Feeding behaviour; Machine learning; Precision livestock farming; Review; Sensor data; 'current; Animal agriculture; Animal husbandry; Automated monitoring systems; Automated systems; Feeding behavior; Machine-learning; Research areas; Sensors data; Control and Systems Engineering; Food Science; Agronomy and Crop Science; Soil Science
Abstract :
[en] Livestock feeding behaviour is an influential research area in animal husbandry and agriculture. In recent years, there has been a growing interest in automated systems for monitoring the behaviour of ruminants. Current automated monitoring systems mainly use motion, acoustic, pressure and image sensors to collect and analyse patterns related to ingestive behaviour, foraging activities and daily intake. The performance evaluation of existing methods is a complex task and direct comparisons between studies is difficult. Several factors prevent a direct comparison, starting from the diversity of data and performance metrics used in the experiments. This review on the analysis of the feeding behaviour of ruminants emphasise the relationship between sensing methodologies, signal processing, and computational intelligence methods. It assesses the main sensing methodologies and the main techniques to analyse the signals associated with feeding behaviour, evaluating their use in different settings and situations. It also highlights the potential of the valuable information provided by automated monitoring systems to expand knowledge in the field, positively impacting production systems and research. The paper closes by discussing future engineering challenges and opportunities in livestock feeding behaviour monitoring.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Chelotti, José ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS) ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Martinez-Rau, Luciano S. ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina ; Department of Computer and Electrical Engineering, Mid Sweden University, Sundsvall, Sweden
Ferrero, Mariano; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Vignolo, Leandro D. ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Galli, Julio R. ; Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina ; Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR, UNR-CONICET, Argentina
Planisich, Alejandra M. ; Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina
Rufiner, H. Leonardo ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina ; Laboratorio de Cibernética, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Argentina
Giovanini, Leonardo L.; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Language :
English
Title :
Livestock feeding behaviour: A review on automated systems for ruminant monitoring
UNL - Universidad Nacional del Litoral UNR - Universidad Nacional de Rosario ASaCTeI - Agencia Santafesina de Ciencia, Tecnología e Innovación CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas Knowledge Foundation
Funding text :
This work has been funded by Universidad Nacional del Litoral [CAID 50620190100080LI, 50620190100151LI]; Universidad Nacional de Rosario [projects 2013-AGR216, 2016-AGR266, 80020180300053UR]; Agencia Santafesina de Ciencia, Tecnolog\u00EDa e Innovaci\u00F3n (ASACTEI) [project IO-2018\u201300082]; Consejo Nacional de Investigaciones Cient\u00EDficas y T\u00E9cnicas (CONICET) [project 2017-PUE sinc(i)]; Knowledge Foundation [grant number NIIT 20180170]. Support program for National Universities 2023. FONDAGRO. Secretary of Agriculture, Livestock and Fisheries of the Argentine Nation. The authors would like to thank the dedication and perceptive help of Campo Experimental J. Villarino Dairy Farm staff for their assistance and support during the completion of this study.
Achour, B., Belkadi, M., Filali, I., Laghrouche, M., Lahdir, M., Image analysis for individual identification and feeding behaviour monitoring of dairy cows based on convolutional neural networks (cnn). Biosystems Engineering 198 (2020), 31–49, 10.1016/j.biosystemseng.2020.07.019.
Ali, A., Shamsuddin, S.M.H., Ralescu, A.L., Classification with class imbalance problem: A review. International Journal of Advances in Soft Computing and Its Applications 5 (2015), 176–204 https://api.semanticscholar.org/CorpusID:26644563.
Alkon, P.U., Cohen, A., Acoustical biotelemetry for wildlife research: A preliminary test and prospects. Wildlife Society Bulletin 14 (1986), 193–196 1973-2006 https://www.jstor.org/stable/3782073.
Alvarenga, F., Borges, I., Palkovič, L., Rodina, J., Oddy, V., Dobos, R., Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Applied Animal Behaviour Science 181 (2016), 91–99, 10.1016/j.applanim.2016.05.026.
Alvarez, J.R., Arroqui, M., Mangudo, P., Toloza, J., Jatip, D., Rodríguez, J.M., et al. Body condition estimation on cows from depth images using Convolutional Neural Networks. Computers and Electronics in Agriculture 155 (2018), 12–22, 10.1016/j.compag.2018.09.039.
Andriamandroso, A., Bindelle, J., Mercatoris, B., Lebeau, F., A review on the use of sensors to monitor cattle jaw movements and behavior when grazing, Vol. 20, 2016, Biotechnologie, Agronomie, 10.25518/1780-4507.13058 Société et Environnement.
Andriamandroso, A.L.H., Lebeau, F., Beckers, Y., Froidmont, E., Dufrasne, I., Heinesch, B., et al. Development of an open-source algorithm based on inertial measurement units (imu) of a smartphone to detect cattle grass intake and ruminating behaviors. Computers and Electronics in Agriculture 139 (2017), 126–137, 10.1016/j.compag.2017.05.020.
Antanaitis, R., Juozaitien˙e, V., Malašauskien˙e, D., Televičius, M., Urbutis, M., Rutkaukas, A., et al. Identification of changes in rumination behavior registered with an online sensor system in cows with subclinical mastitis. Veterinary Sciences, 9, 2022, 454, 10.3390/vetsci9090454.
Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., Pugliese, C., Review: Precision livestock farming technologies in pasture-based livestock systems. Animal, 16, 2022, 100429, 10.1016/j.animal.2021.100429.
Arablouei, R., Currie, L., Kusy, B., Ingham, A., Greenwood, P.L., BishopHurley, G., In-situ classification of cattle behavior using accelerometry data. Computers and Electronics in Agriculture, 183, 2021, 106045, 10.1016/j.compag.2021.106045.
Arcidiacono, C., Porto, S., Mancino, M., Cascone, G., Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Computers and Electronics in Agriculture 134 (2017), 124–134, 10.1016/j.compag.2017.01.021.
Augustine, D.J., Derner, J.D., Assessing herbivore foraging behavior with gps collars in a semiarid grassland. Sensors 13 (2013), 3711–3723, 10.3390/s130303711.
Ayadi, S., Ben Said, A., Jabbar, R., Aloulou, C., Chabbouh, A., Achballah, A.B., Dairy cow rumination detection: A deep learning approach. Distributed computing for emerging smart networks: Second international workshop, DiCES-N 2020, bizerte, Tunisia, december 18, 2020, proceedings 2, 2020, Springer, 123–139, 10.1007/978-3-030-65810-6_7.
Azarpajouh, S., Calderón Díaz, J., Bueso Quan, S., Taheri, H., Farm 4.0: Innovative smart dairy technologies and their applications as tools for welfare assessment in dairy cattle. CABI Reviews, 2021, 10.3390/app12147316.
Bailey, D.W., Gross, J.E., Laca, E.A., Rittenhouse, L.R., Coughenour, M.B., Swift, D.M., et al. Mechanisms that result in large herbivore grazing distribution patterns. Journal of Range Management 49 (1996), 386–400, 10.2307/4002919.
Bailey, D.W., Trotter, M.G., Tobin, C., Thomas, M.G., Opportunities to apply precision livestock management on rangelands. Frontiers in Sustainable Food Systems, 5, 2021, 611915, 10.3389/fsufs.2021.611915.
Balasso, P., Marchesini, G., Ughelini, N., Serva, L., Andrighetto, I., Machine learning to detect posture and behavior in dairy cows: Information from an accelerometer on the animal's left flank. Animals, 11, 2021, 10.3390/ani11102972.
Barker, Z., Vázquez Diosdado, J., Codling, E., Bell, N., Hodges, H., Croft, D., et al. Use of novel sensors combining local positioning and acceleration to measure feeding behavior differences associated with lameness in dairy cattle. Journal of Dairy Science 101 (2018), 6310–6321, 10.3168/jds.2016-12172.
