Cathode materials; Composites; Polydopamine; V2O5; Zn-ion batteries; Cathodes material; CNT films; Electrochemical performance; Ion batteries; Performance; Self standings; Zinc ions; Zn ions; Zn-ion battery; Renewable Energy, Sustainability and the Environment; Energy Engineering and Power Technology; Physical and Theoretical Chemistry; Electrical and Electronic Engineering
Abstract :
[en] Rechargeable aqueous zinc-ion battery (ZIB) is regarded as a strategic technology for energy storage and conversion in high-power, high-safety applications. Nonetheless, the primary challenge lies in the development of high-performance cathode materials. In this work, we report for the first time a self-standing V2O5/polydopamine/CNT (V2O5/PDA/CNT) electrode that shows outstanding electrochemical performance as cathode material for zinc-ion batteries. A polydopamine coating was applied to the surface of V2O5 particles through a facile self-polymerization process of dopamine. The PDA coating was confirmed and studied by TEM, TGA, FTIR-ATR, and XPS (O 1s & V 2p, C 1s and N 1s). Polydopamine thin layer leads to the partial reduction of V5+ to V4+. Combining V2O5/PDA with CNT allowed us to obtain a self-standing, binder-free cathode material with a high capacity of ∼ 530 mAh g−1 at 0.1 A g−1. The developed electrode demonstrates excellent rate capability. Indeed, even with a 25-fold increase in current density (from 0.2 A g−1 to 5 A g−1), V2O5/PDA/CNT-b retains 94 % of its capacity. In addition, the new electrode exhibits long-term cycle stability enduring up to 1000 cycles at high current density with excellentcapacity retention. The combination of PDA coating with the incorporation of carbon nanotube appears to be an excellent strategy for enhancing the electrochemical performance and stability of V2O5 for ZIBs.
Disciplines :
Chemistry
Author, co-author :
Roex, Edith ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Aqil, Abdelhafid ; Université de Liège - ULiège > Département des sciences cliniques > Cardiologie - Pathologie spéciale et réhabilitation
Światowska, Jolanta ; Chimie ParisTech—CNRS, PSL University, Institut de Recherche de Chimie Paris, Paris, France
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Boschini, Frédéric ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Cloots, Rudi ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > GREEnMat
Language :
English
Title :
Self-standing V2O5/Polydopamine/CNT film as high-performance cathode material for advanced zinc-ion batteries
Selvakumaran, D., Pan, A., Liang, S., Cao, G., A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A Mater 7 (2019), 18209–18236, 10.1039/c9ta05053a.
Mathew, V., Sambandam, B., Kim, S., Kim, S., Park, S., Lee, S., Alfaruqi, M.H., Soundharrajan, V., Islam, S., Putro, D.Y., Hwang, J.Y., Sun, Y.K., Kim, J., Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments. ACS Energy Lett. 5 (2020), 2376–2400, 10.1021/acsenergylett.0c00740.
Chen, X., Wang, L., Li, H., Cheng, F., Chen, J., Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 38 (2019), 20–25, 10.1016/j.jechem.2018.12.023.
Zhou, J., Shan, L., Wu, Z., Guo, X., Fang, G., Liang, S., Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54 (2018), 4457–4460, 10.1039/c8cc02250j.
Zhang, N., Dong, Y., Jia, M., Bian, X., Wang, Y., Qiu, M., Xu, J., Liu, Y., Jiao, L., Cheng, F., Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3 (2018), 1366–1372, 10.1021/acsenergylett.8b00565.
He, P., Zhang, G., Liao, X., Yan, M., Xu, X., An, Q., Liu, J., Mai, L., Sodium ion stabilized vanadium oxide nanowire cathode for high‐performance zinc‐ion batteries. Adv. Energy Mater. 8 (2018), 1–6, 10.1002/aenm.201702463.
Liu, Z., Bertram, P., Endres, F., Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte. J. Solid State Electrochem. 21 (2017), 2021–2027, 10.1007/s10008-017-3589-0.
