeled as a multilevel hierarchical generative model,

involves higher-level units capturing the statistical structure of

observed inputs at lower-level units, by schematically recapitulating

the causal matrix responsible for that structure (Brown et al., 2011;

Friston, 2010; Friston & Stephan, 2007; Lee & Mumford, 2003; Rao &

Ballard, 1999). Within this framework, prediction error minimization

serves as the driving force behind learning, action-selection, recogni-

tion, and inference (Auksztulewicz & Friston, 2016; Clark, 2013; Den

Ouden et al., 2012; Dołęga & Dewhurst, 2021; Feldman &

Friston, 2010; Friston et al., 2017; Knill & Pouget, 2004; Walsh

et al., 2020; Watanabe et al., 2018).

The natural question that arises is how predictive processes are

computed at the neural level. Recent neurophysiological perspectives

(Keller & Mrsic-Flogel, 2018; Walsh et al., 2020) propose that these

processes are likely to be implemented in an inferential hierarchy con-

sisting of either two or three functionally distinct neural subpopula-

tions (units). As per Walsh et al. (2020), expectation units convey

expected sensory states downward and laterally within the processing

hierarchy, and error units transmit prediction error signals upward and
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laterally. Keller and Mrsic-Flogel (2018) propose a distinction among

error units, delineating a comparator circuit that computes the predic-

tion error between sensory input and predictions, and a modulating

signal that establishes the precision of the prediction error. PP models

describe communication between units, or neurons (Clark, 2013;

Friston, 2010; Lee et al., 2021), but as this framework gained increas-

ing evidence and support, recent literature linked these units to activ-

ity in discrete brain regions (e.g., Kilner et al., 2007; Pajani et al., 2017;

Seth et al., 2012). These models also support that PP can offer

insights into the emergence of the representational content of psy-

chological phenomena, such as surprise or expectation, at the macro-

scale (see Lee et al., 2021 for an elegant discussion). However, most

of these models depict PP units to operate in segregated hubs.

Despite the longstanding assumption that cognitive functions reflect

the activity and co-activity of individual brain areas, it is

well-established that cognitive functioning arises from the dynamic

interactions of distributed brain areas operating as a coherent whole

in large-scale networks that fluidly adapt to changing environmental

demands (Bressler & Menon, 2010; Raichle, 2009; Shine et al., 2019).

To date, some attempts have been made to meta-analytically

investigate where PP units are likely to operate in the brain, and frame

predictive mechanisms within a cognitive domain-general network

perspective. Siman-Tov et al. (2019) conducted an Activation Likeli-

hood Estimation (ALE) meta-analytic investigation focused on three

functional domains: action perception, language, and music, all inher-

ently involving prediction. Results revealed significant convergence in

cortical and subcortical clusters, including bilateral anterior insula,

inferior frontal gyrus, and ventral premotor cortex; right pre-

supplementary motor area, middle frontal gyrus, and supramarginal

gyrus; and left posterior superior temporal sulcus, caudate, and cere-

bellar lobule VII. As stated by the authors, this combination of brain

regions is reminiscent of the neuroanatomical foundations of several

neural functions, such as motor control, implicit learning, attention,

and social cognition, suggesting how the presented network is impli-

cated in diverse cognitive processes in a predictive domain-general

fashion. In a second ALE meta-analysis, Ficco et al. (2021) categorized

contrasts from each experiment into two conditions: prediction viola-

tion and prediction encoding. A third condition, general prediction,

was created by merging the datasets of the other two conditions. The

ALE results revealed convergence across tasks targeting PP in a set of

cortical regions, such as the left inferior frontal gyrus and left insula, in

both the prediction violation and general prediction condition. How-

ever, no convergence was found in the encoding condition. In addi-

tion, through Seed-Voxel Correlations Consensus, a meta-analytic

connectivity method, the authors identified a large, bilateral predictive

network resembling networks involved in task-driven attention and

task execution. In a third study, Corlett et al. (2022) employed the

Multi-level Kernel-based Density meta-analysis method to investigate

the neural implementation of human prediction errors, providing

insights into the neural mechanisms of domain-general prediction

errors in various domains such as reward, punishment, action, cogni-

tion, and perception. The study identified several brain regions associ-

ated with prediction errors, including the midbrain, dorsal and ventral

striatum, thalamus, amygdala, insula, claustrum, prefrontal cortex,

parietal cortex, precuneus, occipital cortex, and posterior and anterior

cingulate. These studies collectively contribute valuable insights sup-

porting the hypothesis that predictive processes rely on a domain-

general, large-scale network. However, to date, no previous study has

addressed the existence of a predictive network encompassing all

well-established cognitive domains. This could in turn provide support

to the notion that the neuroarchitecture does not respect the conven-

tional boundaries of mental terms (Pessoa et al., 2022; Poldrack &

Yarkoni, 2016), and that PP bestows a compelling framework for mov-

ing toward a more integrated approach to neuroscience.

To fill this gap in the literature, the current work aims to meta-

analytically summarize neuroimaging findings capturing predictive pro-

cesses across multiple cognitive domains, formally and traditionally con-

ceptualized within the boundaries of mental terms (i.e., cognitive

control, attention, motor, language, social cognition, and memory)

(American Psychiatric Association, 2013; Pessoa et al., 2022). Brain

regions where PP units are likely to operate will be explored by investi-

gating prediction phenomena's macroscopic correlates (i.e., by leveraging

prediction incongruency and prediction congruency conditions, see

Section 2.3) and in a phenomena-independent fashion (i.e., by merging

prediction incongruency and congruency datasets, which will highlight

regions consistently activated in both prediction conditions). To this

end, multiple ALE meta-analyses will be conducted (Eickhoff

et al., 2009, 2016; Turkeltaub et al., 2012), regardless of task typology

(which are mainly of the types “Congruent—Incongruent,”
“Predictable—Unpredictable,” “Valid cue—Invalid cue,” “Standard–
Deviant,” see Supplementary Information B) and stimuli used in individ-

ual studies, on data clustered as prediction incongruency, prediction

congruency, and phenomena-independent prediction. This comprehen-

sive analysis plan will be adopted for each considered cognitive domain

(cognitive control, attention, motor, language, social cognition) and by

collapsing all cognitive domains into a single, cross-domain dimension.

Building upon previous meta-analyses, the present study will

introduce a multi-faceted approach. In addition to the ALE technique,

results will be extended through the application of the Meta-Analytic

Connectivity Mapping (MACM) method, the minimum conjunction

analysis, and the behavioral decoding, to ensure a comprehensive

investigation of PP within- and cross-cognitive domain.

2 | MATERIALS AND METHODS

2.1 | Pre-registration

The protocol for the present meta-analysis has been registered in the

Open Science Framework (OSF) register (10.17605/OSF.IO/CZ5HN).

2.2 | Study selection

An in-depth literature search was conducted following the updated

PRISMA Guidelines (Page et al., 2021) and the guidelines for
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neuroimaging meta-analysis (Müller et al., 2018). The PRISMA Check-

list and the Checklist for neuroimaging meta-analysis are available in

the Supplementary Information C and D, respectively. Eligible studies

were identified by searching the Pubmed, Embase, and PsycINFO bib-

liographic databases from inception until the 30th of December 2022.

The search utilized combinations of database-specific terms such as

“fMRI,” “Prediction,” “Prediction error,” “Surpris*,” and “Violat*,”
along with domain-specific terms (the complete search strings are

available in Supplementary Information A S1).

Inclusion criteria encompassed studies that: (a) employed fMRI or

PET; (b) focused on healthy participants of age >18 years old;

(c) involved at least five participants; (d) provided 3D coordinates of

peak activations within the stereotactic Montreal Neurological Insti-

tute (MNI) or Talairach space; (e) employed whole brain analysis; and

(f) conducted a direct comparison of brain activation between condi-

tions within the experimental task involving predictive processes. As

for the exclusion criteria, studies were excluded if they did not employ

a relevant task (i.e., frameable within the PP framework), a relevant

contrast (as a control condition), or fell in-between two cognitive

domains (i.e., multi-domain tasks). Reviews and meta-analyses were

also excluded. Studies already included in Ficco et al. (2021) and

Siman-Tov et al. (2019) were collected beforehand and added to the

ones retrieved from the databases before duplicates removal. Screen-

ing and selection of studies were conducted by five authors (CC, RP,

FM, SL, and SG), with data extraction randomly double checked by

the same authors. Conflicts were resolved through pairwise discus-

sions until a consensus was reached.

2.3 | Data extraction

The following information was extracted from each paper: (a) number

of participants; (b) cognitive domain; (c) modality of task stimuli pre-

sentation (e.g., visual or auditory); (d) type of task and stimuli;

(e) contrast(s); (f) brain activation coordinates for the direct compari-

son between task conditions; (g) source of coordinates (where in the

paper the coordinates were reported, e.g., Table x, Figure y, etc.);

(h) statistics; (i) task nature (i.e., active or passive, indicating whether a

behavioral performance was required); (l) predictability of the condi-

tion; (m) presence of a violation of the established expectancy; and (n)

whether the predictability was explicitly stated within the task's infor-

mation or rather it was implicit (Supplementary Information B). Five

authors (CC, RP, FM, SL, and SG) independently extracted the data.

Datasets for analyses were created by clustering studies and

experiments according to the cognitive domain categorization, with a

minimum threshold of 17 experiments set to maintain adequate

power for each meta-analysis (Eickhoff et al., 2016). Studies falling

under cognitive domains where the minimum threshold could not be

reached were included in the cross-domain meta-analysis only. This

approach resulted in the creation of the following datasets, which

subsequently entered the analyses: cognitive control, attention,

motor, language, social cognition, and cross-domain (i.e., all the above

domains plus memory, music, and pain, which did not reach the

minimum threshold of 17 experiments). Additionally, each dataset was

further divided into two sub-datasets based on the typology of pre-

diction phenomena (i.e., prediction congruency or prediction incon-

gruency). In total, 18 datasets were created (see Supplementary

Information A S4 for the number of included experiments for each

dataset).

As previously mentioned, predictive computations occur at the

unit level. To meta-analytically summarize where these units are likely

to operate, one should operationalize the selection of contrasts for

inclusion in the meta-analyses so that the macroscopic activity is likely

reflective of underlying predictive processes. Therefore, the present

work focuses on prediction congruency and prediction incongruency

conditions. Following Clark's (2013, 2015) view and Lee et al.'s (2021)

discussion of PP neural implementation and associated psychological

states, prediction congruency would be reflective of the process

through which the brain represents information from the external

world or internal states that match predictions. Conversely, prediction

incongruency would be reflective of a situation where the predictions

generated by the brain do not align with incoming sensory informa-

tion. To illustrate how this guided the selection process if a study

implements an oddball task and reports activation coordinates for

Standard > Deviant and Deviant > Standard contrasts, the former

would be included in the prediction congruency datasets, while the

Deviant > Standard contrast would be included in the prediction

incongruency datasets.

It is crucial to note that when the actual sensory input deviates

from the brain's predictions, it does not only generate a prediction

error but also triggers a corrective adjustment in the internal model to

better reflect the true state of the world. It is reasonable to assume

that the neural correlates of this process are captured by activations

included in the prediction incongruency datasets, thereby introducing

potential confounding effects that are challenging to regress out due

to the intrinsic nature of input data for an ALE meta-analysis.

2.4 | ALE meta-analyses

The ALE method aims at determining the above-chance convergence

of activation probabilities between experiments (Eickhoff et al., 2016).

The algorithm follows a four-step structure. Step 1: modeling a Gauss-

ian kernel for each activation peak, treating these as fixed-effects

within each study, whereas studies are treated as random-effects. The

width of the kernels accommodates between-subject and between-

lab variations, addressing spatial uncertainty based on the participants'

sample size in each study. Step 2: calculating a modeled activation

map for each study, unifying all the modeled peaks. Step 3: obtaining

ALE maps by computing the union of activation probabilities for each

voxel. Step 4: testing for statistical significance by comparing the ALE

scores of the obtained union map with a null-distribution of ALE

scores reflecting the random spatial association between studies, and

applying a correction for multiple comparisons.

Stereotactic coordinates for the ALE meta-analyses were

extracted from the studies. The ALE algorithm was used as
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implemented in GingerALE 3.0.2 software (Eickhoff et al., 2009, 2012;

Turkeltaub et al., 2012). Coordinates in the Talairach space were con-

verted into the MNI 152 standard space using the GingerALE foci

converter tool. Statistical significance was assessed and corrected for

multiple comparisons using a cluster-based method (Eickhoff

et al., 2012, 2016): cluster-forming threshold p < .001; cluster level

Family Wise Error correction p < .05, 5000 permutations. In cases

where one study had multiple contrasts reflecting the effect of inter-

est in each condition (e.g., two contrasts reflecting different aspects

of incongruency), their respective coordinates were merged to avoid

duplicating participants in the analyses (Müller et al., 2018). ALE

meta-analyses were performed for all 18 datasets.

2.5 | Conjunction and contrast analysis

Conjunction between the prediction phenomena-independent ALE

maps of each cognitive domain was carried out through SPM12's

ImCalc function (Wellcome Trust Centre for Neuroimaging, London)

by calculating a voxel-wise minimum statistic (Nichols et al., 2005).

Computationally, this is equivalent to determining the inter-

section between the thresholded meta-analyses results. The results

were thus significant in individual analyses at a corrected p < .05. The

resulting area was anatomically labeled by reference to probabilistic

cytoarchitectonic maps of the human brain (Eickhoff

et al., 2005, 2007).

To assess the differences between cross-domain prediction

incongruency and prediction congruency, the voxel-wise difference

between the ensuing ALE maps was computed (Eickhoff et al., 2011).

Contrast analysis involves comparing two ALE datasets by generating

two ALE contrast images through direct subtraction of one input

image from the other. As this ALE subtraction image does not account

for differences between the studies, to address this problem and cor-

rect for study sizes, GingerALE employs a strategy of creating simu-

lated data. This entails pooling the foci datasets and randomly dividing

them into two new groupings of the same size as the original datasets.

An ALE image is then generated for each new dataset, subtracted

from the other, and compared to the true data. Following

n permutations, a voxel-wise p-value image is obtained, showing

where the values of the true data sit within the distribution of values

in that voxel (Eickhoff et al., 2011, 2012). Differences of convergence

were assessed by means of an uncorrected p < .01, 10,000 permuta-

tions, and a cluster threshold of 200 mm3.

2.6 | Meta-analytic connectivity mapping

Sleuth v3.0.4 and GingerALE v3.0.2 software were used to perform

the Meta Analytic Connectivity Mapping. MACM delineates the pat-

terns of co-activation across numerous studies by leveraging

neuroimaging databases, and generating data-driven functional con-

nectivity maps based on a predefined seed region (Langner

et al., 2014). For the present analysis, the seed region was defined as

the area of conjunction among all cognitive domain-based meta-

analyses. The BrainMap database (http://www.brainmap.org/) was

used, containing, at the time of assessment, coordinates of reported

activation foci and associated meta-data from nearly 17,000 neuroim-

aging experiments. The inclusion criteria for the present analysis

involved whole-brain neuroimaging studies reporting at least one acti-

vation focus within the seed region in a healthy population. Exclusion

criteria encompassed studies investigating differences in age, gender,

handedness, training effects, or clinical populations. Subsequently, an

ALE meta-analysis was performed on the extracted experiments to

test for spatial convergence across all reported foci. The statistical

thresholds applied were consistent with the other ALE analyses

(i.e., cluster-forming threshold p < .001; cluster level Family Wise

Error correction p < .05, 5000 permutations). The seed region would

exhibit high convergence, and convergence outside the seed region

indicates other brain regions demonstrating consistent co-activations

with it, reflecting task-based functional connectivity (Goodwill

et al., 2023).

2.7 | Behavioral decoding

Behavioral decoding was performed to explore behavioral concepts

commonly associated with the activations of a seed region (Genon

et al., 2018), defined, like for the MACM analysis, as the area of con-

junction among all cognitive domain-based meta-analyses. Particu-

larly, behavioral decoding was performed using the “behavioral
domain” (BD) and “paradigm class” (PC) metadata as assigned in the

BrainMap database (Laird et al., 2009). A description of the behavioral

processes covered by the BrainMap PC taxonomy can be found

athttps://brainmap.org/taxonomy/paradigms/. BDs include the main

categories “cognition, action, perception, emotion, interoception,”
along with their respective subcategories. PCs categorize the specific

tasks employed. To characterize the functional profile of the seed

region, quantitative “forward inference” and “reverse inference”
approaches were employed (Genon et al., 2017).

In the forward inference approach, a region's functional profile is

assessed by identifying taxonomic labels for which the probability of

finding activation in the respective region is significantly higher than

finding activation for that label across the whole database by chance.

Significance was determined using a binomial test (p < .05, corrected

for multiple comparisons using Bonferroni's method; Clos et al., 2013;

Genon et al., 2017; Rottschy et al., 2013). This involves testing

whether the conditional probability of activation in a particular region

given a particular label [P(ActivationjTask)] is higher than the baseline

probability of activating this particular region [P(Activation)].

In the reverse inference approach, a region's functional profile is

determined by identifying the most likely BDs and PCs given activa-

tion in a particular cluster, that is, the likelihood P(TaskjActivation).
This likelihood is derived from P(ActivationjTask) as well as P(Task)

and P(Activation) using Bayes' rule. Significance (at p < .05, corrected

for multiple comparisons) was assessed by means of a χ2 test. In sum-

mary, forward inference assesses the probability of activation given a
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behavioral label, whereas reverse inference assesses the probability of

each behavioral label given an activation.

Additionally, the association tool implemented in the Neurosynth

database (https://neurosynth.org/locations/) was used, entering the

peak coordinate of the seed region. The ensuing associations' table

provides information about the relationship between activation at a

given voxel and, among others information available in Neurosynth,

the z-score value obtained at the current voxel in the “association
test” meta-analysis map for the corresponding term. The analysis con-

centrated on terms whose associations were deemed very strong,

with a z-score ≥3.

2.8 | Additional analyses

Noticing a remarkable resemblance between the cross-domain predic-

tion phenomena-independent meta-analytic results and MACM ones,

it was decided to formally test the intersection between the two

ensuing ALE maps. To do so, the conjunction approach was employed,

following the same method outlined in Section 2.5.

As per pre-registration, two additional analyses were conducted.

First, the meta-analysis by Siman-Tov (Siman-Tov et al., 2019) was

replicated, using the ALE approach implementing the same statistical

threshold (false discovery rate, q = 0.05) and minimum cluster size

(200 mm3) (Supplementary Information A S5). Second, domain-

specific ALE results were replicated using the Seed-Based D Mapping

(SDM) approach. Details of the methods, results, between-study het-

erogeneity (I2), and publication bias (assessed through the Excess Sig-

nificance Test) can be found in Supplementary Information A S6. The

inclusion of the SDM approach was deliberately chosen to establish a

comprehensive validation framework for the ALE results, given the

latter method's shortcomings (e.g., ALE relies on reported coordinates

of activation peaks rather than statistical maps, potentially leading to

information loss that may not capture the full extent of activation pat-

terns (Salimi-Khorshidi et al., 2009)). By incorporating the SDM

approach, the goal was to enhance the robustness of the findings

through a methodologically diverse perspective. This dual-method

approach allows for rigorous cross-validation of activation patterns,

mitigating the risk of method-specific biases and reinforcing the reli-

ability of the identified neural substrates associated with the studied

phenomenon.

3 | RESULTS

3.1 | Included studies

The search produced 4873 entries (i.e., n = 1867 from PubMed,

n = 1217 from Embase, n = 1789 from PsychInfo). After excluding

2996 entries based on title and abstract for not meeting the general

inclusion criteria, the remaining 1877 entries were retrieved. Follow-

ing the PRISMA guidelines, a total of 252 experiments were ultimately

included in the meta-analysis (see Figure 1 for the PRISMA Flow

Chart). A detailed description of the experiments for each included

study, encompassing the number of participants, cognitive domain,

fMRI tasks and stimuli, significant contrast(s), foci and reference

space, statistics, and the predictive characteristics of the tasks, can be

found in Supplementary Information B.

3.2 | ALE estimation

3.2.1 | Cross-domain ALE

All 252 experiments entered the cross-domain prediction

phenomena-independent meta-analysis, contributing 5950 partici-

pants. Significant consistent activation was found in seven clusters

(Table 1, Figure 2, top row). These clusters encompassed the insula,

inferior frontal gyrus, middle frontal gyrus, precentral gyrus, claustrum,

caudate, lentiform nucleus, extra-nuclear, and superior frontal gyrus

(Cluster 1); the inferior frontal gyrus, precentral gyrus, insula, middle

frontal gyrus, claustrum, and extra-nuclear (Cluster 2); the inferior

parietal lobule, precuneus, superior temporal gyrus, superior parietal

lobule, angular gyrus, supramarginal gyrus, and middle temporal gyrus

(Cluster 3); the medial frontal gyrus, superior frontal gyrus, and cingu-

late gyrus (Cluster 4); the inferior parietal lobule, superior parietal lob-

ule, supramarginal gyrus, precuneus, middle temporal gyrus, and

superior temporal gyrus (Cluster 5); the superior temporal gyrus, mid-

dle temporal gyrus, transverse temporal gyrus, and inferior temporal

gyrus (Cluster 6) and the fusiform gyrus, inferior occipital gyrus,

declive, inferior temporal gyrus, and middle occipital gyrus (Cluster 7).

The cross-domain prediction congruency meta-analysis (Figure 2,

middle row), conducted on 134 experiments and 3258 participants,

produced seven clusters of significant consistent activation (Table 1).

Postcentral gyrus, which comprises 44.3% of cluster 7, emerged as

the only area of activation that is not shared with the domain- and

prediction phenomena-independent ALE analysis.

Concerning the cross-domain prediction incongruency dataset

(Figure 2, bottom row), 175 experiments entered the analysis, contrib-

uting 4102 participants. Ten clusters showed significant consistent

activation (Table 1). The largest cluster (volume = 23,360 mm3)

encompassed the insula, inferior frontal gyrus, middle frontal gyrus,

precentral gyrus, and claustrum. Of note, the smallest cluster (volu-

me = 1272 mm3) belonged to the left thalamus (100%).

3.2.2 | Domain-specific ALE

Domain-specific prediction phenomena-independent ALE results are

reported in Table 2 and graphically represented in Figure 3, while

domain-specific ALE results divided for incongruency and congruency

are reported in Supplementary Information A S2 and Figure S1.

Attention

Consistent activation across attention tasks regardless of the type of

prediction phenomena (n = 52 experiments) was found in the right
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superior, right and left middle, and right and left inferior frontal gyri,

right and left insula, right and left precentral gyrus, right superior and

right inferior parietal lobules, left superior temporal gyrus, left fusi-

form gyrus, and left claustrum. In the context of prediction incon-

gruency (n = 44 experiments), the same areas of activation of the

attention prediction phenomena-independent analysis were found,

while regarding prediction congruency (n = 17 experiments), consis-

tent activation was restricted to the right superior frontal gyrus, left

cingulate gyrus, left insula, left superior temporal gyrus, right precen-

tral gyrus, and left inferior parietal lobule.

Cognitive control

Consistent activation across cognitive control tasks regardless of

the type of prediction phenomena (n = 31 experiments) was

found in the left superior, right, and left middle, and right and left

inferior frontal gyri, right insula, right and left precentral gyrus,

right and left inferior parietal lobule, right and left claustrum, and

right and left precuneus. For what concerns prediction

incongruency (n = 21 experiments), the same areas of activation

of the cognitive control prediction phenomena-independent anal-

ysis were found, while regarding prediction congruency (n = 15

experiments), consistent activation was restricted to right superior

and right middle frontal gyri, right inferior parietal lobule, and left

pyramis.

Language

Consistent activation across language tasks regardless of the type of

prediction phenomena (n = 53 experiments) was found in the left

superior, right and left middle and right and left inferior frontal gyri,

right and left insula, left claustrum, right and left superior and left mid-

dle temporal gyri, left inferior parietal lobule, left precentral gyrus, and

left supramarginal gyrus. In the case of prediction incongruency

(n = 39 experiments), the same areas of activation of the language

prediction phenomena-independent analysis were found, while

regarding prediction congruency (n = 32 experiments), consistent

activation also extended to the left fusiform gyrus.