Barwick, J., Lamb, D.W., Dobos, R., Welch, M., Trotter, M., Categorising sheep activity using a tri-axial accelerometer. Computers and Electronics in Agriculture 145 (2018), 289–297, 10.1016/j.compag.2018.01.007.
Benaissa, S., Tuyttens, F.A., Plets, D., Cattrysse, H., Martens, L., Vandaele, L., et al. Classification of ingestive-related cow behaviours using rumiwatch halter and neck-mounted accelerometers. Applied Animal Behaviour Science 211 (2019), 9–16, 10.1016/j.applanim.2018.12.003.
Benaissa, S., Tuyttens, F.A., Plets, D., De Pessemier, T., Trogh, J., Tanghe, E., et al. On the use of on-cow accelerometers for the classification of behaviours in dairy barns. Research in Veterinary Science 125 (2019), 425–433, 10.1016/j.rvsc.2017.10.005.
Bezen, R., Edan, Y., Halachmi, I., Computer vision system for measuring individual cow feed intake using rgb-d camera and deep learning algorithms. Computers and Electronics in Agriculture, 172, 2020, 105345, 10.1016/j.compag.2020.105345.
Bikker, J., Van Laar, H., Rump, P., Doorenbos, J., Van Meurs, K., Griffioen, G., et al. Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. Journal of Dairy Science 97 (2014), 2974–2979.
Bishop-Hurley, G., Henry, D., Smith, D., Dutta, R., Hills, J., Rawnsley, R., et al. An investigation of cow feeding behavior using motion sensors. 2014 IEEE international instrumentation and measurement technology conference (I2MTC) proceedings, 2014, 1285–1290, 10.1109/I2MTC.2014.6860952.
Borchers, M., Chang, Y., Tsai, I., Wadsworth, B., Bewley, J., A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. Journal of Dairy Science 99 (2016), 7458–7466, 10.3168/jds.2015-10843.
Brandstetter, V., Neubauer, V., Humer, E., Kröger, I., Zebeli, Q., Chewing and drinking activity during transition period and lactation in dairy cows fed partial mixed rations. Animals, 9, 2019, 10.3390/ani9121088.
Braun, U., Trösch, L., Nydegger, F., Hässig, M., Evaluation of eating and rumination behaviour in cows using a noseband pressure sensor. BMC Veterinary Research 9 (2013), 1–8, 10.1186/1746-6148-9-164.
Braun, U., Tschoner, T., Hässig, M., Evaluation of eating and rumination behaviour using a noseband pressure sensor in cows during the peripartum period. BMC Veterinary Research 10 (2014), 1–8, 10.1186/s12917-014-0195-6.
Brennan, J., Johnson, P., Olson, K., Classifying season long livestock grazing behavior with the use of a low-cost gps and accelerometer. Computers and Electronics in Agriculture, 181, 2021, 105957, 10.1016/j.compag.2020.105957.
Cabezas, J., Yubero, R., Visitación, B., Navarro-García, J., Algar, M.J., Cano, E.L., et al. Analysis of accelerometer and gps data for cattle behaviour identification and anomalous events detection. Entropy, 24, 2022, 336, 10.3390/e24030336.
Cai, Z., Vasconcelos, N., Cascade R-CNN: Delving into high quality object detection. IEEE/CVF conference on computer vision and pattern recognition, 2018, 6154–6162, 10.1109/CVPR.2018.00644 Salt Lake City, UT, USA.
Cao, D., Dang, J., Zhong, Y., Towards accurate scene text detection with bidirectional feature pyramid network. Symmetry, 13, 2021, 486, 10.3390/sym13030486.
Carslake, C., Vázquez-Diosdado, J.A., Kaler, J., Machine learning algorithms to classify and quantify multiple behaviours in dairy calves using a sensor: Moving beyond classification in precision livestock. Sensors, 21, 2020, 88, 10.3390/s21010088.
Chang, A.Z., Fogarty, E.S., Swain, D.L., García-Guerra, A., Trotter, M.G., Accelerometer derived rumination monitoring detects changes in behaviour around parturition. Applied Animal Behaviour Science, 247, 2022, 105566, 10.1016/j.applanim.2022.105566.
Chapa, J.M., Maschat, K., Iwersen, M., Baumgartner, J., Drillich, M., Accelerometer systems as tools for health and welfare assessment in cattle and pigs–a review. Behavioural Processes, 181, 2020, 104262, 10.1016/j.beproc.2020.104262.
Chapinal, N., Veira, D., Weary, D., von Keyserlingk, M., Technical note: Validation of a system for monitoring individual feeding and drinking behavior and intake in group-housed cattle. Journal of Dairy Science 90 (2007), 5732–5736, 10.3168/jds.2007-0331.
Chebli, Y., El Otmani, S., Cabaraux, J.F., Keli, A., Chentouf, M., Using gps tracking collars and sensors to monitor the grazing activity of browsing goats in forest rangeland. Engineering Proceedings, 27, 2022, 37, 10.3390/ecsa-9-13331.
Chebli, Y., El Otmani, S., Hornick, J.L., Bindelle, J., Cabaraux, J.F., Chentouf, M., Estimation of grazing activity of dairy goats using accelerometers and global positioning system. Sensors, 22, 2022, 5629, 10.3390/s22155629.
Chelotti, J.O., Vanrell, S.R., Galli, J.R., Giovanini, L.L., Rufiner, H.L., A pattern recognition approach for detecting and classifying jaw movements in grazing cattle. Computers and Electronics in Agriculture 145 (2018), 83–91, 10.1016/j.compag.2017.12.013.
Chelotti, J.O., Vanrell, S.R., Milone, D.H., Utsumi, S.A., Galli, J.R., Rufiner, H.L., et al. A real-time algorithm for acoustic monitoring of ingestive behavior of grazing cattle. Computers and Electronics in Agriculture 127 (2016), 64–75, 10.1016/j.compag.2016.05.015.
Chelotti, J.O., Vanrell, S.R., Rau, L.S.M., Galli, J.R., Planisich, A.M., Utsumi, S.A., et al. An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Computers and Electronics in Agriculture, 173, 2020, 105443, 10.1016/j.compag.2020.105443.
Chen, Z., Cheng, X., Wang, X., Han, M., Recognition method of dairy cow feeding behavior based on convolutional neural network. Journal of physics: Conference series, Vol. 1693, 2020, 10.1088/1742-6596/1693/1/012166 1.
Chen, Y., Dongjian, H., Yinxi, F., Huaibo, S., Intelligent monitoring method of cow ruminant behavior based on video analysis technology. International Journal of Agricultural and Biological Engineering 10 (2017), 194–202.
Chen, Y., He, D., Song, H., Automatic monitoring method of cow ruminant behavior based on spatio-temporal context learning. International Journal of Agricultural and Biological Engineering 11 (2018), 179–185, 10.25165/j.ijabe.20181104.3509.
Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., Miao, Y., Review of image classification algorithms based on convolutional neural networks. Remote Sensing, 13, 2021, 4712, 10.3390/rs13224712.
Chen, G., Li, C., Guo, Y., Shu, H., Cao, Z., Xu, B., Recognition of cattle's feeding behaviors using noseband pressure sensor with machine learning. Frontiers in Veterinary Science, 9, 2022, 10.3389/fvets.2022.822621.
Cheng, M., Yuan, H., Wang, Q., Cai, Z., Liu, Y., Zhang, Y., Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect. Computers and Electronics in Agriculture, 198, 2022, 107010, 10.1016/j.compag.2022.107010.
Chizzotti, M., Machado, F., Valente, E., Pereira, L., Campos, M., Tomich, T., et al. Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle. Journal of Dairy Science 98 (2015), 3438–3442, 10.3168/jds.2014-8925.
