Combining field measurements and process‐based modelling to analyse soil tillage and crop residues management impacts on crop production and carbon balance in temperate areas
[en] Crop residues management is an important issue in the context of climate change. They might be kept on the field and restituted to the soil to enhance its fertility or exported for other uses such as the production of energy through biomethanization. Furthermore, the choices regarding tillage operations impact the potential to incorporate residues, which in turn affects soil physical (e.g. structure, water retention), biological (e.g. organic matter, microorganisms) and chemical (e.g. nutrient release through mineralization) fertility. We combined measurements from a 14‐year field experiment in the Hesbaye loamy region of Belgium and its simulation with the STICS soil‐crop model to investigate the impacts of soil tillage and crop residues management on crop production, soil characteristics and carbon balance. Four treatments were compared, where all combinations of the incorporation versus exportation of crop residues and conventional versus reduced tillage were tested. The comparison of field observations with model simulations proved that the STICS model is adequate to explore the impacts of such contrasted management. The combined analysis of field data and soil‐crop model outputs showed that crop production was positively influenced by conventional tillage but unresponsive to crop residues fate. Reduced tillage led to a clear stratification in observed SOC content in the topsoil (0–30 cm), but also to an increase in simulated SOC stocks (0–26 cm). This SOC gain led to greater water retention under reduced tillage. Moreover, in both tillage treatments, incorporating residues increased soil organic carbon despite the associated augmentation in soil heterotrophic respiration. Finally, the importance of environmental conditions in carbon balance suggests that crop modelling might be very useful to explore the impacts of soil tillage and crop residues management in specific agro‐pedoclimatic contexts, especially when facing climate change.
Disciplines :
Agriculture & agronomy
Author, co-author :
Delandmeter, Mathieu ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Colinet, Gilles ; Université de Liège - ULiège > TERRA Research Centre > Echanges Eau - Sol - Plantes
Pierreux, Jérome ; Université de Liège - ULiège > GxABT : Services généraux du site > Site GxABT - ARI
Bindelle, Jérôme ; Université de Liège - ULiège > TERRA Research Centre > Animal Sciences (AS)
Dumont, Benjamin ; Université de Liège - ULiège > TERRA Research Centre > Plant Sciences
Language :
English
Title :
Combining field measurements and process‐based modelling to analyse soil tillage and crop residues management impacts on crop production and carbon balance in temperate areas
Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. https://doi.org/10.1016/j.jenvman.2020.110319
Alvarez, R., & Steinbach, H. S. (2009). A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 104(1), 1–15. https://doi.org/10.1016/j.still.2009.02.005
Artru, S., Dumont, B., Ruget, F., Launay, M., Ripoche, D., Lassois, L., & Garré, S. (2018). How does STICS crop model simulate crop growth and productivity under shade conditions? Field Crops Research, 215, 83–93. https://doi.org/10.1016/j.fcr.2017.10.005
Basile-Doelsch, I., Balesdent, J., & Pellerin, S. (2020). Reviews and syntheses: The mechanisms underlying carbon storage in soil. Biogeosciences, 17(21), 5223–5242. https://doi.org/10.5194/bg-17-5223-2020
Basso, B., Dumont, B., Maestrini, B., Shcherbak, I., Robertson, G. P., Porter, J. R., Smith, P., Paustian, K., Grace, P. R., Asseng, S., Bassu, S., & Rosenzweig, C. (2018). Soil organic carbon and nitrogen feedbacks on crop yields under climate change. Agricultural & Environmental Letters, 3(1), 180026. https://doi.org/10.2134/ael2018.05.0026
Basso, B., Ritchie, J. T., Grace, P. R., & Sartori, L. (2006). Simulation of tillage systems impact on soil biophysical properties using the SALUS model. Italian Journal of Agronomy, 1(4), 677–688. https://doi.org/10.4081/ija.2006.677
Beaudoin, N., Launay, M., Sauboua, E., Ponsardin, G., & Mary, B. (2008). Evaluation of the soil-crop model STICS over 8 years against the “on farm” database of Bruyères catchment. European Journal of Agronomy, 29(1), 46–57. https://doi.org/10.1016/j.eja.2008.03.001
Beaudoin, N., Lecharpentier, P., Ripoche, D., Strullu, L., Mary, B., Leonard, J., Launay, M., & Justes, E. (Eds.). (2022). STICS soil-crop model. Conceptual Framework, Equations and Uses. Éditions Quæ.