F IGURE 1 PRISMA flowchart
illustrating the selection process of the
present meta-analysis.
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TABLE 1 Cross-domain prediction phenomena-independent ALE results; cross-domain prediction congruency Activation Likelihood
Estimation (ALE) results; cross-domain prediction incongruency ALE results.

Cluster MNI coordinates Z-values Region

Cross-domain: Prediction phenomena-independent

1 34 22 �2 11.998 Claustrum

1 46 16 24 7.324 Inferior frontal gyrus

1 46 18 0 7.092 Insula

1 48 30 6 5.339 Inferior frontal gyrus

1 48 10 36 5.129 Precentral gyrus

1 40 38 26 5.083 Middle frontal gyrus

1 12 12 �2 3.775 Caudate

1 20 16 �10 3.672 Lentiform nucleus

2 �32 22 �2 11.409 Claustrum

2 �44 12 26 8.045 Inferior frontal gyrus

2 �30 �6 56 5.006 Precentral gyrus

2 �50 32 8 4.552 Inferior frontal gyrus

2 �48 32 �4 4.098 Inferior frontal gyrus

2 �44 12 �8 3.875 Insula

2 �52 10 �8 3.313 Superior temporal gyrus

2 �40 40 4 3.247 Inferior frontal gyrus

3 32 �64 44 6.520 Precuneus

3 42 �44 42 6.324 Inferior parietal lobule

3 54 �44 50 6.013 Inferior parietal lobule

3 64 �34 10 5.315 Superior temporal gyrus

3 54 �42 10 4.758 Superior temporal gyrus

3 52 �40 10 4.729 Superior temporal gyrus

3 52 �58 32 3.835 Superior temporal gyrus

3 56 �44 36 3.808 Supramarginal gyrus

3 58 �40 26 3.794 Inferior parietal lobule

4 �2 14 50 10.618 Superior frontal gyrus

4 4 18 48 10.580 Superior frontal gyrus

4 �4 28 40 5.296 Cingulate gyrus

4 �4 �4 58 4.129 Medial frontal gyrus

4 �4 40 46 3.836 Superior frontal gyrus

5 �48 �42 46 6.289 Inferior parietal lobule

5 �36 �48 42 5.805 Inferior parietal lobule

5 �26 �56 50 5.212 Superior parietal lobule

5 �56 �46 38 4.828 Supramarginal gyrus

5 �28 �64 44 4.828 Precuneus

5 �46 �62 26 4.037 Middle temporal gyrus

5 �40 �66 48 3.397 Inferior parietal lobule

6 �56 �38 6 5.147 Middle temporal gyrus

6 �64 �38 12 4.834 Superior temporal gyrus

6 �58 �28 12 4.783 Superior temporal gyrus

6 �60 �24 10 4.769 Superior temporal gyrus

6 �58 �50 6 4.283 Middle temporal gyrus

6 �56 �56 4 4.240 Middle temporal gyrus

6 �48 �60 0 3.429 Inferior temporal gyrus
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TABLE 1 (Continued)

Cluster MNI coordinates Z-values Region

7 �46 �50 �16 5.511 Fusiform gyrus

7 �42 �76 �8 5.199 Fusiform gyrus

7 �36 �84 �2 3.519 Inferior occipital gyrus

Cross domain: Prediction congruency

1 4 20 48 6.408 Superior frontal gyrus

1 6 0 52 4.837 Medial frontal gyrus

1 �4 �6 58 4.691 Medial frontal gyrus

1 �4 12 48 4.279 Medial frontal gyrus

2 34 22 �2 6.776 Claustrum

2 48 18 2 4.716 Precentral gyrus

3 56 �42 50 5.238 Inferior parietal lobule

3 52 �54 44 4.366 Inferior parietal lobule

3 40 �48 48 4.026 Inferior parietal lobule

3 40 �38 44 3.963 Inferior parietal lobule

3 48 �46 44 3.713 Inferior parietal lobule

4 �50 �42 52 5.189 Inferior parietal lobule

4 �56 �46 40 4.461 Supramarginal gyrus

5 �30 24 �2 5.927 Claustrum

6 �40 10 26 5.451 Inferior frontal gyrus

Cross domain: Prediction incongruency

1 34 22 �2 10.175 Claustrum

1 46 16 24 7.619 Inferior frontal gyrus

1 48 30 8 6.020 Inferior frontal gyrus

2 �32 22 �2 10.421 Claustrum

2 �44 6 30 7.054 Inferior frontal gyrus

2 �50 16 16 6.606 Inferior frontal gyrus

2 �44 14 22 6.518 Inferior frontal gyrus

2 �44 22 36 4.494 Precentral gyrus

2 �50 32 10 4.031 Inferior frontal gyrus

2 �38 �6 44 3.533 Precentral gyrus

2 �50 8 �8 3.462 Superior temporal gyrus

3 �50 8 �8 10.404 Superior frontal gyrus

3 �6 30 40 4.826 Cingulate gyrus

4 38 �60 46 6.991 Inferior parietal lobule

4 42 �44 44 5.904 Inferior parietal lobule

4 32 �64 44 5.833 Precuneus

4 52 �46 52 4.277 Inferior parietal lobule

5 �44 �42 44 6.170 Inferior parietal lobule

5 �36 �46 42 5.431 Inferior parietal lobule

5 �28 �56 48 4.929 Superior parietal lobule

5 �28 �62 38 3.952 Precuneus

5 �56 �42 36 3.708 Supramarginal gyrus

5 �42 �46 58 3.445 Inferior parietal lobule

6 56 �42 14 5.090 Superior temporal gyrus

6 64 �34 8 4.764 Superior temporal gyrus

6 62 �38 12 4.715 Superior temporal gyrus

(Continues)
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Motor

Consistent activation across motor tasks regardless of the type of pre-

diction phenomena (n = 41 experiments) was found in the right insula,

right and left inferior parietal lobule, right claustrum, and left supra-

marginal gyrus. For what concerns prediction incongruency (n = 18

experiments), convergence of activation was found in the right and

left insula, right cingulate gyrus, right superior and left middle frontal

gyri, right and left claustrum, and right cingulate, while regarding pre-

diction incongruency (n = 28 experiments), consistent activation was

restricted to a single cluster belonging to the left supramarginal gyrus.

Social cognition

Consistent activation across social cognition tasks regardless of the

type of prediction phenomena (n = 35 experiments) was found in

TABLE 1 (Continued)

Cluster MNI coordinates Z-values Region

6 58 �40 28 4.474 Inferior parietal lobule

6 52 �32 �2 4.094 Superior temporal gyrus

6 56 �46 34 3.946 Supramarginal gyrus

6 60 �24 2 3.704 Superior temporal gyrus

6 68 �26 6 3.649 Superior temporal gyrus

7 �64 �38 12 4.762 Superior temporal gyrus

7 �56 �52 6 4.269 Middle temporal gyrus

7 �50 �34 12 4.165 Superior temporal gyrus

7 �60 �46 16 3.256 Superior temporal gyrus

8 �28 �4 56 5.112 Middle frontal gyrus

9 �10 �10 6 4.627 Thalamus

Abbreviations: BA, Brodmann area; MNI, Montreal Neurological Institute.

F IGURE 2 Clusters of consistent activations for the cross-domain prediction phenomena-independent meta-analysis (top), cross-domain
prediction incongruency meta-analysis (middle), cross-domain prediction congruency meta-analysis (bottom). Images are in radiological
convention (R = Right; L = Left). ALE, Activation Likelihood Estimation.
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TABLE 2 Domain-specific prediction phenomena-independent Activation Likelihood Estimation results.

