[en] The dipeptide γ-glutamylcysteine (γ-GC), the first intermediate of glutathione (GSH) synthesis, is considered as a promising drug to reduce or prevent plethora of age-related disorders such as Alzheimer and Parkinson diseases. The unusual γ-linkage between the two constitutive amino acids, namely cysteine and glutamate, renders its chemical synthesis particularly challenging. Herein, we report on the metabolic engineering of the non-conventional yeast Yarrowia lipolytica for efficient γ-GC synthesis. The yeast was first converted into a γ-GC producer by disruption of gene GSH2 encoding GSH synthase and by constitutive expression of GSH1 encoding glutamylcysteine ligase. Subsequently genes involved in cysteine and glutamate anabolism, namely MET4, CYSE, CYSF, and GDH1 were overexpressed with the aim to increase their intracellular availability. With such a strategy, a γ-GC titer of 464 nmol mg-1 protein (93 mg gDCW-1 ) was obtained within 24 h of cell growth.
Disciplines :
Biotechnology
Author, co-author :
Do, Diem; Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium ; Dong Thap Medical College, Cao Lanh City, Dong Thap Province, Vietnam
Guruk, Mümine ; Université de Liège - ULiège > TERRA Research Centre ; Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
Kus-Liśkiewicz, Małgorzata; Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
Damblon, Christian ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique structurale
Arguelles-Arias, Anthony; Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
Erten, Huseyin; Department of Food Engineering, Faculty of Engineering, Cukurova University, Adana, Turkey
Fickers, Patrick ; Université de Liège - ULiège > TERRA Research Centre > Microbial technologies
Language :
English
Title :
Biosynthesis of the antioxidant γ-glutamyl-cysteine with engineered Yarrowia lipolytica.
Publication date :
February 2024
Journal title :
Biotechnology Journal
ISSN :
1860-6768
eISSN :
1860-7314
Publisher :
John Wiley and Sons Inc, Germany
Volume :
19
Issue :
2
Pages :
e2300564
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This research was supported by the TERRA Teaching and Research Centre, University of Liège. The authors acknowledge O. Denies, S. Steels, and G. Balleux for technical assistance.
Penninckx, M. J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Research, 2, 295–305.
Martensson, J. (1987). Method for determination of free and total glutathione and γ-glutamylcysteine concentrations in human leukocytes and plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 420, 152–157.
Anderson, M. E. (1998). Glutathione: An overview of biosynthesis and modulation. Chemico Biological Interactions, 111–112, 1–14.
Lu, S. C. (2009). Regulation of glutathione synthesis. Molecular Aspects of Medicine, 30, 42–59.
Griffith, O. W. (1999). Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radical Biology and Medicine, 27, 922–935.
Forman, H. J., Zhang, H., & Rinna, A. (2009). Glutathione: Overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 30, 1–12.
Muraoka, M., Yoshida, S., Ohno, M., Matsuura, H., & Nagano, K. (2022). Reactivity of γ-glutamyl-cysteine with intracellular and extracellular glutathione metabolic enzymes. FEBS Letters, 596, 180–188.
Ferguson, G., & Bridge, W. (2016). Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine. Archives of Biochemistry and Biophysics, 593, 12–23.
Liu, H., Harrell, L. E., Shenvi, S., Hagen, T., & Liu, R.-M. (2005). Gender differences in glutathione metabolism in Alzheimer's disease. Journal in Neuroscience. Resreach, 79, 861–867.
Sofic, E., Lange, K. W., Jellinger, K., & Riederer, P. (1992). Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neuroscience Letters, 142, 128–130.
Giustarini, D., Milzani, A., Dalle-Donne, I., & Rossi, R. (2023). How to increase cellular glutathione. Antioxidants, 12, 1094.
Wendel, A., & Cikryt, P. (1980). The level and half-life of glutathione in human plasma. FEBS Letters, 120, 209–211.
Meister, A., & Anderson, M. E. (1983). Glutathione. Annual Review of Biochemistry, 52, 711–760.
Pocernich, C. B., & Butterfield, D. A. (2012). Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1822, 625–630.
Boyd-Kimball, D., Sultana, R., Abdul, H. M., & Butterfield, D. A. (2005). γ-Glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Aγ(1-42)-mediated oxidative stress and neurotoxicity: Implications for Alzheimer's disease. Journal of Neuroscience Research, 79, 700–706.
Zarka, M. H., & Bridge, W. J. (2017). Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study. Redox Biology, 11, 631–636.
Liu, Y., Chen, Z., Li, B., Yao, H., Zarka, M., Welch, J., Sachdev, P., Bridge, W., & Braidy, N. (2021). Supplementation with γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD. Neurochemistry International, 144, 104931.
Braidy, N., Zarka, M., Jugder, B.-E., Welch, J., Jayasena, T., Chan, D. K. Y., Sachdev, P., & Bridge, W. (2019). The precursor to glutathione (GSH), γ-glutamylcysteine (GGC), can ameliorate oxidative damage and neuroinflammation induced by Aβ40 oligomers in human astrocytes. Frontiers in Aging Neurosciences, 11, 177.
Nakamura, Y. K., Dubick, M. A., & Omaye, S. T. (2012). γ-Glutamylcysteine inhibits oxidative stress in human endothelial cells. Life Sciences, 90, 116–121.