Clapham, W.M., Fedders, J.M., Beeman, K., Neel, J.P., Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Computers and Electronics in Agriculture 76 (2011), 96–104, 10.1016/j.compag.2011.01.009.
Cockburn, M., Review: Application and prospective discussion of machine learning for the management of dairy farms. Animals, 10, 2020, 10.3390/ani10091690.
Cong Phi Khanh, P., Tran, D.T., Van Duong, T., Hong Thinh, N., Tran, D.N., The new design of cows' behavior classifier based on acceleration data and proposed feature set. Mathematical Biosciences and Engineering 17 (2020), 2760–2780, 10.3934/mbe.2020151.
Council on Animal Affairs. Digitisation of the livestock farming sector. 2020 https://english.rda.nl/publications/publications/2020/02/13/digitisation-of-the-livestock-farming-sector. (Accessed 26 September 2023)
da Silva Santos, A., de Medeiros, V.W.C., Gonçalves, G.E., Monitoring and classification of cattle behavior: A survey. Smart Agricultural Technology, 3, 2023, 100091, 10.1016/j.atech.2022.100091.
Dado, R., Allen, M., Continuous computer acquisition of feed and water intakes, chewing, reticular motility, and ruminal ph of cattle. Journal of Dairy Science 76 (1993), 1589–1600, 10.3168/jds.S0022-0302(93)77492-5.
De Boever, J., Andries, J., De Brabander, D., Cottyn, B., Buysse, F., Chewing activity of ruminants as a measure of physical structure—a review of factors affecting it. Animal Feed Science and Technology 27 (1990), 281–291, 10.1016/0377-8401(90)90143-V.
de Oliveira, G., Carmona, M., Pistori, J., de Oliveira, P., Mateus, R., Menezes, G., et al. Rumicam: A new device for cattle rumination analysis. Anais do XVI Workshop de Visão Computacional SBC (2020), 93–97.
Decandia, M., Giovanetti, V., Molle, G., Acciaro, M., Mameli, M., Cabiddu, A., et al. The effect of different time epoch settings on the classification of sheep behaviour using tri-axial accelerometry. Computers and Electronics in Agriculture 154 (2018), 112–119, 10.1016/j.compag.2018.09.002.
Deng, X., Yan, X., Hou, Y., Wu, H., Feng, C., Chen, L., et al. Detection of behaviour and posture of sheep based on yolov3. INMATEH - Agricultural Engineering, 64, 2021, 10.35633/inmateh-64-45.
Deniz, N.N., Chelotti, J.O., Galli, J.R., Planisich, A.M., Larripa, M.J., Rufiner, H.L., et al. Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals. Computers and Electronics in Agriculture 138 (2017), 167–174, 10.1016/j.compag.2017.04.024.
DeVries, T.J., Von Keyserlingk, M.A.G., Weary, D.M., Beauchemin, K.A., Validation of a system for monitoring feeding behavior of dairy cows. Journal of Dairy Science 86:11 (2003), 3571–3574.
Ding, L., Lv, Y., Jiang, R., Zhao, W., Li, Q., Yang, B., et al. Predicting the feed intake of cattle based on jaw movement using a triaxial accelerometer. Agriculture, 12, 2022, 899.
Dong, C.Z., Catbas, F.N., A review of computer vision–based structural health monitoring at local and global levels. Structural Health Monitoring 20 (2021), 692–743, 10.1177/1475921720935585.
Du, A., Guo, H., Lu, J., Su, Y., Ma, Q., Ruchay, A., et al. Automatic livestock body measurement based on keypoint detection with multiple depth cameras. Computers and Electronics in Agriculture, 198, 2022, 107059, 10.1016/j.compag.2022.107059.
Duan, G., Zhang, S., Lu, M., Okinda, C., Shen, M., Norton, T., Short-term feeding behaviour sound classification method for sheep using lstm networks. International Journal of Agricultural and Biological Engineering 14 (2021), 43–54, 10.25165/j.ijabe.20211402.6081.
Dutta, D., Natta, D., Mandal, S., Ghosh, N., Moonitor: An iot based multi-sensory intelligent device for cattle activity monitoring. Sensors and Actuators A: Physical, 333, 2022, 113271, 10.1016/j.sna.2021.113271.
Dutta, R., Smith, D., Rawnsley, R., Bishop-Hurley, G., Hills, J., Cattle behaviour classification using 3-axis collar sensor and multi-classifier pattern recognition. SENSORS, 2014 ieee, 2014, IEEE, 1272–1275, 10.1109/ICSENS.2014.6985242.
Dutta, R., Smith, D., Rawnsley, R., Bishop-Hurley, G., Hills, J., Timms, G., et al. Dynamic cattle behavioural classification using supervised ensemble classifiers. Computers and Electronics in Agriculture 111 (2015), 18–28, 10.1016/j.compag.2014.12.002.
Eckelkamp, E., Invited review: Current state of wearable precision dairy technologies in disease detection. Applied Animal Science 35 (2019), 209–220, 10.15232/aas.2018-01801.
Eikelboom, J.A., de Knegt, H.J., Klaver, M., van Langevelde, F., van der Wal, T., Prins, H.H., Inferring an animal's environment through biologging: Quantifying the environmental influence on animal movement. Movement Ecology 8 (2020), 1–18, 10.1186/s40462-020-00228-4.
Elischer, M., Arceo, M., Karcher, E., Siegford, J., Validating the accuracy of activity and rumination monitor data from dairy cows housed in a pasture-based automatic milking system. Journal of Dairy Science 96 (2013), 6412–6422, 10.3168/jds.2013-6790.
Fadul, M., D'Andrea, L., Alsaaod, M., Borriello, G., Di Lori, A., Stucki, D., et al. Assessment of feeding, ruminating and locomotion behaviors in dairy cows around calving – a retrospective clinical study to early detect spontaneous disease appearance. PLoS One 17 (2022), 1–19, 10.1371/journal.pone.0264834.
Fan, B., Bryant, R., Greer, A., Behavioral fingerprinting:. Acceleration Sensors for Identifying Changes in Livestock Health. J 5 (2022), 435–454, 10.3390/j5040030.
Farooq, M.S., Sohail, O.O., Abid, A., Rasheed, S., A survey on the role of iot in agriculture for the implementation of smart livestock environment. IEEE Access 10 (2022), 9483–9505, 10.1109/ACCESS.2022.3142848.
Fogarty, E.S., Swain, D.L., Cronin, G.M., Moraes, L.E., Trotter, M., Behaviour classification of extensively grazed sheep using machine learning. Computers and Electronics in Agriculture, 169, 2020, 105175, 10.1016/j.compag.2019.105175.
Foldager, L., Trénel, P., Munksgaard, L., Thomsen, P.T., Technical note: Random forests prediction of daily eating time of dairy cows from 3-dimensional accelerometer and radiofrequency identification. Journal of Dairy Science 103 (2020), 6271–6275, 10.3168/jds.2019-17613.
Fonseca, L., Corujo, D., Xavier, W., Gonçalves, P., On the development of a wearable animal monitor. Animals, 13, 2022, 120, 10.3390/ani13010120.
Fu, R., Fang, J., Zhao, Y., Daily behavior recognition of cattle based on dynamic region image features in open environment. 2022 3rd international conference on information science, parallel and distributed systems (ISPDS), 2022, 290–294, 10.1109/ISPDS56360.2022.9874150.
Fuentes, S., Gonzalez Viejo, C., Tongson, E., Dunshea, F.R., Dac, H.H., Lipovetzky, N., Animal biometric assessment using non-invasive computer vision and machine learning are good predictors of dairy cows age and welfare: The future of automated veterinary support systems. Journal of Agriculture and Food Research, 10, 2022, 100388, 10.1016/j.jafr.2022.100388.