Cluster MNI coordinates Z-values Region

Prediction phenomena-independent: Attention

1 4 16 50 7.811 Superior frontal gyrus

1 �4 12 50 7.637 Medial frontal gyrus

2 48 6 34 5.840 Precentral gyrus

2 48 16 28 5.770 Inferior frontal gyrus

2 38 6 30 4.320 Precentral gyrus

2 56 22 32 3.459 Middle frontal gyrus

3 36 �60 46 5.354 Precuneus

3 32 �64 46 5.308 Superior parietal lobule

3 42 �46 48 4.893 Inferior parietal lobule

3 22 �66 54 3.764 Precuneus

3 46 �34 42 3.372 Inferior parietal lobule

4 36 22 0 6.812 Insula

5 �32 18 4 5.844 Claustrum

5 �34 22 �4 5.711 Insula

6 30 �6 48 3.511 Middle frontal gyrus

7 �32 �8 50 4.686 Middle frontal gyrus

7 �28 �2 54 4.324 Middle frontal gyrus

8 �40 �78 �10 4.817 Fusiform gyrus

8 �46 �50 �16 4.511 Fusiform gyrus

8 �42 �62 �14 3.625 Fusiform gyrus

8 �44 �68 �14 3.405 Fusiform gyrus

9 �36 �46 44 4.680 Inferior parietal lobule

10 �48 0 46 4.030 Precentral gyrus

10 �44 14 28 3.988 Inferior frontal gyrus

10 �46 6 30 3.730 Inferior frontal gyrus

10 �44 0 38 3.328 Precentral gyrus

11 �60 �44 16 3.879 Superior temporal gyrus

11 �56 �26 12 3.798 Superior temporal gyrus

11 �62 �38 14 3.484 Superior temporal gyrus

Prediction phenomena-independent: Cognitive control

1 �42 10 28 5.187 Inferior frontal gyrus

1 �40 4 30 5.030 Precentral gyrus

1 �48 18 10 4.461 Inferior frontal gyrus

1 �42 24 22 4.120 Middle frontal gyrus

1 �44 30 22 3.909 Middle frontal gyrus

1 �54 22 22 3.442 Inferior frontal gyrus

2 0 16 50 7.779 Superior frontal gyrus

3 �32 22 �2 6.770 Claustrum

4 34 20 �2 5.658 Claustrum

4 48 18 0 4.576 Insula

5 �46 �40 46 5.386 Inferior parietal lobule

5 �58 �46 40 4.859 Supramarginal gyrus

6 44 12 38 4.260 Precentral gyrus

6 50 20 28 4.242 Middle frontal gyrus

6 48 26 20 4.007 Middle frontal gyrus

(Continues)
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TABLE 2 (Continued)

Cluster MNI coordinates Z-values Region

6 44 14 26 3.814 Inferior frontal gyrus

7 32 �68 44 4.792 Precuneus

7 40 �56 48 3.937 Inferior parietal lobule

8 56 �42 50 6.147 Inferior parietal lobule

9 �32 �66 42 4.352 Precuneus

9 �34 �64 46 4.269 Precuneus

9 �24 �44 52 3.793 Precuneus

9 �32 �52 48 3.521 Inferior parietal lobule

Prediction phenomena-independent: Language

1 �30 24 �2 6.319 Claustrum

1 �48 34 �6 5.937 Inferior frontal gyrus

1 �44 16 20 5.816 Inferior frontal gyrus

1 �56 22 16 5.625 Inferior frontal gyrus

1 �50 34 8 4.956 Inferior frontal gyrus

1 �48 38 8 4.810 Inferior frontal gyrus

1 �42 16 10 4.255 Insula

1 �42 6 30 3.851 Precentral gyrus

1 �44 8 38 3.459 Middle frontal gyrus

2 �54 �40 6 6.323 Middle temporal gyrus

2 �60 �34 4 5.671 Middle temporal gyrus

2 �64 �40 14 4.941 Superior temporal gyrus

3 34 24 �4 4.434 Insula

3 42 32 �8 4.191 Inferior frontal gyrus

3 52 34 �2 3.923 Inferior frontal gyrus

3 52 36 6 3.650 Inferior frontal gyrus

4 6 20 46 5.396 Medial frontal gyrus

4 �4 16 50 4.561 Superior frontal gyrus

5 �56 �46 26 4.185 Supramarginal gyrus

5 �44 �58 26 4.164 Middle temporal gyrus

5 �46 �54 30 4.111 Superior temporal gyrus

6 �44 �56 48 4.505 Inferior parietal lobule

7 62 �12 2 4.060 Superior temporal gyrus

7 66 �20 2 4.053 Superior temporal gyrus

Prediction phenomena-independent: Motor

1 �50 �46 54 4.529 Inferior parietal lobule

1 �56 �44 38 3.982 Supramarginal gyrus

2 36 20 �2 5.573 Claustrum

2 34 22 10 4.103 Insula

3 42 �42 42 4.385 Inferior parietal lobule

Prediction phenomena-independent: Social cognition

1 32 20 �4 5.226 Claustrum

1 32 20 �16 3.800 Extra-nuclear

1 42 20 �12 3.427 Inferior frontal gyrus

Abbreviations: BA, Brodmann area; MNI, Montreal Neurological Institute.
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the right insula, right claustrum, right extra nuclear, and right inferior

frontal gyrus. In the context of prediction incongruency (n = 29

experiments), the same areas of activation of the social cognition pre-

diction phenomena-independent analysis were found, while regarding

prediction congruency (n = 18 experiments), consistent activation

encompassed the right caudate.

3.3 | Conjunction and contrast analysis

By means of a minimum conjunction analysis, a formal examination

was conducted to identify brain regions consistently involved across

all different types of studies within each cognitive domain under

investigation (i.e., cognitive control, attention, motor, language, and

social cognition), irrespective of the type of prediction phenomena.

Results of this analysis demonstrate an intersection between the thre-

sholded meta-analyses results at the level of the right anterior insula

(Figure 4).

For what concerns the differences in convergence analysis, cross-

domain prediction incongruency and congruency contributed to

175 and 134 experiments, respectively. The contrast “cross-domain

prediction incongruency > cross-domain prediction congruency”
yielded nine significant clusters encompassing the right and left insula,

left superior, right and left middle and right and left inferior frontal

F IGURE 3 Clusters of consistent
activations for each domain-specific
prediction phenomena-independent
meta-analysis. Images are in
radiological convention (R = Right;
L = Left). ALE, Activation Likelihood
Estimation.
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gyri, right precentral gyrus, right inferior parietal lobule, right angular

gyrus, and right middle and right superior temporal gyri

(Supplementary Information A S3). The contrast “cross-domain predic-

tion congruency > cross-domain prediction incongruency” produced

three clusters of activations encompassing the left middle frontal

gyrus, right paracentral lobule, left precentral gyrus, and left inferior

parietal lobule (Supplementary Information A S3).

3.4 | Meta-analytic connectivity mapping

The right anterior insula, extracted as an ROI from the minimum con-

junction analysis, was used as the seed region for the MACM. Brain-

Map search identified 71 experiments (1189 participants) that

reported at least one focus of activation within the seed. The right

insula seed (cluster 1, centered at 39.1, 20.4, 9.6,

volume = 24,264 mm3, maximum ALE value = .3044) showed signifi-

cant co-activations with seven clusters around the cingulate gyrus,

thalamus, precentral gyrus, left insula, bilateral inferior parietal lobule

and precuneus, and the declive (Table 3 and Figure 5).

3.5 | Behavioral decoding

Behavioral decoding with the BrainMap database revealed significant

associations through both forward and reverse inferences with the

BDs of spatial cognition, emotion for positive reward/gain, and cogni-

tive reasoning (Figure 6a). With regards to specific PCs, significant

associations across both approaches were found for reward paradigms

(Figure 6b).

Neurosynth's association tool identified several behavioral terms

associations above the set threshold (z-score ≥ 3), detailed in Table 4.

Overall, behavioral terms pertained to reward, effortful processes or

cognitive control engagement, memory retrieval or working memory,

emotion/mood, and reasoning. In this latter concept, several terms

were reminiscent of PP, such as “anticipation,” “decision(s),” “rule,”
and “choose.”