Zhou, J., Shi, Y., Yang, C., Lu, S., Zhao, L., Liu, X., Zhou, D., Luo, L., & Yin, Z. (2023). γ-Glutamylcysteine alleviates insulin resistance and hepatic steatosis by regulating adenylate cyclase and IGF-1R/IRS1/PI3K/Akt signaling pathways. The Journal of Nutritional Biochemistry, 119, 109404.
Quintana-Cabrera, R., Fernandez-Fernandez, S., Bobo-Jimenez, V., Escobar, J., Sastre, J., Almeida, A., & Bolaños, J. P. (2012). γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nature Communication, 3, 718.
Bridge, W., & Zarka, M. (2009). Process for producing gamma-glutamycysteine (US2009/0136993A1).
Nojiri, M., & Yasohara, Y. (2016). Method for producing γ-glutamylcysteine et glutathion (WO2016/017631).
Nishiuchi, H., Suehiro, M., Sugimoto, R., Nishimura, Y., & Kurado, M. (2003). γ-Glutamylcysteine producing yeast and method of screening the same (WO/2003/046154).
Muraoka, M., Ohno, M., Nakai, T., Matsuura, H., Nagano, K., Arai, M., Hirata, Y., Uyama, H., & Hirata, K. (2022). Gamma-glutamylcysteine production using phytochelatin synthase-like enzyme derived from Nostoc sp. covalently immobilized on a cellulose carrier. Biological & Pharmaceutical Bulletin, 45, 1191–1197.
Do, D. T. H., & Fickers, P. (2020). Engineering Yarrowia lipolytica for the synthesis of glutathione from organic by-products. Microorganisms, 8, 611.
Do, D. T. H., Fickers, P., & Ben Tahar, I. (2021). Improvement of glutathione production by a metabolically engineered Yarrowia lipolytica strain using a small-scale optimization approach. Biotechnology Letters, 43, 407–414.
Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor Laboratory Press.
Chen, D.-C., Beckerich, J.-M., & Gaillardin, C. (1997). One-step transformation of the dimorphic yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 48, 232–235.
Querol, A., Barrio, E., Huerta, T., & Ramón, D. (1992). Molecular monitoring of wine fermentations conducted by active dry yeast strains. Applied and Environmental Microbiology, 58, 2948–2953.
Vandermies, M., Denies, O., Nicaud, J.-M., & Fickers, P. (2017). EYK1 encoding erythrulose kinase as a catabolic selectable marker for genome editing in the non-conventional yeast Yarrowia lipolytica. Journal of Microbiological Methods, 139, 161–164.
Inoue, Y., Sugiyama, K., Izawa, S., & Kimura, A. (1998). Molecular identification of glutathione synthetase (GSH2) gene from Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression, 1395, 315–320.
Ohtake, Y., Satou, A., & Yabuuchi, S. (1990). Isolation and characterization of glutathione biosynthesis-deficient mutants in Saccharomyces cerevisiae. Agricultural and Biological Chemistry, 54, 3145–3150.
Grant, C. M., MacIver, F. H., & Dawes, I. W. (1997). Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Molecular Biology of the Cell, 8, 1699–1707.
Hébert, A., Forquin-Gomez, M.-P., Roux, A., Aubert, J., Junot, C., Heilier, J.-F., Landaud, S., Bonnarme, P., & Beckerich, J.-M. (2013). New insights into sulfur metabolism in yeasts as revealed by studies of Yarrowia lipolytica. Appliend and Environmental Microbioliology, 79, 1200–1211.
Yurkiv, M., Kurylenko, O., Vasylyshyn, R., Dmytruk, K., Fickers, P., & Sibirny, A. (2018). Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha. FEMS Yeast Research, 18, foy004.
Trotter, P. J., Juco, K., Le, H. T., Nelson, K., Tamayo, L. I., Nicaud, J., & Park, Y. (2020). Glutamate dehydrogenases in the oleaginous yeast Yarrowia lipolytica. Yeast, 37, 103–115.
Muraoka, M., Yoshida, S., Ohno, M., Matsuura, H., & Nagano, K. (2022). Reactivity of γ-glutamyl-cysteine with intracellular and extracellular glutathione metabolic enzymes. FEBS Letters, 596, 180–188.
Sadhu, M. J., Moresco, J., Zimmer, A., Yates, J., & Rine, J. (2014). Multiple inputs control sulfur-containing amino acid synthesis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 25, 1653–1664.
Kuras, L., Rouillon, A., Lee, T., Barbey, R., Tyers, M., & Thomas, D. (2002). Dual regulation of the Met4 transcription factor by ubiquitin-dependent degradation and inhibition of promoter recruitment. Molecular Cell, 10, 69–80.
Chen, W.-C., Huang, F.-K., Cheng, S.-C., Tsai, F.-Y., & Lin, C.-L. (2009). Co-production of γ -glutamylcysteine and glutathione by mutant strain Saccharomyces cerevisiae FC-3 and its kinetic analysis. Journal of Basic Microbiology, 49, 513–520.
Hwang, C.-F., Lin, X.-Y., & Yang, F. C. (2005). Enhancing the production of γ-glutamylcysteine by a mutant strain derived from Saccharomyces cerevisiae BCRC 21727. Journal of the Chinese Institute of Chemical Engineers, 36, 617–626.