Antarctica; ice shelves; Monte Carlo technique; regional modeling; remote sensing; Antarctic Peninsula; Ice shelves; In-situ observations; Modeling data; Monte Carlo techniques; Regional climate modeling (RCM); Regional modelling; Remote-sensing; Specific location; Geophysics; Earth and Planetary Sciences (all)
Abstract :
[en] Despite in-situ observations of perennial firn aquifers (PFAs) at specific locations of the Antarctic ice sheet, a comprehensive continent-wide mapping of PFA distribution is currently lacking. We present an estimate of their distribution across Antarctica in the form of a probability assessment using a Monte Carlo technique. Our approach involves a novel methodology that combines observations from Sentinel-1 and Advanced SCATterometer (ASCAT) with output from a regional climate model. To evaluate our method, we conduct an extensive comparison with Operation Ice Bridge observations from the Greenland Ice Sheet. Application to Antarctica reveals high PFA probabilities in the Antarctic Peninsula (AP), particularly along its northern, northwestern, and western coastlines, as well as on the Wilkins, Müller, and George VI ice shelves. Outside the AP, PFA probability is low, except for some locations with marginally higher probabilities, such as on the Abbot, Totten, and Shackleton ice shelves.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Di Biase, V. ; Department of Physics, Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Kuipers Munneke, P. ; Department of Physics, Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Veldhuijsen, S.B.M.; Department of Physics, Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
de Roda Husman, S. ; Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, Netherlands
van den Broeke, M.R. ; Department of Physics, Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Buth, L.G. ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Wouters, B.; Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, Netherlands
Language :
English
Title :
Probability of Firn Aquifer Presence in Antarctica by Combining Remote Sensing and Regional Climate Model Data
NESSC - Netherlands Earth System Science Centre F.R.S.-FNRS - Fonds de la Recherche Scientifique NWO - Netherlands Organisation for Scientific Research
Funding text :
V.D.B. acknowledges funding from the Netherlands Earth System Science Center. B.N. was funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS). S.B.M.V. is supported by the Netherlands Organization for Scientific Research (Grant. OCENW.GROOT.2019.091). We acknowledge the National Snow and Ice Data Center QGreenland package, Quantarctica, and the Norwegian Polar Institute for the basemaps utilized in the present work.
Ashcraft, I. S., & Long, D. G. (2006). Comparison of methods for melt detection over Greenland using active and passive microwave measurements. International Journal of Remote Sensing, 27(12), 2469–2488. https://doi.org/10.1080/01431160500534465
Banwell, A. F., Datta, R. T., Dell, R. L., Moussavi, M., Brucker, L., Picard, G., et al. (2021). The 32-year record-high surface melt in 2019/2020 on the northern George VI ice shelf, Antarctic Peninsula. The Cryosphere, 15(2), 909–925. https://doi.org/10.5194/tc-15-909-2021
Bevan, S. L., Luckman, A. J., Kuipers Munneke, P., Hubbard, B., Kulessa, B., & Ashmore, D. W. (2018). Decline in surface melt duration on Larsen C Ice Shelf revealed by the advanced scatterometer (ASCAT). Earth and Space Science, 5(10), 578–591. https://doi.org/10.1029/2018EA000421
Brangers, I., Lievens, H., Miège, C., Demuzere, M., Brucker, L., & De Lannoy, G. J. M. (2020). Sentinel-1 detects firn aquifers in the Greenland ice sheet. Geophysical Research Letters, 47(3), e2019GL085192. https://doi.org/10.1029/2019GL085192
Brils, M., Munneke, P. K., Jullien, N., Tedstone, A. J., Machguth, H., van de Berg, W., & van den Broeke, M. (2024). Climatic drivers of ice slabs and firn aquifers in Greenland. Geophysical Research Letters, 51(3), e2023GL106613. https://doi.org/10.1029/2023gl106613
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., & Savoie, M. H. (2012). EASE-grid 2.0: Incremental but significant improvements for Earth-Gridded data sets. ISPRS International Journal of Geo-Information, 1(1), 32–45. https://doi.org/10.3390/ijgi1010032
Christianson, K., Kohler, J., Alley, R. B., Nuth, C., & van Pelt, W. J. J. (2015). Dynamic perennial firn aquifer on an Arctic glacier. Geophysical Research Letters, 42(5), 1418–1426. https://doi.org/10.1002/2014GL062806
Chu, W., Schroeder, D. M., & Siegfried, M. R. (2018). Retrieval of englacial firn aquifer thickness from ice-penetrating radar sounding in southeastern Greenland. Geophysical Research Letters, 45(21), 11770–11778. https://doi.org/10.1029/2018GL079751
Dall, J., Madsen, S. N., Keller, K., & Forsberg, R. (2001). Topography and penetration of the Greenland ice sheet measured with airborne sar interferometry. Geophysical Research Letters, 28(9), 1703–1706. https://doi.org/10.1029/2000gl011787
da Rosa, K. K., Fernandez, G. B., da Rocha, T. B., Simões, F. L., Vieira, R., & Simões, J. C. (2014). Stratigraphy of Wanda Glacier, King George Island, Antarctica, using ground penetrating radar. Brazilian Journal of Genetics, 32(1), 21–30. https://doi.org/10.22564/rbgf.v32i1.394
de Roda Husman, S., Hu, Z., Wouters, B., Munneke, P. K., Veldhuijsen, S., & Lhermitte, S. (2022). Remote sensing of surface melt on Antarctica: Opportunities and challenges. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 2462–2480. https://doi.org/10.1109/JSTARS.2022.3216953
Di Biase, V. (2024). valeriadibiase/FirnAquifers_GRL: Probability of firn aquifer presence in Antarctica by combining remote sensing and regional climate model data - Repository. [Software]. Zenodo. https://doi.org/10.5281/zenodo.11479143
Dunn, W. L., & Shultis, J. K. (2011). Exploring Monte Carlo methods. Elsevier.