3.6 | Additional analyses

The second minimum conjunction analysis, aimed at formally testing

the spatial intersection between the thresholded ALE maps of the

cross-domain prediction phenomena-independent meta-analysis and

MACM, demonstrated intersection at the level of the right anterior

insula (centroid: x = 34, y = 22, z = �2), left anterior insula (centroid:

x = �33, y = 21, z = �1), medial frontal gyrus (centroid: x = 1,

y = 18, z = 46), right middle frontal gyrus (centroid: x = 43, y = 32,

z = 24), right inferior frontal gyrus (centroid: x = 47, y = 11, z = 26),

left inferior frontal gyrus (centroid: x = �46, y = 10, z = 27), right

inferior parietal gyrus (centroid: x = 37, y = �54, z = 47), and left

inferior parietal gyrus (centroid: x = �35, y = �53, z = 47).

Siman-Tov et al. (2019) results were successfully replicated

(Supplementary Information A S5). Domain-specific SDM analyses

yielded consistent results with the ALE approach (Supplementary

Information A S6).

4 | DISCUSSION

The present study employed a meta-analytic approach to investigate

the existence of a domain-general, large-scale predictive network

encompassing all well-established cognitive domains, contributing

toward a neuroarchitecture conceptualization that goes beyond con-

ventional boundaries of mental terms (Pessoa et al., 2022; Poldrack &

Yarkoni, 2016) and supporting PP as a compelling framework for mov-

ing toward a more integrated approach to neuroscience. Using the

ALE method, the analyses focused on exploring prediction incon-

gruency and prediction congruency, two conditions whose macro-

scopic metabolic activity is likely reflective of underlying neuronal

phenomena of PP. Additionally, PP was investigated in a broader,

phenomena-independent fashion by pooling together datasets on pre-

diction incongruency and prediction congruency. This investigation

spanned across all extensively studied cognitive domains

(i.e., cognitive control, attention, motor, language, and social cogni-

tion), and by aggregating all these cognitive domains into a unified,

cross-domain dimension. Additional analyses were conducted using

the MACM method, centering on the right anterior insula as the seed

region. This region was identified through the minimum statistic con-

junction approach across all cognitive domains under investigation. A

further conjunction analysis compared the MACM ALE map with the

cross-domain prediction phenomena-independent ALE map to for-

mally test for intersections between the two. Finally, to provide a

F IGURE 4 Right anterior insula emerged from the conjunction
analysis across all cognitive domains investigated. Images are in
radiological convention (R = Right; L = Left).
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comprehensive perspective on the role of the anterior insula, behav-

ioral decoding was employed to delineate the extensive range of

behavioral engagement associated with this multimodal core region.

4.1 | Toward a domain-general network:
Consistent activations across cognitive tasks and
prediction phenomena

The results of the present work support the hypothesis that PP relies

on a domain-general, large-scale network within whose regions PP

units are likely to operate, depending on the context and environmen-

tal demands. Employing a multi-faceted approach, combining the ALE

meta-analytic method, MACM, and conjunction analysis, revealed a

TABLE 3 Meta-analytic connectivity
mapping analysis results were carried out
on the right anterior insula.

Cluster MNI coordinates Peak ALE p-value Region

Meta-analytic connectivity modelling

1 34 22 �4 .304 Claustrum

1 48 10 26 .074 Inferior frontal gyrus

1 44 36 18 .048 Middle frontal gyrus

1 42 26 24 .047 Middle frontal gyrus

1 32 0 50 .047 Middle frontal gyrus

1 42 30 26 .046 Middle frontal gyrus

1 56 8 40 .032 Middle frontal gyrus

1 36 50 26 .021 Superior frontal gyrus

2 �2 14 46 .092 Medial frontal gyrus

2 4 22 40 .079 Cingulate gyrus

2 �4 2 60 .038 Medial frontal gyrus

3 12 6 2 .064 Caudate

3 �12 8 4 .046 Caudate

3 12 �14 4 .045 Thalamus

3 �12 �2 12 .029 Caudate

3 �22 6 �2 .025 Lentiform nucleus

3 �12 �10 10 .025 Thalamus

3 �12 �12 2 .024 Thalamus

3 �8 �12 �4 .023 Thalamus

3 �2 �16 6 .023 Thalamus

4 �48 10 26 .059 Inferior frontal gyrus

4 �42 26 24 .039 Middle frontal gyrus

4 �42 0 42 .033 Precentral gyrus

4 �32 2 50 .025 Middle frontal gyrus

5 �32 22 �2 .140 Claustrum

6 �34 �54 46 .065 Inferior parietal lobule

6 �24 �68 46 .028 Precuneus

7 40 �50 46 .056 Inferior parietal lobule

7 34 �60 46 .049 Precuneus

8 �42 �64 �18 .040 Declive

Abbreviations: ALE, Activation Likelihood Estimation; BA, Brodmann Area; MNI, Montreal Neurological

Institute.

F IGURE 5 Meta-analytic results from the Meta-Analytic
Connectivity Mapping analysis carried out on the right anterior insula.
Images are in radiological convention (R = Right; L = Left).
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widely distributed network that appears to support cross-domain PP

(Ficco et al., 2021; Siman-Tov et al., 2019). This network, which from

now on will be referred to as the Dynamic Prediction Network, to

emphasize the nature of the between-hubs interactions arising during

predictive computations, encompasses regions within the anterior

insula, inferior, middle, and superior frontal gyri, medial frontal gyrus,

premotor cortex, inferior and superior parietal lobules, inferior, medial,

and superior temporal gyri, temporoparietal junction, caudate, and

claustrum (see Figure 7 for a schematic representation). This extensive

network, which emerges as a result of the ALE analysis on the cross-

domain prediction phenomena-independent dataset, finds in the ante-

rior insula one of its core regions, a pivotal node for between-hub

information passing. This (right) region then served as input for the

MACM analysis. The remarkable overlap observed between the resul-

tant network from this latter analysis and the cross-domain prediction

phenomena-independent one also further emphasizes the collective

contribution of each hub to predictive computations within a network

perspective.

But why should PP rely on a domain-general, large-scale net-

work? Numerous studies highlight that neural activity consists of

widespread predictions and prediction errors across the brain

(e.g., Boyden et al., 2004; Deluca et al., 2014; Johansen et al., 2010;

Kok et al., 2017; Rauss et al., 2011; Stefanics et al., 2018, 2019;

Zaragoza-Jimenez et al., 2023). This can be attributed to the

F IGURE 6 Behavioral decoding of
the right anterior insula according to
BrainMap. Functional decoding
following forward inference is
expressed as likelihood ratio (left);
functional decoding following reverse
inference is expressed as probabilities
(right). A = Behavioral domains.
B = Paradigm classes.
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continuous generation of predictions and prediction errors by the

brain, whether engaged in an experimental task or interacting with

the external environment or internal world. These computations

encompass various stimulus features, both high and low-level, spatial,

and temporal aspects, as well as somatosensory and visceral informa-

tion. Ultimately, among other functions, these processes contribute to

the generation of conscious experiences (Hohwy & Seth, 2020; Lee

et al., 2021; Sklar et al., 2021), whose neural basis spans the neural

hierarchy, relying on ongoing predictions and their perturbations by

evocative stimuli (e.g., Baker et al., 2022, 2023; Inkster et al., 2022;

Stefanics et al., 2018, 2019).

If one's assuming a heterarchical (loosely hierarchical) model

(Pessoa, 2019) to interpret the present results, this structure would

allow for a flexible and bidirectional functional relationship between

brain regions (Lee et al., 2021). In such a model, the context deter-

mines whether one brain area is superordinate, subordinate, or equal

in rank to another, and direct connections between regions near the

bottom and areas near the top can exist without intermediaries, creat-

ing a structure well-suited to support PP architecture (Clark, 2013;

Friston, 2008, 2010; Keller & Mrsic-Flogel, 2018; Lee et al., 2021;

Pessoa, 2019; Walsh et al., 2020), and suggesting a parallel organiza-

tion of psychological processes (Lee et al., 2021). Such an organization

would allow for prediction units operating within different sets of

brain areas to be recruited depending on the brain state prior to

receiving an input, or on the context, in accordance with PP-

consistent degeneracy models (Lupyan & Clark, 2015; Sajid

et al., 2020).