Patil, N., de la Cruz, C., Ciurduc, D., Mavrandonakis, A., Palma, J., Marcilla, R., An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TFSI)2-Based concentrated aqueous electrolytes. Adv. Energy Mater. 11 (2021), 1–14, 10.1002/aenm.202100939.
Patil, N., Palma, J., Marcilla, R., Macromolecular engineering of poly(catechol) cathodes towards high-performance aqueous zinc-polymer batteries. Polymers, 13, 2021, 1673, 10.3390/polym13111673.
Yue, X., Liu, H., Liu, P., Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chem. Commun. 55 (2019), 1647–1650, 10.1039/c8cc10060h.
Zhang, W., Zuo, C., Tang, C., Tang, W., Lan, B., Fu, X., Dong, S., Luo, P., The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries. Energy Technol. 9 (2021), 1–20, 10.1002/ente.202000789.
Konarov, A., Voronina, N., Jo, J.H., Bakenov, Z., Sun, Y.K., Myung, S.T., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 3 (2018), 2620–2640, 10.1021/acsenergylett.8b01552.
Zhang, Y., Chen, A., Sun, J., Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 54 (2021), 655–667, 10.1016/j.jechem.2020.06.013.
Ming, J., Guo, J., Xia, C., Wang, W., Alshareef, H.N., Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 135 (2019), 58–84, 10.1016/j.mser.2018.10.002.
Ding, Y., Zhang, L., Wang, X., Han, L., Zhang, W., Guo, C., Vanadium-based cathodes for aqueous zinc ion batteries: structure, mechanism and prospects. Chin. Chem. Lett., 34, 2023, 107399, 10.1016/j.cclet.2022.03.122.
Kundu, D., Adams, B.D., Duffort, V., Vajargah, S.H., Nazar, L.F., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1 (2016), 1–28, 10.1038/nenergy.2016.119.
Kundu, D., Hosseini Vajargah, S., Wan, L., Adams, B., Prendergast, D., Nazar, L.F., Aqueous: vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11 (2018), 881–892, 10.1039/c8ee00378e.
Qin, H., Chen, L., Wang, L., Chen, X., Yang, Z., V 2 O 5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 306 (2019), 307–316, 10.1016/j.electacta.2019.03.087.
Feng, C.Q., Wang, S.Y., Zeng, R., Guo, Z.P., Konstantinov, K., Liu, H.K., Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. J. Power Sources 184 (2008), 485–488, 10.1016/j.jpowsour.2008.04.049.
Roex, E., Boschini, F., Delaval, V., Schrijnemakers, A., Cloots, R., Mahmoud, A., Spray-dried V2O5 as cathode material for high-performance aqueous zinc-ion batteries. J. Electroanal. Chem., 929, 2023, 117133, 10.1016/j.jelechem.2022.117133.
Chen, H., Qin, H., Chen, L., Wu, J., Yang, Z., V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability. J. Alloys Compd., 842, 2020, 155912, 10.1016/j.jallcom.2020.155912.
Pang, Q., Sun, C., Yu, Y., Zhao, K., Zhang, Z., Voyles, P.M., Chen, G., Wei, Y., Wang, X., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8 (2018), 1–9, 10.1002/aenm.201800144.
Yin, B., Zhang, S., Ke, K., Xiong, T., Wang, Y., Lim, B.K.D., Lee, W.S.V., Wang, Z., Xue, J., Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery. Nanoscale 11 (2019), 19723–19728, 10.1039/c9nr07458a.
Guo, X., Fang, G., Zhang, W., Zhou, J., Shan, L., Wang, L., Wang, C., Lin, T., Tang, Y., Liang, S., Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 8 (2018), 1–7, 10.1002/aenm.201801819.
Peng, Z., Wei, Q., Tan, S., He, P., Luo, W., An, Q., Mai, L., Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem. Commun. 54 (2018), 4041–4044, 10.1039/c8cc00987b.
Ming, F., Liang, H., Lei, Y., Kandambeth, S., Eddaoudi, M., Alshareef, H.N., Layered Mg xV2O5· nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3 (2018), 2602–2609, 10.1021/acsenergylett.8b01423.
