[en] The construction sector is among the most polluting industries globally, accounting for approximately 37.5% of the European Union’s total waste generation in 2020. Therefore, it is imperative to develop strategies to enhance the sustainability of this sector. This paper proposes a multiscale COMSOL Multiphysics numerical model for an ex situ mineral carbonation process of hydrated lime. The carbonation process is characterized at both the micro- and macroscale levels, encompassing interactions within and between the particles. This model incorporates both reaction and diffusion phenomena, considering the effects of porosity and liquid-water saturation parameters. Generally, liquid-water saturation enhances the reaction kinetics but not CO2 diffusion, while porosity improves CO2 diffusion throughout the granular bed. The model has been experimentally validated, showing promising results by accurately characterizing carbonation tendencies and the influence of the CO2 flow rate and the initial water-to-solid ratio on the carbonation process. The proposed mathematical model facilitates the study of various parameters, including particle radius, reactor geometry, and material porosity. This analysis is valuable for both current and future projects, as it aims to identify the most profitable configurations for the hydrated lime carbonation process.
Disciplines :
Chemical engineering Materials science & engineering Civil engineering
Eurostat Waste Statistics for EU Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Total_waste_generation (accessed on 8 April 2024)
Mudgal S. Hestin M. Trarieux M. Mimid S. Service Contract on Management of Construction and Demolition Waste-SR1 European Commission (DG ENV) 2011 Available online: https://circabc.europa.eu/ui/group/636f928d-2669-41d3-83db-093e90ca93a2/library/6d634cb1-0bd4-47e1-a4bb-eaa94b350140/details (accessed on 7 August 2024)
Internal Market, Industry, Entrepreneurship and SMEs European Comission Buildings and Construction Available online: https://single-market-economy.ec.europa.eu/industry/sustainability/buildings-and-construction_en#:~:text=The%20construction%20sector%20is%20responsible,of%20total%20national%20GHG%20emissions (accessed on 10 July 2024)
Benhelal E. Zahedi G. Shamsaei E. Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry J. Clean. Prod. 2013 51 142 161 10.1016/j.jclepro.2012.10.049
Huijgen W.J.J. Witkamp G.J. Comans R.N.J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process Chem. Eng. Sci. 2006 61 4242 4251 10.1016/j.ces.2006.01.048
Werle A.P. Kulakowski M.P. De Souza Kazmierczak C. Alcântara J. Sentena A. Carbonation in Concrete with Recycled Concrete Aggregates Proceedings of the DBMC International Conference on Durability of Building Materials and Components Porto, Portugal 12–15 April 2011
Zhang J. Shi C. Li Y. Pan X. Poon C.S. Xie Z. Influence of carbonated recycled concrete aggregate on properties of cement mortar Constr. Build. Mater. 2015 98 1 7 10.1016/j.conbuildmat.2015.08.087
Lange L.C. Hills C.D. Poole A.B. The Effect of Accelerated Carbonation on the Properties of Cement-Solidified Waste Forms Waste Manag. 1996 16 757 763 10.1016/S0956-053X(97)00022-6
Andrade C. Sanjuán M.Á. Updating carbon storage capacity of Spanish cements Sustainability 2018 10 4806 10.3390/su10124806
Pade C. Guimaraes M. The CO2 uptake of concrete in a 100 year perspective Cem. Concr. Res. 2007 37 1348 1356 10.1016/j.cemconres.2007.06.009
Thiery M. Dangla P. Belin P. Habert G. Roussel N. Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials Cem. Concr. Res. 2013 46 50 65 10.1016/j.cemconres.2013.01.005
La Peña N.V.-D. Grigoletto S. Toye D. Courard L. Léonard G. CO2 capture by mineral carbonation of construction and industrial wastes Circular Economy Processes for CO2 Capture and Utilization 1st ed. Baena-Moreno F.M. González-Arias J. Ramírez-Reina T. Pastor-Pérez L. Elsevier Amsterdam, The Netherlands 2023 Chapter 7
Dowling A. O’Dwyer J. Adley C.C. Lime in the limelight J. Clean. Prod. 2015 92 13 22 10.1016/j.jclepro.2014.12.047
Bing L. Ma M. Liu L. Wang J. Niu L. Xi F. An investigation of the global uptake of CO 2 by lime from 1930 to 2020 Earth Syst. Sci. Data 2023 15 2431 2444 10.5194/essd-15-2431-2023