In terms of the contribution of each hub to the Dynamic Predic-

tion Network, the involvement of the anterior insula in prediction is

crucial and fulfills manifold functions (Corlett et al., 2022). One core

function of this hub is the detection of salient events and the initiation

of appropriate control signals, establishing its importance as a key

region within the Salience Network (SN) (Menon & Uddin, 2010). The

anterior insula also plays a critical role in high-level cognitive control

and attentional processes, acting as a “relay” in mediating dynamic

interactions between large-scale brain networks (Nelson et al., 2010).

The insula encodes new and unanticipated events in probability den-

sity distributions, continuously tested through perceptual reconstruc-

tion and sampling (Billeke et al., 2020). This is also demonstrated by

direct electrophysiological evidence of its leading role within the

Error-Monitoring Network, rapidly detecting and conveying error sig-

nals to the dorsomedial prefrontal cortex (Bastin et al., 2016). In terms

of functional connectivity, the insula is part of a large bilateral predic-

tive network that resembles networks involved in task-driven atten-

tion and execution (Barrós-Loscertales, 2018), as also highlighted by

MACM results. Additionally, behavioral decoding here emphasizes

that the right anterior insula is involved in coordinating brain circuits

related to reward-based learning, relaying feedback information sig-

nals to the medial prefrontal cortex (Rousseau et al., 2021). Overall,

the anterior insula, implicated at a cross-domain, multimodal level in

both prediction congruency and incongruency, constitutes the major

hub of the Dynamic Prediction Network.

The contribution of the frontal gyri to predictive processes is

mainly related to encoding stimuli in terms of deviations from expec-

tation, adjusting neural dynamics according to the average time of an

expected stimulus, and processing information predictively based on

temporal events (Ficco et al., 2021; Meirhaeghe et al., 2021). Multiple

TABLE 4 Behavioral terms associated with the right anterior
insula using Neurosynth's association tool.

Reward-related terms

Gain 12.46

Monetary 3.86

Cognitive control-related terms

Task 11.64

Task difficulty 7.75

Demands 7.69

Load 6.57

Difficulty 6.48

Tasks 5.94

Cognitive control 5.42

Performance 4.37

Control processes 4.34

Stop 4.32

Interference 4.24

Response times 4.15

Memory retrieval/working memory-related terms

Working 6.51

Working memory 6.45

Retrieval 5.64

Memory WM 5.22

Memory 4.99

Memory task 4.75

Maintenance 4.3

Memory retrieval 4.03

Memory load 3.85

WM 3.84

Mood/emotion-related terms

Mood 6.46

PTSD 5.08

Reasoning-related terms

Anticipation 6.36

Decisions 4.42

Solving 4.28

Rule 4.27

Decision 4.21

Choose 3.97

Other terms

Phonological 4.72

Correct 4.62

Orthographic 4.59

Note: Corresponding Z-scores are reported in the right columns.
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pieces of evidence support the idea that the left inferior frontal gyrus

is responsible for constructing predictive inferences (Jin et al., 2009),

mainly related to language processing. For instance, Söderström et al.

(2017) found that the left inferior frontal gyrus is involved in resolving

competition between activated word endings to achieve automatic

and predictive processes of syntax (it is noteworthy to mention that

the role of the inferior frontal gyrus in prediction during language

comprehension is still debated, see Maran et al., 2022). Additionally,

the frontal lobes, including the lateral and medial prefrontal cortex,

are implicated in anticipating prediction errors and performing goal-

directed behavior, providing a unified account of the prefrontal cortex

functioning (Alexander & Brown, 2018).

The premotor cortex and parietal lobules' role in PP revolves

around multisensory predictions and sequence processing (D'Mello &

Rozenkrantz, 2020; Downing, 2013; Gastaldon et al., 2023;

Meirhaeghe et al., 2021). Moreover, the premotor cortex is implicated

in action perception and motor control, both inherently involved in

prediction (Ficco et al., 2021; Siman-Tov et al., 2019). On the other

hand, the parietal lobules are involved in action understanding and

imitation (Miller & Clark, 2018).

As highlighted in a recent systematic review (Masina et al., 2022),

the right temporoparietal junction serves as a central hub not only

within the Ventral Attention Network and the Default Mode Network

(DMN), but also in a broader hierarchical prediction network that

plays a role in determining the internal model of the task context

(Geng & Vossel, 2013) and attentional processes (Wilterson

et al., 2021). The discussion posits that the role of the right temporo-

parietal junction in PP is context-dependent, not strictly tied to a par-

ticular prediction network. Instead, its specific function is shaped by

the network engaged in the ongoing task or activity, with the context

determining its coupling with other regions and aligning with task-

specific networks (Masina et al., 2022). This makes the right temporo-

parietal junction a pivotal hub for PP, facilitating maximum flexibility

in integrating various cognitive processes and engaging different brain

regions (Masina et al., 2022).

The cerebellum constitutes an expected site for convergence

when analyzing prediction-related data, particularly prediction viola-

tions (Boyden et al., 2004; Deluca et al., 2014). However, conver-

gence in this area failed to reach statistical significance, except for the

declive, the interpretation of which remains challenging. Ficco et al.

(2021) also reported this unexpected (null) finding and offered a plau-

sible explanation. The authors suggest that the reason behind a few

meta-analyses detecting convergence in this area (Siman-Tov

et al., 2019) may be attributed to technical challenges associated with

detecting the BOLD signal from the cerebellum, especially in experi-

ments targeting climbing fibers. Moreover, certain experimental para-

digms can lead to rapid habituation in the cerebellum, resulting in

lower neural responses (Ficco et al., 2021).

F IGURE 7 Schematic representation of the Dynamic Prediction Network. A heterarchical structure would allow for a flexible and
bidirectional functional relationship between the Dynamic Prediction Network's hubs, within whose regions predictive processing units are likely
to operate, depending on the context and environmental demands. This array of regions ultimately integrates context- and stimulus-dependent
predictive computations, thereby contributing to the adaptive updating of the brain's models of the inner and external world. AI, anterior insula;
IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; MeFG, medial frontal gyrus; MFG, middle frontal gyrus; MTG, middle temporal gyrus;
Parietal lobules, superior and inferior parietal lobules; SFG, superior frontal gyrus; STG, superior temporal gyrus.
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Placing these findings into context, the Dynamic Prediction Net-

work encompasses a wide array of pivotal hubs shared with estab-

lished networks, including the DMN, the Executive Control Network,

the SN, the Dorsal and Ventral Attention Networks, and the Error-

Monitoring Network. The (qualitatively) observed overlap with these

networks offers intriguing insights into the interplay between PP and

cognitive processes. For instance, the convergence of the SN with the

Dynamic Prediction Network aligns with the SN's role in directing

attention toward unexpected or significant stimuli. Additionally, the

co-localization of the Dorsal Attention Networks within the Dynamic

Prediction Network speaks to its involvement in optimizing prediction

refinements. The Executive Control Network likely facilitates the

adaptive updating of predictions based on contextual demands. Lastly,

the presence of DMN regions within the Dynamic Prediction Network

suggests that internally focused brain processes also engage in predic-

tive computations.

The present results build upon and expand previous literature

(Corlett et al., 2022; Ficco et al., 2021; Siman-Tov et al., 2019). By

including a high number of relevant experiments and thus increasing

signal precision, the present study reiterates the key role of already

identified prediction hubs, such as the insula, while providing a

broader picture of where in the brain prediction units may operate

based on contextual circumstances. This holistic perspective highlights

the brain's ability to seamlessly integrate predictive computations

across cognitive domains, leading to a deeper understanding of its

dynamic nature. It is plausible to assume that the Dynamic Prediction

Network hubs, depending on the context and task/environment

demands, engage in generating, evaluating, and refining predictions to

adaptively update the brain's models of both the inner and external

world, all while integrating with well-established cognitive networks.

4.2 | To each its own: Consistent activations
within cognitive tasks and prediction phenomena

Delving into the results related to predictive processes within the

domains of cognitive control, attention, language, motor, and social

cognition, a delicate balance of context-dependent flexibility and gen-

eralization was anticipated. It is well-established that the human brain

exhibits remarkable plasticity, allowing for both specialized processing

within certain regions and distributed networks that facilitate cross-

domain interactions (Herbet & Duffau, 2020; Masina et al., 2022;

Sherwood & Gómez-Robles, 2017). In this regard, expectations were

twofold: the emergence of areas demonstrating domain-specific and

prediction phenomena-specific (i.e., subtending either congruency or

incongruency) engagement, and the identification of areas that might

exhibit broader involvement, contributing to the manifold entangle-

ment of cognitive functions. The study's findings regarding domain-

specific prediction phenomena highlight a prominent pattern: results

pertaining to prediction incongruency appear to rely on a defined net-

work across cognitive domains, prominently involving the inferior

frontal gyrus, insula, claustrum, parietal lobules, and temporal gyri.