Yan, M., He, P., Chen, Y., Wang, S., Wei, Q., Zhao, K., Xu, X., An, Q., Shuang, Y., Shao, Y., Mueller, K.T., Mai, L., Liu, J., Yang, J., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30 (2018), 1–6, 10.1002/adma.201703725.
Liu, Y., Gong, Y., Dopamine-intercalated vanadate hollow microtube arrays with S-doping for high-performance zinc-ion batteries: disorder/defect-induced clusters and a reversible phase transition. Nanoscale 15 (2023), 6273–6284, 10.1039/D2NR06786B.
Tolstopyatova, E.G., Kamenskii, M.A., Kondratiev, V.V., Vanadium oxide–conducting polymers composite cathodes for aqueous zinc-ion batteries: interfacial design and enhancement of electrochemical performance. Energies, 15, 2022, 8966, 10.3390/en15238966.
Qin, X., Wang, X., Sun, J., Lu, Q., Omar, A., Mikhailova, D., Polypyrrole wrapped V2O5 nanowires composite for advanced aqueous zinc-ion batteries. Front. Energy Res. 8 (2020), 1–6, 10.3389/fenrg.2020.00199.
Du, Y., Wang, X., Man, J., Sun, J., A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries. Mater. Lett., 272, 2020, 127813, 10.1016/j.matlet.2020.127813.
Xu, D., Wang, H., Li, F., Guan, Z., Wang, R., He, B., Gong, Y., Hu, X., Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv. Mater. Interfac. 6 (2019), 1–8, 10.1002/admi.201801506.
Zhang, L., Qin, X., Wang, L., Zhao, Z., Mi, L., Lu, Q., Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion batteries. Front. Chem. Sci. Eng. 17 (2023), 1244–1253, 10.1007/s11705-022-2293-5.
Chen, X., Kong, Q., Wu, X., An, X., Zhang, J., Wang, Q., Yao, W., V2O3@C optimized by carbon regulation strategy for ultra long-life aqueous zinc-ion batteries. Chem. Eng. J., 451, 2023, 138765, 10.1016/j.cej.2022.138765.
Abdelhafid, A., Jérôme, C., Boschini, F., Mahmoud, A., Enhancing performances of Polydopamine as cathode for Lithium‐ and Potassium‐ion batteries by simple grafting of sulfonate groups. Batter Supercaps, 2020, 1–7, 10.1002/batt.202000242.
Yue, H., Du, T., Wang, Q., Shi, Z., Dong, H., Cao, Z., Qiao, Y., Yin, Y., Xing, R., Yang, S., Biomimetic synthesis of polydopamine coated ZnFe2O4 composites as anode materials for lithium-ion batteries. ACS Omega 3 (2018), 2699–2705, 10.1021/acsomega.7b01752.
Jeong, Y.K., Park, S.H., Choi, J.W., Mussel-Inspired coating and adhesion for rechargeable batteries: a review. ACS Appl. Mater. Interfaces 10 (2018), 7562–7573, 10.1021/acsami.7b08495.
Deng, Y., Xu, H., Bai, Z., Huang, B., Su, J., Chen, G., Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries. J. Power Sources 300 (2015), 386–394, 10.1016/j.jpowsour.2015.09.091.
Bie, Y., Yang, J., Liu, X., Wang, J., Nuli, Y., Lu, W., Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 8 (2016), 2899–2904, 10.1021/acsami.5b10616.
Cheary, R.W., Coelho, A., A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25 (1992), 109–121, 10.1107/S0021889891010804.
Botto, I.L., Vassallo, M.B., Baran, E.J., Minelli, G., IR spectra of VO2 and V2O3. Mater. Chem. Phys. 50 (1997), 267–270, 10.1016/S0254-0584(97)01940-8.