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056), 245–248. https://doi.org/10.1038/nature04038
Bescansa, P., Imaz, M. J., Virto, I., Enrique, A., & Hoogmoed, W. B. (2006). Soil water retention as affected by tillage and residue management in semiarid Spain. Soil and Tillage Research, 87(1), 19–27. https://doi.org/10.1016/j.still.2005.02.028
Blanco-Canqui, H., & Lal, R. (2009). Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Sciences, 28(3), 139–163.
Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164–200. https://doi.org/10.1016/j.geoderma.2018.03.011
Bond-Lamberty, B., & Thomson, A. (2010). Temperature-associated increases in the global soil respiration record. Nature, 464(7288), 579–582. https://doi.org/10.1038/nature08930
Brennan, J., Hackett, R., McCabe, T., Grant, J., Fortune, R. A., & Forristal, P. D. (2014). The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool Atlantic climate. European Journal of Agronomy, 54, 61–69. https://doi.org/10.1016/j.eja.2013.11.009
Brisson, N., Launay, M., Mary, B., & Beaudoin, N. (2009). Conceptual basis, formalizations and parameterization of the STICS crop model. Éditions Quæ.
Buysse, P., Schnepf-Kiss, A. C., Carnol, M., Malchair, S., Roisin, C., & Aubinet, M. (2013). Fifty years of crop residue management have a limited impact on soil heterotrophic respiration. Agricultural and Forest Meteorology, 180, 102–111. https://doi.org/10.1016/j.agrformet.2013.05.004
Campbell, E. E., & Paustian, K. (2015). Current developments in soil organic matter modeling and the expansion of model applications: A review. Environmental Research Letters, 10(12), 123004. https://doi.org/10.1088/1748-9326/10/12/123004
Clapp, C. E., Allmaras, R. R., Layese, M. F., Linden, D. R., & Dowdy, R. H. (2000). Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil and Tillage Research, 55(3–4), 127–142. https://doi.org/10.1016/S0167-1987(00)00110-0
Clivot, H., Mouny, J. C., Duparque, A., Dinh, J. L., Denoroy, P., Houot, S., Vertès, F., Trochard, R., Bouthier, A., Sagot, S., & Mary, B. (2019). Modeling soil organic carbon evolution in long-term arable experiments with AMG model. Environmental Modelling & Software, 118, 99–113. https://doi.org/10.1016/j.envsoft.2019.04.004
Coucheney, E., Buis, S., Launay, M., Constantin, J., Mary, B., de Cortázar-Atauri, I. G., Ripoche, D., Beaudoin, N., Ruget, F., Andrianarisoa, K. S., Le Bas, C., & Léonard, J. (2015). Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Environmental Modelling & Software, 64, 177–190. https://doi.org/10.1016/j.envsoft.2014.11.024
Davis, P. A., Brown, J. C., Saunders, M., Lanigan, G., Wright, E., Fortune, T., Burke, J., Connolly, J., Jones, M. B., & Osborne, B. (2010). Assessing the effects of agricultural management practices on carbon fluxes: Spatial variation and the need for replicated estimates of net ecosystem exchange. Agricultural and Forest Meteorology, 150(4), 564–574. https://doi.org/10.1016/j.agrformet.2010.01.021
Delandmeter, M., Léonard, J., Ferchaud, F., Heinesch, B., Manise, T., Faurès, A., Bindelle, J., & Dumont, B. (2023). A comprehensive analysis of CO2 exchanges in agro-ecosystems based on a generic soil-crop model-derived methodology. Agricultural and Forest Meteorology, 340, 109621.
Du, K., Li, F., Leng, P., Li, Z., Tian, C., Qiao, Y., & Li, Z. (2020). Differential influence of no-tillage and precipitation pulses on soil heterotrophic and autotrophic respiration of summer maize in the North China plain. Agronomy, 10(12), 2004. https://doi.org/10.3390/agronomy10122004
Dumont, B., Basso, B., Bodson, B., Destain, J. P., & Destain, M. F. (2015). Climatic risk assessment to improve nitrogen fertilisation recommendations: A strategic crop model-based approach. European Journal of Agronomy, 65, 10–17. https://doi.org/10.1016/j.eja.2015.01.003
Fowler, A. F., Basso, B., Millar, N., & Brinton, W. F. (2023). A simple soil mass correction for a more accurate determination of soil carbon stock changes. Scientific Reports, 13(1), 2242. https://doi.org/10.1038/s41598-023-29289-2
Fujisaki, K., Chapuis-Lardy, L., Albrecht, A., Razafimbelo, T., Chotte, J. L., & Chevallier, T. (2018). Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands. Geoderma, 313, 41–51. https://doi.org/10.1016/j.geoderma.2017.10.010
Hernanz, J. L., Sánchez-Girón, V., & Navarrete, L. (2009). Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agriculture, Ecosystems & Environment, 133, 114–122. https://doi.org/10.1016/j.agee.2009.05.009
Hiel, M. P., Barbieux, S., Pierreux, J., Olivier, C., Lobet, G., Roisin, C., Garré, S., Colinet, G., Bodson, B., & Dumont, B. (2018). Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils. PeerJ, 6, e4836.