Conversely, prediction congruency results exhibited less overall

activation and slightly more variability across cognitive domains.

These results highlight the brain's ability to flexibly use its resources

to maintain efficient processing and support various cognitive tasks

(Herbet & Duffau, 2020).

In the context of cognitive control, the main areas showing con-

sistent activation for the prediction congruency analysis were the

right superior and middle frontal gyri. On the other hand, the meta-

analysis on prediction incongruency highlighted the involvement of a

more extended set of brain areas. The emergence of a cluster encom-

passing both the superior and middle frontal gyri suggests their role in

prediction-related computations, irrespective of specific phenomena,

whereas the inferior frontal gyrus exhibited specificity for detecting

prediction deviations in tasks related to cognitive control (Sherman

et al., 2016). Similarly, the insula and claustrum, while generally play-

ing more of a prediction phenomena-independent role, displayed a

potential specialization for signaling prediction incongruencies within

this cognitive domain. Besides the previously discussed role of insula,

the claustrum is believed to contribute to PP via its connections to

structures involved in attention and salience processing, such as the

anterior cingulate cortex and insular cortex (Benarroch, 2021).

Disentangling the role of areas showing consistent activation in

the context of attention is a complex task, as the ongoing discussion

about the influence of attention on PP remains active. The left cingu-

late gyrus, involved in conflict-related task performance, selective

attention, and cognitive flexibility (Merkley et al., 2013; Turak

et al., 2002), may play a role in establishing and updating event models

that can predictively guide perception, learning, and action control

(Stawarczyk et al., 2021). On the other hand, an overall more distrib-

uted, bilateral fronto-parieto-temporal network is responsible for

increased attentive selectivity to mismatch information and optimizing

the expected precision of predictions (Dreneva et al., 2021).

In the motor domain, prediction congruency specificity is

observed in the left supramarginal gyrus, a region known to play a role

in motor functions, particularly the representation of meaningful

actions (praxis) (Króliczak et al., 2016) and planning and execution of

familiar actions (Guidali et al., 2019). The manifold role of the left

supramarginal gyrus aligns seamlessly with what one would expect

from a prediction hub underlying motor action, encompassing the

integration of conceptual knowledge into purposeful movements

(Hartwigsen et al., 2012; Potok et al., 2019). On the other hand, pre-

diction incongruency correlates mainly rely on activity within the

insula and claustrum.

Regarding the language domain, both prediction congruency and

incongruency correlates exhibit clear left lateralization. Within this

cognitive domain, the left inferior frontal gyrus, insula, and middle

temporal gyrus play a prediction phenomena-independent role. The

inferior temporal gyrus is well-known for its involvement in language

processing (Medaglia et al., 2021; Rivas-Fernández et al., 2021) and

prediction (Iijima & Sakai, 2014; Söderström et al., 2017; Strijkers

et al., 2019; but see Maran et al., 2022 for a different point of view).

Concerning the left middle temporal gyrus, it has been shown that

predictability impacts activity in this region, highlighting its role as a

key contributor to the effects of predictability on comprehension
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(Lau & Namyst, 2019). The present results align with the left middle

temporal gyrus being implicated in various aspects of PP and concep-

tual representation. The insula cortex exhibited discernable specificity

towards predictive phenomena in language processing, manifesting

through lateralization. Specifically, the left insula assumes a central

role in signaling prediction incongruencies, likely substantiating the

identification and processing of deviations from expected patterns

(Ficco et al., 2021). In contrast, the right insula emerges as a key

region in the encoding of predictive linguistic elements, emphasizing

its role in the generation of prediction codes (Billeke et al., 2020)

related to linguistic constructs.

Lastly, whereas prediction incongruency pertaining to social cogni-

tion showed consistent activation of the right claustrum and inferior

frontal gyrus, consistent activation was found in the right caudate

nucleus regarding prediction congruency. This region plays an important

role in social cognition (Myznikov et al., 2021), as also indicated by find-

ings showing that high social intelligence scores positively correlate with

larger gray matter volumes of the bilateral caudate (Sokolov, 2018).

5 | LIMITATIONS

The current study, while providing valuable insights into the PP frame-

work, is not devoid of potential limitations that warrant consideration,

encompassing both theoretical constraints within the cognitive neuro-

science field and methodological challenges.

First, our reliance on classifying data according to cognitive domains

is confronted by the absence of a widely accepted and dominant frame-

work for their definition. The field's lack of consensus, as highlighted by

Muthukrishna and Henrich (2019), introduces caution regarding the

generalizability of our findings. The predefined segregation of cognitive

domains, designed to facilitate analysis, introduces a limitation due to

inherent overlaps between these domains and to the lack of coverage

of the complete spectrum of cognitive functions. Our a-priori categori-

zation may not fully capture the intricate interconnections and shared

neural substrates across different cognitive domains. Nevertheless,

exploring overall results across domains offers valuable insights into

potential cross-domain relationships. Second, a disparity in clarity and

comparability emerges between the study of prediction incongruency

and prediction congruency. Events like prediction violations, marked by

surprise and mismatch, provide a more distinct and well-defined focus.

This clarity not only influences the inclusion of studies in our meta-

analysis but also underscores a broader limitation in the existing litera-

ture. The challenge lies in the variability and complexity associated with

studying the formation and updating of predictions.

As our work focused on identifying brain areas engaged during

prediction congruency and incongruency conditions, providing spatial

information, we lack data on the millisecond-level processes involved.

This temporal information is undoubtedly important in understanding

predictive processes and could be valuable for future efforts aiming at

integrating the present findings with EEG/MEG evidence.

These limitations collectively highlight avenues for future

research to grapple with the inherent challenges in the study of PP,

and the present results could be informative in guiding such research

by providing evidence for the contribution of a wide array of hubs

from a network perspective.

6 | CONCLUSIONS

This study employed the ALE meta-analytic approach, along with

methods such as MACM, conjunction analysis, and behavioral decod-

ing, to investigate the neural implementation of PP across well-

established cognitive domains. The aim was to test the hypothesis

that PP relies on a domain-general, large-scale network within whose

regions PP units are likely to operate, depending on the context and

environmental demands, contributing toward a neuroarchitecture

conceptualization that goes beyond conventional boundaries of men-

tal terms (Pessoa et al., 2022; Poldrack & Yarkoni, 2016), and support-

ing PP as a unified account toward a more integrated approach to

neuroscience. Consistent activations observed across diverse cogni-

tive domains and prediction conditions (i.e., prediction congruency

and incongruency) underscore the role of several key hubs

(e.g., insula, frontal gyri, temporal gyri, parietal lobules, claustrum)

within the Dynamic Prediction Network. The results of the present

work thus support the hypothesis that PP relies on a domain-general,

large-scale network. In fact, if framed within a heterarchical organiza-

tion that emphasizes the nature of the between-hubs interactions, the

wide array of regions within the Dynamic Prediction Network seam-

lessly integrate context- and stimulus-dependent predictive computa-

tions, contributing to the adaptive updating of the brain's models of

the inner and external world. Such an organization would allow for

prediction units operating within different sets of brain areas to be

recruited depending on the context and environmental demands.

Insights into the neural underpinnings of PP hold promise for neu-

rologic and psychiatric applications, providing a foundation for tar-

geted interventions in conditions characterized by aberrant predictive

processes (Feeney et al., 2017; Manjaly et al., 2019; Migeot

et al., 2022; Owens et al., 2018; Stephan et al., 2006).

Lastly, building on the current findings, several avenues for future

research emerge, including the exploration of temporal dynamics of

predictions, understanding inter-individual differences, and employing

multimodal approaches. These avenues may further refine our under-

standing of the neural implementation of PP, paving the way for inno-

vative applications in clinical and neuroscientific domains.
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