Kong, J., Yee, W.A., Yang, L., Wei, Y., Lei Phua, S., Guan Ong, H., Ming Ang, J., Li, X., Lu, X., Highly electrically conductive layered carbon derived from polydopamine and its functions in SnO2-based lithium ion battery anodes. Chem. Commun. 48 (2012), 10316–10318, 10.1039/c2cc35284b.
Dreyer, D.R., Miller, D.J., Freeman, B.D., Paul, D.R., Bielawski, C.W., Elucidating the structure of poly(dopamine). Langmuir 28 (2012), 6428–6435, 10.1021/la204831b.
Liu, Y., Fang, Y., Qian, J., Liu, Z., Yang, B., Wang, X., Bio-inspired polydopamine functionalization of carbon fiber for improving the interfacial adhesion of polypropylene composites. RSC Adv. 5 (2015), 107652–107661, 10.1039/c5ra20045h.
Luo, R., Tang, L., Wang, J., Zhao, Y., Tu, Q., Weng, Y., Shen, R., Huang, N., Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization. Colloids Surf. B Biointerfaces 106 (2013), 66–73, 10.1016/j.colsurfb.2013.01.033.
Guo, X., Xu, H., Ma, X., Yang, S., Liu, T., Nie, Y., Wang, C., Wang, C., Jiang, X., Photothermal polydopamine coated VO2 nanoparticle thin film with enhanced optical property and stability. Vacuum, 196, 2022, 110776, 10.1016/j.vacuum.2021.110776.
Lindström, R., Maurice, V., Zanna, S., Klein, L., Groult, H., Perrigaud, L., Cohen, C., Marcus, P., Thin films of vanadium oxide grown on vanadium metal: oxidation conditions to produce V2O5 films for Li-intercalation applications and characterisation by XPS, AFM, RBS/NRA. Surf. Interface Anal. 38 (2006), 6–18, 10.1002/sia.2141.
Santos, L., Światowska, J., Lair, V., Zanna, S., Seyeux, A., Melendez-Ceballos, A., Tran-Van, P., Cassir, M., Marcus, P., Mechanisms of enhanced lithium intercalation into thin film V 2 O 5 in ionic liquids investigated by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. J. Power Sources 364 (2017), 61–71, 10.1016/j.jpowsour.2017.08.003.
Światowska-Mrowiecka, J., Martin, F., Maurice, V., Zanna, S., Klein, L., Castle, J., Marcus, P., The distribution of lithium intercalated in V2O5 thin films studied by XPS and ToF-SIMS. Electrochim. Acta 53 (2008), 4257–4266, 10.1016/j.electacta.2007.12.083.
Światowska-Mrowiecka, J., Maurice, V., Zanna, S., Klein, L., Marcus, P., XPS study of Li ion intercalation in V2O5 thin films prepared by thermal oxidation of vanadium metal. Electrochim. Acta 52 (2007), 5644–5653, 10.1016/j.electacta.2006.12.050.
Beamson, G., Briggs, D., High resolution XPS of organic polymers. The Scienta ESCA 300 Database, 1992, John Wiley & Sons.
Ederer, J., Janoš, P., Ecorchard, P., Tolasz, J., Štengl, V., Beneš, H., Perchacz, M., Pop-Georgievski, O., Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Adv. 7 (2017), 12464–12473, 10.1039/C6RA28745J.
Suárez-García, S., Sedó, J., Saiz-Poseu, J., Ruiz-Molina, D., Copolymerization of a catechol and a diamine as a versatile polydopamine-like platform for surface functionalization: the case of a hydrophobic coating. Biomimetics, 2, 2017, 22, 10.3390/biomimetics2040022.
Li, R., Zhang, H., Zheng, Q., Li, X., Porous V2O5 yolk-shell microspheres for zinc ion battery cathodes: activation responsible for enhanced capacity and rate performance. J Mater Chem A Mater 8 (2020), 5186–5193, 10.1039/c9ta11750d.
Hu, P., Zhu, T., Ma, J., Cai, C., Hu, G., Wang, X., Liu, Z., Zhou, L., Mai, L., Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries. Chem. Commun. 55 (2019), 8486–8489, 10.1039/c9cc04053f.