Fuentes, A., Yoon, S., Park, J., Park, D.S., Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information. Computers and Electronics in Agriculture, 177, 2020, 105627, 10.1016/j.compag.2020.105627.
Galli, J.R., Cangiano, C.A., Demment, M., Laca, E.A., Acoustic monitoring of chewing and intake of fresh and dry forages in steers. Animal Feed Science and Technology 128 (2006), 14–30, 10.1016/j.anifeedsci.2005.09.013.
Galli, J.R., Cangiano, C.A., Milone, D.H., Laca, E.A., Acoustic monitoring of short-term ingestive behavior and intake in grazing sheep. Livestock Science 140 (2011), 32–41, 10.1016/j.livsci.2011.02.007.
Galli, J.R., Cangiano, C.A., Pece, M., Larripa, M., Milone, D.H., Utsumi, S., et al. Monitoring and assessment of ingestive chewing sounds for prediction of herbage intake rate in grazing cattle. Animal 12 (2018), 973–982, 10.1017/S1751731117002415.
Galli, J.R., Milone, D.H., Cangiano, C.A., Martínez, C.E., Laca, E.A., Chelotti, J.O., et al. Discriminative power of acoustic features for jaw movement classification in cattle and sheep. Bioacoustics 29 (2020), 602–616, 10.1080/09524622.2019.1633959.
Gao, J., Li, P., Chen, Z., Zhang, J., A survey on deep learning for multimodal data fusion. Neural Computation 32:5 (2020), 829–864, 10.1162/neco_a_01273.
Garcia, R., Aguilar, J., Toro, M., Pinto, A., Rodriguez, P., A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 179, 2020, 105826, 10.1016/j.compag.2020.105826.
Giovanetti, V., Cossu, R., Molle, G., Acciaro, M., Mameli, M., Cabiddu, A., et al. Prediction of bite number and herbage intake by an accelerometer-based system in dairy sheep exposed to different forages during short-term grazing tests. Computers and Electronics in Agriculture, 175, 2020, 105582, 10.1016/j.compag.2020.105582.
Giovanetti, V., Decandia, M., Molle, G., Acciaro, M., Mameli, M., Cabiddu, A., et al. Automatic classification system for grazing, ruminating and resting behaviour of dairy sheep using a tri-axial accelerometer. Livestock Science 196 (2017), 42–48, 10.1016/j.livsci.2016.12.011.
Goldhawk, C., Schwartzkopf-Genswein, K., Beauchemin, K., Validation of rumination collars for beef cattle. Journal of Animal Science 91 (2013), 2858–2862, 10.2527/jas.2012-5908.
González, L., Bishop-Hurley, G., Handcock, R., Crossman, C., Behavioral classification of data from collars containing motion sensors in grazing cattle. Computers and Electronics in Agriculture 110 (2015), 91–102, 10.1016/j.compag.2014.10.018.
Goodfellow, I., Bengio, Y., Courville, A., Deep learning. 2016, MIT press.
Greenwood, P., Paull, D., McNally, J., Kalinowski, T., Ebert, D., Little, B., et al. Use of sensor-determined behaviours to develop algorithms for pasture intake by individual grazing cattle. Crop & Pasture Science 68 (2017), 1091–1099, 10.1071/CP16383.
Grinter, L., Campler, M., Costa, J., Validation of a behaviormonitoring collar's precision and accuracy to measure rumination, feeding, and resting time of lactating dairy cows. Journal of Dairy Science 102 (2019), 3487–3494, 10.3168/jds.2018-15563.
Guo, Y., Qiao, Y., Sukkarieh, S., Chai, L., He, D., Bigru-attention based cow behavior classification using video data for precision livestock farming. Transactions of the ASABE 64 (2021), 1823–1833, 10.13031/trans.14658.
Guo, L., Welch, M., Dobos, R., Kwan, P., Wang, W., Comparison of grazing behaviour of sheep on pasture with different sward surface heights using an inertial measurement unit sensor. Computers and Electronics in Agriculture 150 (2018), 394–401, 10.1016/j.compag.2018.05.004.
Hai, D.N., A wearable self-powered sensor tag for deep learning-based cow monitoring system., 2022, Pukyong National University Master's thesis.
Hajnal, É., Kovács, L., Vakulya, G., Dairy cattle rumen bolus developments with special regard to the applicable artificial intelligence (ai) methods. Sensors, 22, 2022, 6812, 10.3390/s22186812.
Hamilton, A.W., Davison, C., Tachtatzis, C., Andonovic, I., Michie, C., Ferguson, H.J., et al. Identification of the rumination in cattle using support vector machines with motion-sensitive bolus sensors. Sensors, 19, 2019, 1165, 10.3390/s19051165.
Hansen, M.F., Smith, M.L., Smith, L.N., Jabbar, K.A., Forbes, D., Automated monitoring of dairy cow body condition, mobility and weight using a single 3d video capture device. Computers in Industry 98 (2018), 14–22, 10.1016/j.compind.2018.02.011.
Hasib, K.M., Iqbal, M.S., Shah, F.M., Al Mahmud, J., Popel, M.H., Showrov, M.I.H., et al. A survey of methods for managing the classification and solution of data imbalance problem. Journal of Computer Science 16 (2020), 1546–1557, 10.3844/jcssp.2020.1546.1557.
Himeur, Y., Rimal, B., Tiwary, A., Amira, A., Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Information Fusion 86–87 (2022), 44–75, 10.1016/j.inffus.2022.06.003.
Hossain, M.E., Kabir, M.A., Zheng, L., Swain, D.L., McGrath, S., Medway, J., A systematic review of machine learning techniques for cattle identification: Datasets, methods and future directions. Artificial Intelligence in Agriculture 6 (2022), 138–155, 10.1016/j.aiia.2022.09.002.
Hoxhallari, K., Purcell, W., Neubauer, T., The potential of explainable artificial intelligence in precision livestock farming. Precision livestock farming 2022: Papers presented at the 10th European conference on precision livestock farming, 2022, University of Veterinary Medicine Vienna, 710–717, 10.34726/4701.
Hu, S., Ingham, A., Schmoelzl, S., McNally, J., Little, B., Smith, D., et al. Inclusion of features derived from a mixture of time window sizes improved classification accuracy of machine learning algorithms for sheep grazing behaviours. Computers and Electronics in Agriculture, 179, 2020, 105857, 10.1016/j.compag.2020.105857.
Jeong, H.K., Park, C., Henao, R., Kheterpal, M., Deep learning in dermatology: A systematic review of current approaches, outcomes, and limitations. JID Innovations, 3, 2023, 100150, 10.1016/j.xjidi.2022.100150.
Jiang, M., Rao, Y., Zhang, J., Shen, Y., Automatic behavior recognition of group-housed goats using deep learning. Computers and Electronics in Agriculture, 177, 2020, 105706, 10.1016/j.compag.2020.105706.
Jingqiu, G., Zhihai, W., Ronghua, G., Huarui, W., Cow behavior recognition based on image analysis and activities. International Journal of Agricultural and Biological Engineering 10 (2017), 165–174, 10.3965/j.ijabe.20171003.3080.
Jung, D.H., Kim, N.Y., Moon, S.H., Jhin, C., Kim, H.J., Yang, J.S., et al. Deep learning-based cattle vocal classification model and real-time livestock monitoring system with noise filtering. Animals, 11, 2021, 357, 10.3390/ani11020357.
Kamminga, J.W., Le, D.V., Meijers, J.P., Bisby, H., Meratnia, N., Havinga, P.J., Robust sensor-orientation-independent feature selection for animal activity recognition on collar tags. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2, 2018, 10.1145/3191747.
Karthick, G., Sridhar, M., Pankajavalli, P., Internet of things in animal healthcare (iotah): Review of recent advancements in architecture, sensing technologies and real-time monitoring. SN Computer Science 1 (2020), 1–16, 10.1007/s42979-020-00310-z.