Forster, R. R., Box, J. E., van den Broeke, M. R., Miège, C., Burgess, E. W., van Angelen, J. H., et al. (2014). Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience, 7(2), 95–98. https://doi.org/10.1038/ngeo2043
Fountain, A. G. (1989). The storage of water in, and hydraulic characteristics of, the firn of South Cascade Glacier, Washington State, USA. Annals of Glaciology, 13, 69–75. https://doi.org/10.3189/s0260305500007667
Fountain, A. G., & Walder, J. S. (1998). Water flow through temperate glaciers. Reviews of Geophysics, 36(3), 299–328. https://doi.org/10.1029/97RG03579
Gilbert, E., & Kittel, C. (2021). Surface melt and runoff on Antarctic ice shelves at 1.5°C, 2°C, and 4°C of future warming. Geophysical Research Letters, 48(8), e2020GL091733. https://doi.org/10.1029/2020GL091733
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Horlings, A. N., Christianson, K., & Miège, C. (2022). Expansion of firn aquifers in southeast Greenland. Journal of Geophysical Research: Earth Surface, 127(10), e2022JF006753. https://doi.org/10.1029/2022JF006753
Hui, F., Ci, T., Cheng, X., Scambo, T. A., Liu, Y., Zhang, Y., et al. (2014). Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Annals of Glaciology, 55(66), 129–137. https://doi.org/10.3189/2014AoG66A069
Humphrey, N. F., Harper, J. T., & Pfeffer, W. T. (2012). Thermal tracking of meltwater retention in Greenland’s accumulation area. Journal of Geophysical Research, 117(F1). https://doi.org/10.1029/2011JF002083
Kuipers Munneke, P., Ligtenberg, S. R. M., van den Broeke, M. R., van Angelen, J. H., & Forster, R. R. (2014). Explaining the presence of perennial liquid water bodies in the firn of the Greenland ice sheet. Geophysical Research Letters, 41(2), 476–483. https://doi.org/10.1002/2013GL058389
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L., Brangers, I., et al. (2019). Snow depth variability in the Northern Hemisphere mountains observed from space. Nature Communications, 10(1), 4629. https://doi.org/10.1038/s41467-019-12566-y
Long, D. G., Hardin, P. J., & Whiting, P. T. (1993). Resolution enhancement of spaceborne scatterometer data. IEEE Transactions on Geoscience and Remote Sensing, 31(3), 700–715. https://doi.org/10.1109/36.225536
MacDonell, S., Fernandoy, F., Villar, P., & Hammann, A. (2021). Stratigraphic analysis of firn cores from an Antarctic ice shelf firn aquifer. Water, 13(5), 731. https://doi.org/10.3390/w13050731
Miège, C., Forster, R., Koenig, L., Miller, J., Miller, O., Montgomery, L., et al. (2020). Density, hydrology and geophysical measurements from the wilkins ice shelf firn aquifer. U.S. Antarctic Program (USAP) Data Center. https://doi.org/10.15784/601390
Miège, C., Forster, R. R., Brucker, L., Koenig, L. S., Solomon, D. K., Paden, J. D., et al. (2016). Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. Journal of Geophysical Research: Earth Surface, 121(12), 2381–2398. https://doi.org/10.1002/2016JF003869
Miller, J. Z., Long, D. G., Jezek, K. C., Johnson, J. T., Brodzik, M. J., Shuman, C. A., et al. (2020). Brief communication: Mapping Greenland’s perennial firn aquifers using enhanced-resolution L-band brightness temperature image time series. The Cryosphere, 14(9), 2809–2817. https://doi.org/10.5194/tc-14-2809-2020
Miller, O., Solomon, D. K., Miège, C., Koenig, L., Forster, R., Schmerr, N., et al. (2018). Direct evidence of meltwater flow within a firn aquifer in southeast Greenland. Geophysical Research Letters, 45(1), 207–215. https://doi.org/10.1002/2017gl075707
Ming, A., Rowell, I., Lewin, S., Rouse, R., Aubry, T., & Boland, E. (2021). Key messages from the ipcc ar6 climate science report (Tech. Rep.). Cambridge Centre for Climate Science.