Hiel, M.-P., Chélin, M., Parvin, N., Barbieux, S., Degrune, F., Lemtiri, A., Colinet, G., Degré, A., Bodson, B., & Garré, S. (2016). Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review. Biotechnologie, Agronomie, Société et Environnement, 20(1), 245–256. https://doi.org/10.25518/1780-4507.12986
IUSS Working Group WRB. (2014). World reference base for soil resources 2014: Inter-national soil classification system for naming soils and creating legends for soil maps. FAO.
Jacinthe, P. A., Lal, R., & Kimble, J. M. (2002). Carbon budget and seasonal carbon dioxide emission from a central Ohio Luvisol as influenced by wheat residue amendment. Soil and Tillage Research, 67(2), 147–157. https://doi.org/10.1016/S0167-1987(02)00058-2
Knapp, S., & van der Heijden, M. G. (2018). A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 9(1), 3632. https://doi.org/10.1038/s41467-018-05956-1
Krauss, M., Wiesmeier, M., Don, A., Cuperus, F., Gattinger, A., Gruber, S., … Steffens, M. (2022). Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil and Tillage Research, 216, 105262. https://doi.org/10.1016/j.still.2021.105262
Krištof, K., Šima, T., Nozdrovický, L., & Findura, P. (2014). The effect of soil tillage intensity on carbon dioxide emissions released from soil into the atmosphere. Agronomy Research, 12(1), 115–120.
Lacroix, C., Vandenberghe, C., Monty, A., & Dumont, B. (2024). Effect of long-term tillage and residue managements on weed flora and its impact on winter wheat development. Agriculture, Ecosystems & Environment, 366, 108937.
Lal, R. (1997). Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil and Tillage Research, 43(1–2), 81–107. https://doi.org/10.1016/S0167-1987(97)00036-6
Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. https://doi.org/10.1126/science.1097396
Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Krüger, J., Grignani, C., Zavattaro, L., Costamagna, C., & Spiegel, H. (2014). Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use and Management, 30(4), 524–538. https://doi.org/10.1111/sum.12151
Liu, H. S., Li, L. H., Han, X. G., Huang, J. H., Sun, J. X., & Wang, H. Y. (2006). Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Applied Soil Ecology, 32(3), 284–292. https://doi.org/10.1016/j.apsoil.2005.08.001
López-Fando, C., & Pardo, M. T. (2011). Soil carbon storage and stratification under different tillage systems in a semi-arid region. Soil and Tillage Research, 111(2), 224–230. https://doi.org/10.1016/j.still.2010.10.011
Lu, X., Lu, X., Tanveer, S. K., Wen, X., & Liao, Y. (2015). Effects of tillage management on soil CO2 emission and wheat yield under rain-fed conditions. Soil Research, 54(1), 38–48. https://doi.org/10.1071/SR14300
Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 139(1–2), 224–231. https://doi.org/10.1016/j.agee.2010.08.006
Martin, M. P., Dimassi, B., Román Dobarco, M., Guenet, B., Arrouays, D., Angers, D. A., Blache, F., Huard, F., Soussana, J. F., & Pellerin, S. (2021). Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France. Global Change Biology, 27(11), 2458–2477. https://doi.org/10.1111/gcb.15547
Mary, B., Beaudoin, N., Justes, E., & Machet, J. M. (1999). Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model. European Journal of Soil Science, 50(4), 549–566. https://doi.org/10.1046/j.1365-2389.1999.00264.x
Mary, B., Clivot, H., Blaszczyk, N., Labreuche, J., & Ferchaud, F. (2020). Soil carbon storage and mineralization rates are affected by carbon inputs rather than physical disturbance: Evidence from a 47-year tillage experiment. Agriculture, Ecosystems & Environment, 299, 106972. https://doi.org/10.1016/j.agee.2020.106972
Meurer, K. H., Haddaway, N. R., Bolinder, M. A., & Kätterer, T. (2018). Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil—A systematic review using an ESM approach. Earth-Science Reviews, 177, 613–622. https://doi.org/10.1016/j.earscirev.2017.12.015
Morais, T. G., Teixeira, R. F., & Domingos, T. (2019). Detailed global modelling of soil organic carbon in cropland, grassland and forest soils. PLoS One, 14(9), e0222604. https://doi.org/10.1371/journal.pone.0222604
Ogle, S. M., Alsaker, C., Baldock, J., Bernoux, M., Breidt, F. J., McConkey, B., … Vazquez-Amabile, G. G. (2019). Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Scientific Reports, 9(1), 11665. https://doi.org/10.1038/s41598-019-47861-7