Kasfi, K.T., Hellicar, A., Rahman, A., Convolutional neural network for time series cattle behaviour classification. Proceedings of the workshop on time series analytics and applications, 2016, Association for Computing Machinery, New York, NY, USA, 8–12, 10.1145/3014340.3014342.
Kilgour, R.J., In pursuit of “normal”: A review of the behaviour of cattle at pasture. Applied Animal Behaviour Science 138:1–2 (2012), 1–11, 10.1016/j.applanim.2011.12.002.
Kim, M.J., Mo, C., Kim, H.T., Cho, B.K., Hong, S.J., Lee, D.H., et al. Research and technology trend analysis by big data-based smart livestock technology: A review. Journal of Biosystems Engineering, 2021, 1–13, 10.1007/s42853-021-00115-9.
Kleanthous, N., Hussain, A., Khan, W., Sneddon, J., Liatsis, P., Deep transfer learning in sheep activity recognition using accelerometer data. Expert Systems with Applications, 207, 2022, 117925, 10.1016/j.eswa.2022.117925.
Kleanthous, N., Hussain, A., Mason, A., Sneddon, J., Shaw, A., Fergus, P., et al. Machine learning techniques for classification of livestock behavior. Neural information processing: 25th international conference, ICONIP 2018, siem reap, Cambodia, december 13-16, 2018, proceedings, Part IV 25, 2018, Springer, 304–315, 10.1007/978-3-030-04212-7_26.
Koohzadi, M., Charkari, N.M., Survey on deep learning methods in human action recognition. IET Computer Vision 11 (2017), 623–632, 10.1049/iet-cvi.2016.0355.
Koonce, B., EfficientNet. Convolutional neural networks with swift for tensorflow, 2021, Apress, Berkeley, CA, 10.1007/978-1-4842-6168-2_10.
Kouw, W.M., Loog, M., A review of domain adaptation without target labels. IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (2021), 766–785, 10.1109/TPAMI.2019.2945942.
Kröger, I., Humer, E., Neubauer, V., Kraft, N., Ertl, P., Zebeli, Q., Validation of a noseband sensor system for monitoring ruminating activity in cows under different feeding regimens. Livestock Science 193 (2016), 118–122, 10.1016/j.livsci.2016.10.007.
Kuan, C.Y., Tsai, Y.C., Hsu, J.T., Ding, S.T., Te Lin, T., An imaging system based on deep learning for monitoring the feeding behavior of dairy cows. 2019 ASABE annual international meeting, 2019, American Society of Agricultural and Biological Engineers, 1, 10.13031/aim.201901469.
Kunapuli, G., Ensemble methods for machine learning. 2023, Manning publications.
Laca, W.D.V., Acoustic measurement of intake and grazing behaviour of cattle. Grass and Forage Science 55 (2000), 97–104, 10.1046/j.1365-2494.2000.00203.x.
Laca, E., Ungar, E., Seligman, N., Ramey, M., Demment, M., An integrated methodology for studying short-term grazing behaviour of cattle. Grass and Forage Science 47 (1992), 81–90, 10.1111/j.1365-2494.1992.tb02250.x.
Lee, M., Seo, S., Wearable wireless biosensor technology for monitoring cattle: A review. Animals, 11, 2021, 2779, 10.3390/ani11102779.
Li, Z., Cheng, L., Cullen, B., Validation and use of the rumiwatch noseband sensor for monitoring grazing behaviours of lactating dairy cows. Dairy 2 (2021), 104–111, 10.3390/dairy2010010.
Li, T., Jiang, B., Wu, D., Yin, X., Song, H., Tracking multiple target cows' ruminant mouth areas using optical flow and inter-frame difference methods. IEEE Access 7 (2019), 185520–185531, 10.1109/ACCESS.2019.2961515.
Li, Y., Shu, H., Bindelle, J., Xu, B., Zhang, W., Jin, Z., et al. Classification and analysis of multiple cattle unitary behaviors and movements based on machine learning methods. Animals, 12, 2022, 1060, 10.3390/ani12091060.
Liu, D., He, D., Norton, T., Automatic estimation of dairy cattle body condition score from depth image using ensemble model. Biosystems Engineering 194 (2020), 16–27, 10.1016/j.biosystemseng.2020.03.011.
Lokhorst, C., De Mol, R., Kamphuis, C., Invited review: Big data in precision dairy farming. Animal 13 (2019), 1519–1528, 10.1017/S1751731118003439.
Lorenzón, M.d.l.M., Predicción del consumo diario de vacas en pastoreo mediante análisis acústico. Ph.D. thesis., 2022, National University of Rosario http://hdl.handle.net/2133/24093.
Luo, X., Hu, Y., Gao, Z., Guo, H., Su, Y., Automated measurement of livestock body based on pose normalisation using statistical shape model. Biosystems Engineering 227 (2023), 36–51, 10.1016/j.biosystemseng.2023.01.016.
Mahmud, M.S., Zahid, A., Das, A.K., Muzammil, M., Khan, M.U., A systematic literature review on deep learning applications for precision cattle farming. Computers and Electronics in Agriculture, 187, 2021, 106313, 10.1016/j.compag.2021.106313.
Mansbridge, N., Mitsch, J., Bollard, N., Ellis, K., Miguel-Pacheco, G.G., Dottorini, T., et al. Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep. Sensors, 18, 2018, 3532, 10.3390/s18103532.
Martinez-Rau, L.S., Chelotti, J.O., Ferrero, M., Galli, J., Utsumi, S., Planisich, A., et al. Daylong acoustic recordings of grazing and rumination activities in dairy cows. Scientific Data, 10, 2023, 782, 10.1038/s41597-023-02673-3.
Martinez-Rau, L.S., Chelotti, J.O., Vanrell, S.R., Galli, J.R., Utsumi, S.A., Planisich, A.M., et al. A robust computational approach for jaw movement detection and classification in grazing cattle using acoustic signals. Computers and Electronics in Agriculture, 192, 2022, 106569, 10.1016/j.compag.2021.106569.
Martiskainen, P., Järvinen, M., Skön, J.P., Tiirikainen, J., Kolehmainen, M., Mononen, J., Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Applied Animal Behaviour Science 119 (2009), 32–38, 10.1016/j.applanim.2009.03.005.
Mattachini, G., Riva, E., Bisaglia, C., Pompe, J.C.A.M., Provolo, G., Methodology for quantifying the behavioral activity of dairy cows in freestall barns. Journal of Animal Science 91:10 (2013), 4899–4907.
Meen, T.H., Prior, S., Lam, A.D.K.T., Applied system innovation. Proceedings of the 2015 international conference on applied system innovation (ICASI 2015), 2016, CRC Press, 10.1201/9781315375144.
Michie, C., Andonovic, I., Davison, C., Hamilton, A., Tachtatzis, C., Jonsson, N., et al. The internet of things enhancing animal welfare and farm operational efficiency. Journal of Dairy Research 87 (2020), 20–27, 10.1017/S0022029920000680.
Milone, D.H., Galli, J.R., Cangiano, C.A., Rufiner, H.L., Laca, E.A., Automatic recognition of ingestive sounds of cattle based on hidden markov models. Computers and Electronics in Agriculture 87 (2012), 51–55, 10.1016/j.compag.2012.05.004.
Milone, D., Rufiner, H., Galli, J., Laca, E., Cangiano, C., Computational method for segmentation and classification of ingestive sounds in sheep. Computers and Electronics in Agriculture 65 (2009), 228–237, 10.1016/j.compag.2008.10.004.
Morrone, S., Dimauro, C., Gambella, F., Cappai, M.G., Industry 4.0 and precision livestock farming (PLF): An up to date overview across animal productions. Sensors, 22, 2022, 4319, 10.3390/s22124319.
