[en] We report measurements of the isotope shifts of the 3d64s2 a 5D4 − 3d64s4p z 5Fo 5 Fe I resonance line at 372 nm between all four stable isotopes 54Fe, 56Fe, 57Fe and 58Fe, as well as the complete hyperfine structure of that line for 57Fe, the only stable isotope having a non-zero nuclear spin. The field and specific mass shift coefficients of the transition have been derived from the data, as well as the experimental value for the hyperfine structure magnetic dipole coupling constant A of the excited state of the transition in 57Fe : A(3d64s4p z 5Fo 5 ) = 81.69(86) MHz. The measurements were carried out by means of high-resolution Doppler-free laser saturated absorption spectroscopy in a Fe-Ar hollow cathode discharge cell using both natural and enriched iron samples. The measured isotope shifts and hyperfine constants are reported with uncertainties at the percent level.
Disciplines :
Physics
Author, co-author :
Krins, Stéphanie ; Université de Liège - ULiège > Département de physique > Physique des atomes froids
Oppel, S.
Huet, Nicolas ; Université de Liège - ULiège > Département de physique > Physique des atomes froids
van Zanthier, J.
Bastin, Thierry ; Université de Liège - ULiège > Département de physique > Physique des atomes froids
Language :
English
Title :
Isotope shifts and hyperfine structure of the Fe I 372-nm resonance line
Publication date :
2009
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, College Park, United States - Maryland
R. L. Kurucz, Phys. Scr. T T47, 110 (1993). 10.1088/0031-8949/1993/T47/ 017
T. Rosenband, Science 319, 1808 (2008). 10.1126/science.1154622
W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998). 10.1103/RevModPhys.70.721
D. Leckrone, S. Johansson, G. M. Wahlgren, C. R. Proffitt, and T. Brage, Phys. Scr. T T65, 110 (1996). 10.1088/0031-8949/1996/T65/015
H. M. Crosswhite J. Res. Natl. Bur. Stand. 79A, 17 (1975).
D. M. Benton, E. C. A. Cochrane, and J. A. R. Griffith, J. Phys. B 30, 5359 (1997). 10.1088/0953-4075/30/23/005
J. Dembczyński, W. Ertmer, U. Johann, and P. Stinner, Z. Phys. A: Hadrons Nucl. 294, 313 (1980) 10.1007/BF01434138
W. Ertmer, U. Johann, J. Dembczyński, and Z. Michalski, Z. Phys. D: At., Mol. Clusters 2, 67 (1986). 10.1007/BF01437244
W. J. Childs and L. S. Goodman, Phys. Rev. 148, 74 (1966). 10.1103/PhysRev.148.74
The air wavelength reads accurately 371.99346 nm.
B. Smeets, R. C. M. Bosch, P. Van Der Straten, E. Te Sligte, R. E. Scholten, H. C. W. Beijerinck, and K. A. H. Van Leeuwen, Appl. Phys. B: Lasers Opt. 76, 815 (2003). 10.1007/s00340-003-1228-1
K. J. R. Rosman and P. D. P. Taylor, Pure Appl. Chem. 70, 217 (1998). 10.1351/pac199870010217
T. Hänsch, M. D. Levenson, and A. L. Schawlow, Phys. Rev. Lett. 26, 946 (1971). 10.1103/PhysRevLett.26.946
L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, Opt. Commun. 117, 541 (1995). 10.1016/0030-4018(95)00146-Y
We used a Toptica Photonics diode laser, model DL 100, delivering at the required wavelength and in Littrow configuration an output power of up to 6 mW with diode currents of about 60 mA.
K. Kerner, S. M. Rochester, V. V. Yashchuk, and D. Budker, e-print arXiv:physics/0306144.
P.-H. Lefèbvre, H.-P. Garnir, and E. Biémont, Phys. Scr. 66, 363 (2002). 10.1238/Physica.Regular.066a00363
I. I. Sobel'man, Atomic Spectra and Radiative Transitions (Nauka, Moscow, 1977 / Springer, Berlin, 1999).
J. Z. Klose, Astron. Astrophys. 165, 637 (1971).
H. K. Holt, Phys. Rev. Lett. 29, 1138 (1972). 10.1103/PhysRevLett.29.1138
W. H. King, Isotope Shifts in Atomic Spectra (Plenum Press, New York, London, 1984).
I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004). 10.1016/j.adt.2004.04.002
S. G. Porsev, M. G. Kozlov, and D. Reimers, Phys. Rev. A 79, 032519 (2009). 10.1103/PhysRevA.79.032519