Mallick, S., Raj, C.R., Aqueous rechargeable Zn-ion batteries: strategies for improving the energy storage performance. ChemSusChem 14 (2021), 1987–2022, 10.1002/cssc.202100299.
Mao, F., Li, Y., Zou, Z., Huang, B., Yang, J., Yao, J., Zn2+ storage performance and structural change of orthorhombic V2O5 nanowires as the cathode material for rechargeable aqueous zinc-ion batteries. Electrochim. Acta, 397, 2021, 139255, 10.1016/j.electacta.2021.139255.
Liu, F., Chen, Z., Fang, G., Wang, Z., Cai, Y., Tang, B., Zhou, J., Liang, S., V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 11 (2019), 1–11, 10.1007/s40820-019-0256-2.
Javed, M.S., Lei, H., Wang, Z., tian Liu, B., Cai, X., Mai, W., 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy, 70, 2020, 104573, 10.1016/j.nanoen.2020.104573.
Chen, X., Wang, L., Li, H., Cheng, F., Chen, J., Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 38 (2019), 20–25, 10.1016/j.jechem.2018.12.023.
Ahuja, U., Wang, B., Hu, P., Rethore, J., Aifantis, K.E., Polydopamine coated Si nanoparticles allow for improved mechanical and electrochemical stability. Electrochim. Acta, 392, 2021, 138993, 10.1016/j.electacta.2021.138993.
Ma, Y., Past, present and future of carbon nanotubes and graphene based electrode materials for energy storage batteries. Int. J. Electrochem. Sci. 15 (2020), 10315–10329, 10.20964/2020.10.35.
Pantea, D., Darmstadt, H., Kaliaguine, S., Roy, C., Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Appl. Surf. Sci. 217 (2003), 181–193, 10.1016/S0169-4332(03)00550-6.
Li, Y., Huang, Z., Kalambate, P.K., Zhong, Y., Huang, Z., Xie, M., Shen, Y., Huang, Y., V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60 (2019), 752–759, 10.1016/j.nanoen.2019.04.009.
Wang, X., Wang, L., Zhang, B., Feng, J., Zhang, J., Ou, X., Hou, F., Liang, J., A flexible carbon nanotube@V2O5 film as a high-capacity and durable cathode for zinc ion batteries. J. Energy Chem. 59 (2021), 126–133, 10.1016/j.jechem.2020.10.007.
Wang, Y., Liu, X., Xu, G., Liang, Y., Ni, W., Wu, B., Yang, L., Freestanding carbon nanotube/orthorhombic V2O5 nanobelt films for advanced aqueous zinc-ion batteries: electrochemical performance and in situ Raman spectroscopy investigations. Ionics 28 (2022), 4709–4718, 10.1007/s11581-022-04684-3.
Chen, S., Li, K., Hui, K.S., Zhang, J., Regulation of lamellar structure of vanadium oxide via polyaniline intercalation for high‐performance aqueous zinc‐ion battery. Adv. Funct. Mater., 30, 2020, 202003890, 10.1002/adfm.202003890.
Wang, W., He, D., Fang, Y., Wang, S., Zhang, Z., Zhao, R., Xue, W., Pillaring of a conductive polymer in layered V2O5 boosting ultra-fast Zn2+/H+ storage in aqueous media. Electrochim. Acta, 416, 2022, 140270, 10.1016/j.electacta.2022.140270.
Feng, Z., Sun, J., Liu, Y., Jiang, H., Hu, T., Cui, M., Tian, F., Meng, C., Zhang, Y., Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery. J. Power Sources, 536, 2022, 231489, 10.1016/j.jpowsour.2022.231489.
Yao, Z., Wu, Q., Chen, K., Liu, J., Li, C., Shallow-layer pillaring of a conductive polymer in monolithic grains to drive superior zinc storage via a cascading effect. Energy Environ. Sci. 13 (2020), 3149–3163, 10.1039/D0EE01531H.
Du, Y., Wang, X., Sun, J., Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 14 (2021), 754–761, 10.1007/s12274-020-3109-x.