Murshed, M.G.S., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G., Hussain, F., Machine learning at the network edge: A survey. ACM Computing Surveys, 54, 2021, 10.1145/3469029.
Navon, S., Mizrach, A., Hetzroni, A., Ungar, E.D., Automatic recognition of jaw movements in free-ranging cattle, goats and sheep, using acoustic monitoring. Biosystems Engineering 114 (2013), 474–483, 10.1016/j.biosystemseng.2012.08.005.specialIssue:SensingTechnologiesforSustainableAgriculture.
Nguyen, C., Wang, D., Von Richter, K., Valencia, P., Alvarenga, F.A., Bishop–Hurley, G., Video-based cattle identification and action recognition. 2021 digital image computing: Techniques and applications (DICTA), 2021, 1–5, 10.1109/DICTA52665.2021.9647417.
Nielsen, P.P., Automatic registration of grazing behaviour in dairy cows using 3d activity loggers. Applied Animal Behaviour Science 148 (2013), 179–184, 10.1016/j.applanim.2013.09.001.
Niloofar, P., Francis, D.P., Lazarova-Molnar, S., Vulpe, A., Vochin, M.C., Suciu, G., et al. Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Computers and Electronics in Agriculture, 190, 2021, 106406, 10.1016/j.compag.2021.106406.
Niu, S., Liu, Y., Wang, J., Song, H., A decade survey of transfer learning (2010–2020). IEEE Transactions on Artificial Intelligence 1 (2020), 151–166, 10.1109/TAI.2021.3054609.
Norbu, N., Alvarez-Hess, P., Leury, B., Wright, M., Douglas, M., Moate, P., et al. Assessment of rumiwatch noseband sensors for the quantification of ingestive behaviors of dairy cows at grazing or fed in stalls. Animal Feed Science and Technology, 280, 2021, 115076, 10.1016/j.anifeedsci.2021.115076.
Nweke, H.F., Teh, Y.W., Mujtaba, G., Al-garadi, M.A., Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions. Information Fusion 46 (2019), 147–170, 10.1016/j.inffus.2018.06.002.
Nydegger, F., Gyga, L., Egli, W., et al. Automatic measurement of rumination and feeding activity using a pressure sensor. International conference on agricultural engineering-AgEng 2010, 2010, 27 Cemagref https://api.semanticscholar.org/CorpusID:61731914.
O'Leary, N.W., Byrne, D.T., Garcia, P., Werner, J., Cabedoche, M., Shalloo, L., Grazing cow behavior's association with mild and moderate lameness. Animals, 10, 2020, 661, 10.3390/ani10040661.
Oliveira, D.A.B., Pereira, L.G.R., Bresolin, T., Ferreira, R.E.P., Dorea, J.R.R., A review of deep learning algorithms for computer vision systems in livestock. Livestock Science, 253, 2021, 104700, 10.1016/j.livsci.2021.104700.
Oliveira, J.B.R., Ribas, M.N., Machado, F.S., Lima, J.A.M., Cavalcanti, L.F.L., Chizzotti, M.L., et al. Validation of a system for monitoring individual feeding and drinking behaviour and intake in young cattle. Animal 12:3 (2018), 634–639.
Pavlovic, D., Czerkawski, M., Davison, C., Marko, O., Michie, C., Atkinson, R., et al. Behavioural classification of cattle using neck-mounted accelerometer equipped collars. Sensors, 22, 2022, 2323, 10.3390/s21124050.
Pavlovic, D., Davison, C., Hamilton, A., Marko, O., Atkinson, R., Michie, C., et al. Classification of cattle behaviours using neck-mounted accelerometer-equipped collars and convolutional neural networks. Sensors, 21, 2021, 4050, 10.3390/s22062323.
Peng, Y., Kondo, N., Fujiura, T., Suzuki, T., Wulandari, Yoshioka, H., et al. Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units. Computers and Electronics in Agriculture 157 (2019), 247–253, 10.1016/j.compag.2018.12.023.
Pereira, G., Heins, B., Endres, M., Validation of an ear-tag accelerometer sensor to determine rumination, eating, and activity behaviors of grazing dairy cattle. Journal of Dairy Science 101 (2018), 2492–2495, 10.3168/jds.2016-12534.
Pereira, G., Sharpe, K., Heins, B., Evaluation of the rumiwatch system as a benchmark to monitor feeding and locomotion behaviors of grazing dairy cows. Journal of Dairy Science 104 (2021), 3736–3750, 10.3168/jds.2020-18952.
Petranović, K., Classification of different cattle behaviors using advanced machine learning algorithms., 2022, University of Novi Sad Master's thesis.
Porto, S.M., Arcidiacono, C., Anguzza, U., Cascone, G., The automatic detection of dairy cow feeding and standing behaviours in free-stall barns by a computer vision-based system. Biosystems Engineering 133 (2015), 46–55, 10.1016/j.biosystemseng.2015.02.012.
Porto, S.M.C., Castagnolo, G., Mancino, M., Mancuso, D., Cascone, G., On the determination of acceleration thresholds for the automatic detection of cow behavioural activities in extensive livestock systems. International conference on safety, health and welfare in agriculture and agro-food systems, 2022, Springer, 106–114, 10.1007/978-3-030-98092-4_12.
Qiao, Y., Guo, Y., Yu, K., He, D., C3d-convLSTM based cow behaviour classification using video data for precision livestock farming. Computers and Electronics in Agriculture, 193, 2022, 106650, 10.1016/j.compag.2021.106650.
Rahman, A., Smith, D., Hills, J., Bishop-Hurley, G., Henry, D., Rawnsley, R., A comparison of autoencoder and statistical features for cattle behaviour classification. 2016 international joint conference on neural networks (IJCNN), 2016, 2954–2960, 10.1109/IJCNN.2016.7727573.
Rahman, A., Smith, D., Little, B., Ingham, A., Greenwood, P., BishopHurley, G., Cattle behaviour classification from collar, halter, and ear tag sensors. Information Processing in Agriculture 5 (2018), 124–133, 10.1016/j.inpa.2017.10.001.
Ramirez-Agudelo, J.F., Bedoya-Mazo, S., Posada-Ochoa, S.L., Rosero-Noguera, J.R., Automatic cattle activity recognition on grazing systems. Biotecnología en el Sector Agropecuario y Agroindustrial 20 (2022), 117–128.
Rau, L.M., Chelotti, J.O., Vanrell, S.R., Giovanini, L.L., Developments on real-time monitoring of grazing cattle feeding behavior using sound. 2020 IEEE international conference on industrial technology (ICIT), 2020, Argentina, Buenos Aires, 771–776, 10.1109/ICIT45562.2020.9067192.
Rautiainen, H., Alam, M., Blackwell, P.G., Skarin, A., Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data. Movement Ecology, 10, 2022, 40, 10.1186/s40462-022-00339-0.
Rayas-Amor, A.A., Morales-Almaráz, E., Licona-Velázquez, G., VieyraAlberto, R., García-Martínez, A., Martínez-García, C.G., et al. Triaxial accelerometers for recording grazing and ruminating time in dairy cows: An alternative to visual observations. Journal of Veterinary Behavior 20 (2017), 102–108, 10.1016/j.jveb.2017.04.003.
Raynor, E.J., Derner, J.D., Soder, K.J., Augustine, D.J., Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures. Applied Animal Behaviour Science, 242, 2021, 105402, 10.1016/j.applanim.2021.105402.
Riaboff, L., Aubin, S., Bédère, N., Couvreur, S., Madouasse, A., Goumand, E., et al. Evaluation of pre-processing methods for the prediction of cattle behaviour from accelerometer data. Computers and Electronics in Agriculture, 165, 2019, 104961, 10.1016/j.compag.2019.104961.