Erans M. Nabavi S.A. Manović V. Carbonation of lime-based materials under ambient conditions for direct air capture J. Clean. Prod. 2020 242 118330 10.1016/j.jclepro.2019.118330
Carmeuse The Mineral LOOP Project Available online: https://www.carmeuse.com/eu-en/mineral-loop (accessed on 22 August 2024)
Reich L. Yue L. Bader R. Lipiński W. Towards solar thermochemical carbon dioxide capture via calcium oxide looping: A review Aerosol Air Qual. Res. 2014 14 500 514 10.4209/aaqr.2013.05.0169
Thiery M. Modelling of Atmospheric Carbonation of Cement Based Materials Considering the Kinetic Effects and Modifications of the Microstructure and the Hydric State Ecole des Ponts ParisTech Paris, France 2005
Morandeau A. Thiéry M. Dangla P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties Cem. Concr. Res. 2014 56 153 170 10.1016/j.cemconres.2013.11.015
Cizer Ö. Rodriguez-Navarro C. Ruiz-Agudo E. Elsen J. Van Gemert D. Van Balen K. Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime J. Mater. Sci. 2012 47 6151 6165 10.1007/s10853-012-6535-7
Rodriguez-Navarro C. Ilić T. Ruiz-Agudo E. Elert K. Carbonation mechanisms and kinetics of lime-based binders: An overview Cem. Concr. Res. 2023 173 107301 10.1016/j.cemconres.2023.107301
Gendron F. Carbonatation des Matériaux Cimentaires: Étude de la Diffusion du CO2 2019 Available online: https://theses.hal.science/tel-02520206 (accessed on 15 March 2024)
Šavija B. Luković M. Carbonation of cement paste: Understanding, challenges, and opportunities Constr. Build. Mater. 2016 117 285 301 10.1016/j.conbuildmat.2016.04.138
Pham S.T. Effects of Carbonation on the Microporosity and Macro Properties of Portland Cement Mortar CEM I J. Mater. Sci. Chem. Eng. 2014 02 40 52 10.4236/msce.2014.27005
University of Liège Multi-Scale Characterization of Porous Media-Mercury Intrusion Available online: https://www.carpor.uliege.be/cms/c_14290809/en/carpor-mercury-intrusion (accessed on 22 August 2024)
LECCO EMPOWERING RESULTS 744 Series Carbon/Sulfur by Combustion Available online: https://www.leco.com/products/744-series/ (accessed on 9 August 2024)
Fang F. Li Z.S. Cai N.S. CO2 capture from flue gases using a fluidized bed reactor with limestone Korean J. Chem. Eng. 2009 26 1414 1421 10.1007/s11814-009-0198-3
Gopinath S. Mehra A. Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag Chem. Eng. Res. Des. 2016 115 173 181 10.1016/j.cherd.2016.09.010
Wu B. Ye G. Development of porosity of cement paste blended with supplementary cementitious materials after carbonation Constr. Build. Mater. 2017 145 52 61 10.1016/j.conbuildmat.2017.03.176
Cui H. Tang W. Liu W. Dong Z. Xing F. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms Constr. Build. Mater. 2015 93 522 527 10.1016/j.conbuildmat.2015.06.007
Wang T. Huang H. Hu X. Fang M. Luo Z. Guo R. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate Chem. Eng. J. 2017 323 320 329 10.1016/j.cej.2017.03.157
Schaefer C.E. Arands R.R. Van Der Sloot H.A. Kosson D.S. Modeling of the gaseous diffusion coefficient through unsaturated soil systems J. Contam. Hydrol. 1997 29 1 21 10.1016/S0169-7722(96)00097-6
Partridge G.P. Lehman D.M. Huebner R.S. Modeling the reduction of vapor phase emissions from surface soils due to soil matrix effects: Porosity/tortuosity concepts J. Air Waste Manag. Assoc. 1999 49 412 423 10.1080/10473289.1999.10463812
Millington R.J. Gas Diffusion in Porous Media Science 1959 130 100 102 10.1126/science.130.3367.100.b 17738602
Tsimpanogiannis I.N. Moultos O.A. Franco L.F.M. Spera M.B.d.M. Erdős M. Economou I.G. Self-diffusion coefficient of bulk and confined water: A critical review of classical molecular simulation studies Mol. Simul. 2019 45 425 453 10.1080/08927022.2018.1511903
Gallucci E. Scrivener K. Crystallisation of calcium hydroxide in early age model and ordinary cementitious systems Cem. Concr. Res. 2007 37 492 501 10.1016/j.cemconres.2007.01.001
Bretti G. Ceseri M. Natalini R. Ciacchella M.C. Santarelli M.L. Tiracorrendo G. A forecasting model for the porosity variation during the carbonation process GEM-Int. J. Geomath. 2022 13 13 10.1007/s13137-022-00204-7
Muda M.M. Legese A.M. Urgessa G. Boja T. Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates Constr. Mater. 2023 3 81 92 10.3390/constrmater3010006