Montgomery, L., Miège, C., Miller, J., Scambos, T. A., Wallin, B., Miller, O., et al. (2020). Hydrologic properties of a highly permeable firn aquifer in the Wilkins ice shelf, Antarctica. Geophysical Research Letters, 47(22), e2020GL089552. https://doi.org/10.1029/2020GL089552
Nienow, P., Sole, A., Slater, D. A., & Cowton, T. (2017). Recent advances in our understanding of the role of meltwater in the Greenland Ice Sheet system. Current Climate Change Reports, 3(4), 330–344. https://doi.org/10.1007/s40641-017-0083-9
Noël, B., van de Berg, W. J., Lhermitte, S., & van den Broeke, M. R. (2019). Rapid ablation zone expansion amplifies north Greenland mass loss. Science Advances, 5(9), eaaw0123. https://doi.org/10.1126/sciadv.aaw0123
Noël, B., van Wessem, J. M., Wouters, B., Trusel, L., Lhermitte, S., & van den Broeke, M. R. (2023). Higher Antarctic ice sheet accumulation and surface melt rates revealed at 2 km resolution. Nature Communications, 14(1), 7949. https://doi.org/10.1038/s41467-023-43584-60
Phillips, T., Rajaram, H., & Steffen, K. (2010). Cryo-hydrologic warming: A potential mechanism for rapid thermal response of ice sheets. Geophysical Research Letters, 37(20). https://doi.org/10.1029/2010GL044397
Poinar, K., Joughin, I., Lilien, D., Brucker, L., Kehrl, L., & Nowicki, S. (2017). Drainage of Southeast Greenland firn aquifer water through crevasses to the bed. Frontiers in Earth Science, 5, 5. https://doi.org/10.3389/feart.2017.00005
Rignot, E., Echelmeyer, K., & Krabill, W. (2001). Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophysical Research Letters, 28(18), 3501–3504. https://doi.org/10.1029/2000gl012484
Scambos, T. A., Fricker, H. A., Liu, C. C., Bohlander, J., Fastook, J., Sargent, A., et al. (2009). Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth and Planetary Science Letters, 280(1–4), 51–60. https://doi.org/10.1016/j.epsl.2008.12.027
Scambos, T. A., Hulbe, C., Fahnestock, M., & Bohlander, J. (2000). The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46(154), 516–530. https://doi.org/10.3189/172756500781833043
Schneider, T. (1999). Water movement in the firn of Storglaciaren, Sweden. Journal of Glaciology, 45(150), 286–294. https://doi.org/10.3189/S0022143000001787
Shang, X., Cheng, X., Zheng, L., Liang, Q., & Chi, Z. (2022). Decadal changes in Greenland ice sheet firn aquifers from radar scatterometer. Remote Sensing, 14(9), 2134. https://doi.org/10.3390/rs14092134
Shi, J., & Dozier, J. (1992). Radar backscattering response to wet snow. Proceedings IGARSS ’92 International Geoscience and Remote Sensing Symposium, 2, 927–929. https://doi.org/10.1109/IGARSS.1992.578299
Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., et al. (2019). The Antarctic Peninsula under a 1.5°C global warming scenario. Frontiers in Environmental Science, 7. https://doi.org/10.3389/fenvs.2019.00102
Simões, J. C., Ferron, F. A., Bernardo, R. T., Aristarain, A. J., StiéVENARD, M., Pourchet, M., & Delmas, R. J. (2004). Ice core study from the king george island, south shetlands, Antarctica. Pesquisa Antártica Brasileira, 4(9–23), 9–23. https://doi.org/10.31789/pab.v4n1.002
Smith, B. (1972). Airborne radio echo sounding of glaciers in the Antarctic Peninsula (Tech. Rep.). British Antarctic Survey.
Stiles, W. H., & Ulaby, F. T. (1980). The active and passive microwave response to snow parameters: 1. Wetness. Journal of Geophysical Research, 85(C2), 1037–1044. https://doi.org/10.1029/JC085iC02p01037
Trusel, L. D., Frey, K. E., & Das, S. B. (2012). Antarctic surface melting dynamics: Enhanced perspectives from radar scatterometer data. Journal of Geophysical Research, 117(F2). https://doi.org/10.1029/2011JF002126
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke, P., van Meijgaard, E., & van den Broeke, M. R. (2015). Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 8(12), 927–932. https://doi.org/10.1038/ngeo2563
Tsai, Y.-L. S., Dietz, A., Oppelt, N., & Kuenzer, C. (2019). Remote sensing of snow cover using spaceborne SAR: A review. Remote Sensing, 11(12), 1456. https://doi.org/10.3390/rs11121456
van den Broeke, M. (2005). Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32(12). https://doi.org/10.1029/2005GL023247
van Wessem, J. M., Steger, C. R., Wever, N., & van den Broeke, M. R. (2021). An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016. The Cryosphere, 15(2), 695–714. https://doi.org/10.5194/tc-15-695-2021
Zheng, L., & Zhou, C. (2020). Comparisons of snowmelt detected by microwave sensors on the Shackleton ice shelf, East Antarctica. International Journal of Remote Sensing, 41(4), 1338–1348. https://doi.org/10.1080/01431161.2019.1666316