Riaboff, L., Couvreur, S., Madouasse, A., Roig-Pons, M., Aubin, S., Massabie, P., et al. Use of predicted behavior from accelerometer data combined with gps data to explore the relationship between dairy cow behavior and pasture characteristics. Sensors, 20, 2020, 4741, 10.3390/s20174741.
Riaboff, L., Shalloo, L., Smeaton, A.F., Couvreur, S., Madouasse, A., Keane, M.T., Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Computers and Electronics in Agriculture, 192, 2022, 106610, 10.1016/j.compag.2021.106610.
Rodrigues, J.P.P., Pereira, L.G.R., Neto, H.d.C.D., Lombardi, M.C., de Assis Lage, C.F., Coelho, S.G., et al. Evaluation of an automatic system for monitoring rumination time in weaning calves. Livestock Science 219 (2019), 86–90, 10.1016/j.livsci.2018.11.017.
Roland, L., Schweinzer, V., Kanz, P., Sattlecker, G., Kickinger, F., Li-dauer, L., et al. Technical note: Evaluation of a triaxial accelerometer for monitoring selected behaviors in dairy calves. Journal of Dairy Science 101 (2018), 10421–10427, 10.3168/jds.2018-14720.
Rutter, S.M., Graze: A program to analyze recordings of the jaw movements of ruminants. Behavior Research Methods, Instruments, & Computers 32 (2000), 86–92, 10.3758/BF03200791.
Rutter, S., Champion, R., Penning, P., An automatic system to record foraging behaviour in free-ranging ruminants. Applied Animal Behaviour Science 54 (1997), 185–195, 10.1016/S0168-1591(96)01191-4.
Ruuska, S., Kajava, S., Mughal, M., Zehner, N., Mononen, J., Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Applied Animal Behaviour Science 174 (2016), 19–23, 10.1016/j.applanim.2015.11.005.
Saitoh, T., Kato, Y., Evaluation of wearable cameras for monitoring and analyzing calf behavior: A preliminary study. Animals, 11, 2021, 2622, 10.3390/ani11092622.
Sakai, K., Oishi, K., Miwa, M., Kumagai, H., Hirooka, H., Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Computers and Electronics in Agriculture, 166, 2019, 105027, 10.1016/j.compag.2019.105027.
Schirmann, K., von Keyserlingk, M.A., Weary, D., Veira, D., Heuwieser, W., Validation of a system for monitoring rumination in dairy cows. Journal of Dairy Science 92 (2009), 6052–6055, 10.3168/jds.2009-2361.
Schmelinga, L., Elmamoozc, G., Nicklasc, D., Thurnera, S., Rauchb, E., Evaluation of a sensor-based system for monitoring rumination in dairy cows with access to pasture. Proceedings of the European Conference on Agricultural Engineering AgEng2021, Universidade de Évora, 2021, 543–550.
Schuster, M., Paliwal, K.K., Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45:11 (1997), 2673–2681, 10.1109/78.650093.
Shang, C., Wu, F., Wang, M., Gao, Q., Cattle behavior recognition based on feature fusion under a dual attention mechanism. Journal of Visual Communication and Image Representation, 85, 2022, 103524, 10.1016/j.jvcir.2022.103524.
Shen, W., Cheng, F., Zhang, Y., We, X., Fu, Q., Zhang, Y., Automatic recognition of ingestive-related behaviors of dairy cows based on triaxial acceleration. Information Processing in Agriculture 7:3 (2020), 427–443, 10.1016/j.inpa.2019.10.004.
Shen, W., Sun, Y., Zhang, Y., Fu, X., Hou, H., Kou, S., et al. Automatic recognition method of cow ruminating behaviour based on edge computing. Computers and Electronics in Agriculture, 191, 2021, 106495, 10.1016/j.compag.2021.106495.
Sheng, H., Zhang, S., Zuo, L., Duan, G., Zhang, H., Okinda, C., et al. Construction of sheep forage intake estimation models based on sound analysis. Biosystems Engineering 192 (2020), 144–158, 10.1016/j.biosystemseng.2020.01.024.
Shiiya, K., Otsuka, F., Zin, T.T., Kobayashi, I., Image-based feeding behavior detection for dairy cow. 2019 IEEE 8th global conference on consumer electronics (GCCE), 2019, 756–757, 10.1109/GCCE46687.2019.9015552.
Simanungkalit, G., Barwick, J., Cowley, F., Dawson, B., Dobos, R., Hegarty, R., Use of an ear-tag accelerometer and a radio-frequency identification (rfid) system for monitoring the licking behaviour in grazing cattle. Applied Animal Behaviour Science, 244, 2021, 105491, 10.1016/j.applanim.2021.105491.
Singh, D., Singh, B., Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 2020, 105524, 10.1016/j.asoc.2019.105524.
Smith, D., Rahman, A., Bishop-Hurley, G.J., Hills, J., Shahriar, S., Henry, D., et al. Behavior classification of cows fitted with motion collars: Decomposing multi-class classification into a set of binary problems. Computers and Electronics in Agriculture 131 (2016), 40–50, 10.1016/j.compag.2016.10.006.
Sokolova, M., Lapalme, G., A systematic analysis of performance measures for classification tasks. Information Processing & Management 45 (2009), 427–437, 10.1016/j.ipm.2009.03.002.
Song, X., Bokkers, E.A.M., Van Mourik, S., Koerkamp, P.G., Van Der Tol, P.P.J., Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. Journal of Dairy Science 102:5 (2019), 4294–4308, 10.3168/jds.2018-15238.
Soriani, N., Trevisi, E., Calamari, L., Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. Journal of Animal Science 90 (2012), 4544–4554, 10.2527/jas.2012-5064.
Spigarelli, C., Zuliani, A., Battini, M., Mattiello, S., Bovolenta, S., Welfare assessment on pasture: A review on animal-based measures for ruminants. Animals, 10, 2020, 609, 10.3390/ani10040609.
Steinmetz, M., von Soosten, D., Hummel, J., Meyer, U., Dänicke, S., Validation of the rumiwatch converter v0.7.4.5 classification accuracy for the automatic monitoring of behavioural characteristics in dairy cows. Archives of Animal Nutrition 74 (2020), 164–172, 10.1080/1745039X.2020.1721260.
Stone, A., Symposium review: The most important factors affecting adoption of precision dairy monitoring technologies. Journal of Dairy Science 103 (2020), 5740–5745, 10.3168/jds.2019-17148.
Stygar, A.H., Gómez, Y., Berteselli, G.V., Dalla Costa, E., Canali, E., Niemi, J.K., et al. A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Frontiers in Veterinary Science, 8, 2021, 634338, 10.3389/fvets.2021.634338.
Subeesh, A., Mehta, C., Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture 5 (2021), 278–291, 10.1016/j.aiia.2021.11.004.
Tamura, T., Okubo, Y., Deguchi, Y., Koshikawa, S., Takahashi, M., Chida, Y., et al. Dairy cattle behavior classifications based on decision tree learning using 3-axis neck-mounted accelerometers. Animal Science Journal 90 (2019), 589–596, 10.1111/asj.13184.
Tani, Y., Yokota, Y., Yayota, M., Ohtani, S., Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a single-axis acceleration sensor. Computers and Electronics in Agriculture 92 (2013), 54–65, 10.1016/j.compag.2013.01.001.
Tran, D., Nguyen, T.N., Khanh, P.C.P., Tran, D., An IoT-based design using accelerometers in animal behavior recognition systems. IEEE Sensors Journal 22:18 (2022), 17515–17528, 10.1109/JSEN.2021.3051194.
Ungar, E.D., Henkin, Z., Gutman, M., Dolev, A., Genizi, A., Ganskopp, D., Inference of animal activity from gps collar data on free-ranging cattle. Rangeland Ecology & Management 58 (2005), 256–266, 10.2111/1551-5028(2005)58[256:IOAAFG]2.0.CO;2.
