Paper published in a book (Scientific congresses and symposiums)
Modelling and simulation of a seasonal underground water storage coupled with photovoltaic panels, heat pump and district heating network for providing local renewable heating to a residential district
2024 • In PROCEEDINGS OF ECOS 2024 - THE 37TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS
Seasonal Underground Stratified Energy Storage Dynamic simulation; Renewable energy; District heating; Decarbonisation; Abandoned mines
Abstract :
[en] Energy storage is a key component to face the intermittence of renewable energy and achieve decarbonization of the electricity grid by 2050. In this regard, this paper assesses the potential of seasonal energy storage in flooded underground mines. The analysis is based on a case study of a slate mine in Martelange, southern Belgium. The models presented assess the heating and cooling energy demands of a complex of 50 apartments. The study site comprises a photovoltaic plant, which supplies a water-to-water Heat Pump (HP), that is used to heat an underground cavern of 6840 m3 flooded with water, while an adjacent cavern of 80000 m3 is used as a cold reservoir. The hot cavern is charging during the summer period, reaching a maximum temperature of 55°C, and discharging in winter until 40 °C. The District Heating Network (DHN) is modelled to transport the hot water to each apartment where a buffer tank is used to reheat the water by a secondary HP for Domestic Heat Water. The system has been modelled in Dymola and simulated for 4 years with a step time of 15 minutes. The study case can cover 76.7% of the total building heating demand throughout the DHN, within a COP of 2.86. These results underline the potential of reusing mine caverns for robust energy storage solutions, promoting a shift towards renewables and establishing opportunities for interconnected multi-system grids.
Disciplines :
Energy
Author, co-author :
Cendoya, Aitor ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Ransy, Frédéric ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Lemort, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Thermodynamique appliquée
Kozlowska, Natalia ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Dewallef, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelopement durable
Windeshausen, Jacques; Wingest Energy
Language :
English
Title :
Modelling and simulation of a seasonal underground water storage coupled with photovoltaic panels, heat pump and district heating network for providing local renewable heating to a residential district
Publication date :
30 June 2024
Event name :
37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems
Event organizer :
ECOS
Event place :
Rhodes, Greece
Event date :
30th of June - 5th of July
Event number :
37
Audience :
International
Main work title :
PROCEEDINGS OF ECOS 2024 - THE 37TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS
Bott, C., Dressel, I., & Bayer, P. (2019). State-of-technology review of water-based closed seasonal thermal energy storage systems. In Renewable and Sustainable Energy Reviews (Vol. 113). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.06.048
Cabeza, L. F., Q. Bai, P. Bertoldi, J.M. Kihila, A.F.P. Lucena, É. Mata, S. Mirasgedis, A. Novikova, & Y. Saheb. (2022). Buildings. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 953-1048). Cambridge University Press. https://doi.org/10.1017/9781009157926.011
Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., Strand, R. K., Liesen, R. J., Fisher, D. E., Witte, M. J., & Glazer, J. (2001). EnergyPlus: creating a new-generation building energy simulation program. Energy and Buildings, 33(4), 319-331. https://doi.org/10.1016/S0378-7788(00)00114-6
Dempsey, M. (2006). Dymola for Multi-Engineering Modelling and Simulation. I E E E. https://doi.org/10.1109/VPPC.2006.364294
Duffie, J. A., & Beckman, W. A. (1991). Solar Engineering of Thermal Processes (Jhon Wiley & Sons Inc., Ed.; 2nd ed.).
Energy Agency, I. (2021). Net Zero by 2050 - A Roadmap for the Global Energy Sector. www.iea.org/t&c/
Filonenko, K., Copeland, M., Jespersen, K., & Veje, C. (2020). Modeling future heat pump integration in a power radial. Proceedings of the American Modelica Conference 2020, Boulder, Colorado, USA, March 23-25, 2020, 169, 130-138. https://doi.org/10.3384/ecp20169130
Grabenweger, P., Lalic, B., Trnka, M., Balek, J., Murer, E., Krammer, C., Možný, M., Gobin, A., Şaylan, L., & Eitzinger, J. (2021). Simulation of daily mean soil temperatures for agricultural land use considering limited input data. Atmosphere, 12(4). https://doi.org/10.3390/atmos12040441
Jin, H. (2002). Parameter estimation based models of water source heat pumps, Oklahoma State University. https://hdl.handle.net/11244/46835
Jorissen, F., Boydens, W., & Helsen, L. (2018). Validated air handling unit model using indirect evaporative cooling. Journal of Building Performance Simulation, 11(1), 48-64. https://doi.org/10.1080/19401493.2016.1273391
Jorissen, F., Reynders, G., Baetens, R., Picard, D., Saelens, D., & Helsen, L. (2018). Implementation and verification of the ideas building energy simulation library. Journal of Building Performance Simulation, 11(6), 669-688. https://doi.org/10.1080/19401493.2018.1428361
Kazulis, V., Vigants, H., Veidenbergs, I., & Blumberga, D. (2018). Biomass and natural gas co-firing - Evaluation of GHG emissions. Energy Procedia, 147, 558-565. https://doi.org/10.1016/j.egypro.2018.07.071
Koschenz, M., & Lehmann, B. (2000). Thermoaktive Bauteilsysteme tabs.
Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511-536. https://doi.org/10.1016/j.apenergy.2014.09.081
Olabi, A. G., Onumaegbu, C., Wilberforce, T., Ramadan, M., Abdelkareem, M. A., & Al - Alami, A. H. (2021). Critical review of energy storage systems. Energy, 214. https://doi.org/10.1016/j.energy.2020.118987
Olympios, A. V., McTigue, J. D., Farres-Antunez, P., Tafone, A., Romagnoli, A., Li, Y., Ding, Y., Steinmann, W. D., Wang, L., Chen, H., & Markides, C. N. (2020). Progress and prospects of thermo-mechanical energy storage-a critical review. In Progress in Energy (Vol. 3, Issue 2). Institute of Physics. https://doi.org/10.1088/2516-1083/abdbba
Vecchi, A., Knobloch, K., Liang, T., Kildahl, H., Sciacovelli, A., Engelbrecht, K., Li, Y., & Ding, Y. (2022). Carnot Battery development: A review on system performance, applications and commercial state-of-the-art. In Journal of Energy Storage (Vol. 55). Elsevier Ltd. https://doi.org/10.1016/j.est.2022.105782
Wei, Y., Chen, K., Kang, J., Chen, W., Wang, X., & Zhang, X. (2022). Policy and management of carbon peaking and carbon neutrality: a literature review. Engineering, 14, 52-63.
Wetter, M., & Van Treeck, C. (2017). New Generation Computational Tools for Building & Community Energy Systems Annex 60. www.iea-ebc.org