Ogle, S. M., Breidt, F. J., Easter, M., Williams, S., Killian, K., & Paustian, K. (2010). Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Global Change Biology, 16(2), 810–822. https://doi.org/10.1111/j.1365-2486.2009.01951.x
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, K. J., Lee, J., Lundy, M. E., Van Gestel, N., Six, J., Venterea, R. T., & Van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517(7534), 365–368. https://doi.org/10.1038/nature13809
Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., Van Groenigen, K. J., Lee, J., Van Gestel, N., Six, J., Venterea, R. T., & Van Kessel, C. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168. https://doi.org/10.1016/j.fcr.2015.07.020
Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678–683. https://doi.org/10.1038/nclimate2292
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Ravelojaona, N., Jégo, G., Ziadi, N., Mollier, A., Lafond, J., Karam, A., & Morel, C. (2023). STICS soil–crop model performance for predicting biomass and nitrogen status of spring barley cropped for 31 years in a Gleysolic soil from northeastern Quebec (Canada). Agronomy, 13(10), 2540. https://doi.org/10.3390/agronomy13102540
Rutkowska, B., Szulc, W., Sosulski, T., Skowrońska, M., & Szczepaniak, J. (2018). Impact of reduced tillage on CO2 emission from soil under maize cultivation. Soil and Tillage Research, 180, 21–28. https://doi.org/10.1016/j.still.2018.02.012
Schlüter, S., Großmann, C., Diel, J., Wu, G. M., Tischer, S., Deubel, A., & Rücknagel, J. (2018). Long-term effects of conventional and reduced tillage on soil structure, soil ecological and soil hydraulic properties. Geoderma, 332, 10–19. https://doi.org/10.1016/j.geoderma.2018.07.001
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society, B: Biological Sciences, 363(1492), 789–813. https://doi.org/10.1098/rstb.2007.2184
Stella, T., Mouratiadou, I., Gaiser, T., Berg-Mohnicke, M., Wallor, E., Ewert, F., & Nendel, C. (2019). Estimating the contribution of crop residues to soil organic carbon conservation. Environmental Research Letters, 14(9), 094008. https://doi.org/10.1088/1748-9326/ab395c
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., De Courcelles, V. D., Singh, K., Wheeler, I., & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001
Strullu, L., Beaudoin, N., Thiébeau, P., Julier, B., Mary, B., Ruget, F., Ripoche, D., Rakotovololona, L., & Louarn, G. (2020). Simulation using the STICS model of C&N dynamics in alfalfa from sowing to crop destruction. European Journal of Agronomy, 112, 125948. https://doi.org/10.1016/j.eja.2019.125948
Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., Fischer, T., & Huang, Y. (2020). Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 26(6), 3325–3335. https://doi.org/10.1111/gcb.15001
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192.
Ussiri, D. A., & Lal, R. (2009). Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil and Tillage Research, 104(1), 39–47. https://doi.org/10.1016/j.still.2008.11.008
Van den Putte, A., Govers, G., Diels, J., Gillijns, K., & Demuzere, M. (2010). Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. European Journal of Agronomy, 33(3), 231–241. https://doi.org/10.1016/j.eja.2010.05.008
Vinther, F. P., Hansen, E. M., & Olesen, J. E. (2004). Effects of plant residues on crop performance, N mineralisation and microbial activity including field CO2 and N2O fluxes in unfertilised crop rotations. Nutrient Cycling in Agroecosystems, 70, 189–199. https://doi.org/10.1023/B:FRES.0000048477.56417.46
Virto, I., Barré, P., Burlot, A., & Chenu, C. (2012). Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry, 108, 17–26. https://doi.org/10.1007/s10533-011-9600-4
Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184–194. https://doi.org/10.1080/02723646.1981.10642213
Young, M. D., Ros, G. H., & de Vries, W. (2021). Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis. Agriculture, Ecosystems & Environment, 319, 107551. https://doi.org/10.1016/j.agee.2021.107551
Zhang, X., Xin, X., Yang, W., Ding, S., Ren, G., Li, M., & Zhu, A. (2021). Soil respiration and net carbon flux response to long-term reduced/no-tillage with and without residues in a wheat-maize cropping system. Soil and Tillage Research, 214, 105182. https://doi.org/10.1016/j.still.2021.105182