Ungar, E.D., Ravid, N., Zada, T., Ben-Moshe, E., Yonatan, R., Baram, H., et al. The implications of compound chew–bite jaw movements for bite rate in grazing cattle. Applied Animal Behaviour Science 98 (2006), 183–195, 10.1016/j.applanim.2005.09.001.
Vanrell, S.R., Chelotti, J.O., Bugnon, L.A., Rufiner, H.L., Milone, D.H., Laca, E.A., Galli, J.R., Audio recordings dataset of grazing jaw movements in dairy cattle. Data Brief, 30, 2020, 105623, 10.1016/j.dib.2020.105623.
Vanrell, S.R., Chelotti, J.O., Galli, J.R., Utsumi, S.A., Giovanini, L.L., Rufiner, H.L., et al. A regularity-based algorithm for identifying grazing and rumination bouts from acoustic signals in grazing cattle. Computers and Electronics in Agriculture 151 (2018), 392–402, 10.1016/j.compag.2018.06.021.
Vázquez-Diosdado, J.A., Barker, Z.E., Hodges, H.R., Amory, J.R., Croft, D.P., Bell, N.J., et al. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Animal Biotelemetry 3 (2015), 1–14, 10.1186/s40317-015-0045-8.
Vázquez-Diosdado, J.A., Paul, V., Ellis, K.A., Coates, D., Loomba, R., Kaler, J., A combined offline and online algorithm for real-time and long-term classification of sheep behaviour: Novel approach for precision livestock farming. Sensors, 19, 2019, 3201, 10.3390/s19143201.
Virot, E., Ma, G., Clanet, C., Jung, S., Physics of chewing in terrestrial mammals. Scientific Reports, 7, 2017, 43967, 10.1038/srep43967.
Wang, Y.Q., An analysis of the viola-jones face detection algorithm. Image Processing On Line 4 (2014), 128–148.
Wang, J., He, Z., Zheng, G., Gao, S., Zhao, K., Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data. PLoS One, 13, 2018, e0203546, 10.1371/journal.pone.0203546.
Wang, K., Wu, P., Cui, H., Xuan, C., Su, H., Identification and classification for sheep foraging behavior based on acoustic signal and deep learning. Computers and Electronics in Agriculture, 187, 2021, 106275, 10.1016/j.compag.2021.106275.
Wang, K., Xuan, C., Wu, P., Liu, F., Fan, X., Feeding intake estimation in sheep based on ingestive chewing sounds. Computers and Electronics in Agriculture, 194, 2022, 106698, 10.1016/j.compag.2022.106698.
Watanabe, R.N., Bernardes, P.A., Romanzini, E.P., Braga, L.G., Brito, T.R., Teobaldo, R.W., et al. Strategy to predict high and low frequency behaviors using triaxial accelerometers in grazing of beef cattle. Animals, 11, 2021, 3438, 10.3390/ani11123438.
Weiss, K., Khoshgoftaar, T.M., Wang, D., A survey of transfer learning. J Big Data, 3, 2016, 9, 10.1186/s40537-016-0043-6.
Werner, J., Umstatter, C., Leso, L., Kennedy, E., Geoghegan, A., Shalloo, L., O'brien, B., Evaluation and application potential of an accelerometer-based collar device for measuring grazing behavior of dairy cows. Animal 13:9 (2019), 2070–2079.
Werner, J., Viel, J., Niederhauser, J., O'Leary, N., Umstatter, C., O'Brien, B., et al. Validation of new algorithms for the rumiwatch noseband sensor to detect grazing behaviour of dairy cows. Proceedings of the 27th general meeting of the European grassland federation, 2018, 917–919.
Wu, D., Wang, Y., Han, M., Song, L., Shang, Y., Zhang, X., et al. Using a cnn-lstm for basic behaviors detection of a single dairy cow in a complex environment. Computers and Electronics in Agriculture, 182, 2021, 106016, 10.1016/j.compag.2021.106016.
Wurtz, K., Camerlink, I., D'Eath, R.B., Fernández, A.P., Norton, T., Steibel, J., et al. Recording behaviour of indoor-housed farm animals automatically using machine vision technology: A systematic review. PLoS One, 14, 2019, e0226669, 10.1371/journal.pone.0226669.
Yang, W., Beauchemin, K., Altering physically effective fiber intake through forage proportion and particle length: Chewing and ruminal ph. Journal of Dairy Science 90 (2007), 2826–2838, 10.3168/jds.2007-0032.
Yang, X., Song, Z., King, I., Xu, Z., A survey on deep semi-supervised learning. IEEE Transactions on Knowledge and Data Engineering 35 (2023), 8934–8954, 10.1109/TKDE.2022.3220219.
Yin, X., Wu, D., Shang, Y., Jiang, B., Song, H., Using an EfficientNet-LSTM for the recognition of single cow's motion behaviours in a complicated environment. Computers and Electronics in Agriculture, 177, 2020, 105707, 10.1016/j.compag.2020.105707.
Ying, C., Qi-Guang, M., Jia-Chen, L., Lin, G., Advance and prospects of adaboost algorithm. Acta Automatica Sinica 39 (2013), 745–758, 10.1016/S1874-1029(13)60052-X.
Yoshitoshi, R., Watanabe, N., Kawamura, K., Sakanoue, S., Mizoguchi, R., Lee, H.J., et al. Distinguishing cattle foraging activities using an accelerometry-based activity monitor. Rangeland Ecology & Management 66 (2013), 382–386, 10.2111/REM-D-11-00027.1.
Yousefi, D.M., Rafie, A.M., Al-Haddad, S., Azrad, S., A systematic literature review on the use of deep learning in precision livestock detection and localization using unmanned aerial vehicles. IEEE Access 10 (2022), 80071–80091, 10.1109/ACCESS.2022.3194507.
Yu, Z., Liu, Y., Yu, S., Wang, R., Song, Z., Yan, Y., et al. Automatic detection method of dairy cow feeding behaviour based on yolo improved model and edge computing. Sensors, 22, 2022, 3271, 10.3390/s22093271.
Yu, Y., Si, X., Hu, C., Zhang, J., A review of recurrent neural networks: Lstm cells and network architectures. Neural Computation 31 (2019), 1235–1270, 10.1162/neco_a_01199.
Zambelis, A., Wolfe, T., Vasseur, E., Validation of an ear-tag accelerometer to identify feeding and activity behaviors of tiestall-housed dairy cattle. Journal of Dairy Science 102 (2019), 4536–4540, 10.3168/jds.2018-15766.
Zehner, N., Niederhauser, J.J., Nydegger, F., Grothmann, A., Keller, M., Hoch, M., et al. Validation of a new health monitoring system (RumiWatch) for combined automatic measurement of rumination, feed intake, water intake and locomotion in dairy cows. International conference of agricultural engineering CIGR. 8-12 july, Vol. 2012, 2012, Hrsg. Ageng, Valencia, Spain, 1–6.
Zehner, N., Umstätter, C., Niederhauser, J.J., Schick, M., System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Computers and Electronics in Agriculture 136 (2017), 31–41, 10.1016/j.compag.2017.02.021.
Zhang, J., Lei, J., Wu, J., Lu, H., Guo, H., Pezzuolo, A., et al. Automatic method for quantitatively analyzing the body condition of livestock from 3D shape. Computers and Electronics in Agriculture, 214, 2023, 108307, 10.1016/j.compag.2023.108307.
Zhang, J., Yin, Z., Chen, P., Nichele, S., Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion 59 (2020), 103–126, 10.1016/j.inffus.2020.01.011.
Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J., Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE 107 (2019), 1738–1762, 10.1109/JPROC.2019.2918951.