Article (Scientific journals)
Livestock feeding behaviour: A review on automated systems for ruminant monitoring
Chelotti, José; Martinez-Rau, Luciano S.; Ferrero, Mariano et al.
2024In Biosystems Engineering, 246, p. 150 - 177
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S1537511024001752-main.pdf
Publisher postprint (10.14 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Feeding behaviour; Machine learning; Precision livestock farming; Review; Sensor data; 'current; Animal agriculture; Animal husbandry; Automated monitoring systems; Automated systems; Feeding behavior; Machine-learning; Research areas; Sensors data; Control and Systems Engineering; Food Science; Agronomy and Crop Science; Soil Science
Abstract :
[en] Livestock feeding behaviour is an influential research area in animal husbandry and agriculture. In recent years, there has been a growing interest in automated systems for monitoring the behaviour of ruminants. Current automated monitoring systems mainly use motion, acoustic, pressure and image sensors to collect and analyse patterns related to ingestive behaviour, foraging activities and daily intake. The performance evaluation of existing methods is a complex task and direct comparisons between studies is difficult. Several factors prevent a direct comparison, starting from the diversity of data and performance metrics used in the experiments. This review on the analysis of the feeding behaviour of ruminants emphasise the relationship between sensing methodologies, signal processing, and computational intelligence methods. It assesses the main sensing methodologies and the main techniques to analyse the signals associated with feeding behaviour, evaluating their use in different settings and situations. It also highlights the potential of the valuable information provided by automated monitoring systems to expand knowledge in the field, positively impacting production systems and research. The paper closes by discussing future engineering challenges and opportunities in livestock feeding behaviour monitoring.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Chelotti, José ;  Université de Liège - ULiège > Département GxABT > Animal Sciences (AS) ; Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Martinez-Rau, Luciano S. ;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina ; Department of Computer and Electrical Engineering, Mid Sweden University, Sundsvall, Sweden
Ferrero, Mariano;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Vignolo, Leandro D. ;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Galli, Julio R. ;  Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina ; Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR, UNR-CONICET, Argentina
Planisich, Alejandra M. ;  Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Argentina
Rufiner, H. Leonardo ;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina ; Laboratorio de Cibernética, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Argentina
Giovanini, Leonardo L.;  Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), FICH-UNL/CONICET, Argentina
Language :
English
Title :
Livestock feeding behaviour: A review on automated systems for ruminant monitoring
Publication date :
October 2024
Journal title :
Biosystems Engineering
ISSN :
1537-5110
eISSN :
1537-5129
Publisher :
Academic Press
Volume :
246
Pages :
150 - 177
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
UNL - Universidad Nacional del Litoral
UNR - Universidad Nacional de Rosario
ASaCTeI - Agencia Santafesina de Ciencia, Tecnología e Innovación
CONICET - Consejo Nacional de Investigaciones Científicas y Técnicas
Knowledge Foundation
Funding text :
This work has been funded by Universidad Nacional del Litoral [CAID 50620190100080LI, 50620190100151LI]; Universidad Nacional de Rosario [projects 2013-AGR216, 2016-AGR266, 80020180300053UR]; Agencia Santafesina de Ciencia, Tecnolog\u00EDa e Innovaci\u00F3n (ASACTEI) [project IO-2018\u201300082]; Consejo Nacional de Investigaciones Cient\u00EDficas y T\u00E9cnicas (CONICET) [project 2017-PUE sinc(i)]; Knowledge Foundation [grant number NIIT 20180170]. Support program for National Universities 2023. FONDAGRO. Secretary of Agriculture, Livestock and Fisheries of the Argentine Nation. The authors would like to thank the dedication and perceptive help of Campo Experimental J. Villarino Dairy Farm staff for their assistance and support during the completion of this study.
Available on ORBi :
since 21 August 2024

Statistics


Number of views
10 (1 by ULiège)
Number of downloads
9 (1 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi