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ARTICLE INFO ABSTRACT

Keywords: Livestock feeding behaviour is an influential research area in animal husbandry and agriculture. In recent years,
Precision livestock farming there has been a growing interest in automated systems for monitoring the behaviour of ruminants. Current
Feeding behaviour automated monitoring systems mainly use motion, acoustic, pressure and image sensors to collect and analyse

Machine learning

Sensor data patterns related to ingestive behaviour, foraging activities and daily intake. The performance evaluation of

existing methods is a complex task and direct comparisons between studies is difficult. Several factors prevent a

Review direct comparison, starting from the diversity of data and performance metrics used in the experiments. This
review on the analysis of the feeding behaviour of ruminants emphasise the relationship between sensing
methodologies, signal processing, and computational intelligence methods. It assesses the main sensing meth-
odologies and the main techniques to analyse the signals associated with feeding behaviour, evaluating their use
in different settings and situations. It also highlights the potential of the valuable information provided by
automated monitoring systems to expand knowledge in the field, positively impacting production systems and
research. The paper closes by discussing future engineering challenges and opportunities in livestock feeding
behaviour monitoring.
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1. Introduction

Global livestock farming presents a dynamic and complex challenge.
In recent decades, it has adapted in accordance with the evolving de-
mand for animal products. Therefore, animal production systems need
to increase their efficiency and environmental sustainability. The
effective action in the different livestock systems depends on the ad-
vances of science and technology, which allows for increasing the
number of animals caring for their health and well-being. As a result,
precision livestock technologies are becoming increasingly common in
modern agriculture to help farmers optimise livestock production and
minimise waste and costs.

Precision livestock farming (PLF) monitors animal behaviour and
disease detection at an individual level. PLF is useful to optimise animal
growth and milk production by developing technologies that allow the
early recognition of pathological and management-relevant behavioural
changes and the assessment of the individual health state in dairy cows
(Michie et al., 2020). It is a build-up of sensors, communication pro-
tocols, signal processing, computational intelligence algorithms, and
embedded processors that allow the development of portable devices for
real-time monitoring of individual animals, providing active manage-
ment support to farming systems.

Many PLF technologies are dedicated to the study and monitoring of
animal feeding behaviour. Chewing activity is a meaningful parameter
of dairy nutrition to assess the adequate composition of a diet and the
risk of ruminal acidosis (Yang & Beauchemin, 2007). Furthermore, the
ruminating activity provides meaningful information on calving mo-
ments and subclinical diseases or health disorders (Soriani, Trevisi, &
Calamari, 2012). Thus, the continuous measurement of feeding vari-
ables provides a complete understanding of dietary effects on digestive
function and animal performance (Dado & Allen, 1993). The timeline
and intensity of feeding activity offer information on the diurnal pattern
of the behaviour of ruminants, and the identification of deviations may
detect health impairments (Braun, Tschoner, & Hassig, 2014).

Long-term analysis of animal feeding behaviour distinguishes two
main activities: rumination and grazing. These activities last from a few
minutes to hours, occupying 60-80% of the daily allocation (Kilgour,
2012). Their real-time account is essential for a comprehensive assess-
ment of grazing strategies, accurate estimation of daily intakes, and
detection of disease, oestrus, and parturition, among other concerns. A
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thorough description of jaw movements (JM), the fundamental com-
ponents of rumination and grazing, is crucial to achieving these
objectives.

On the other hand, the design of devices for monitoring animal
feeding behaviour requires a delicate balance between data acquisition,
battery endurance, communication, processing, and storage capabilities.
These technical requirements are related to the data to be produced and
communicated (type, amount, and accuracy). Sensors allow gathering
data for tracking, detecting, and classifying animal behaviours. They are
usually combined with signal processing, machine learning (ML), and
artificial intelligence (AI) algorithms to improve the performance of
automatic feeding behaviour recognition and classification systems.

Monitoring animal feeding and locomotion activities has been done
using noseband sensors (Nydegger et al., 2010; Werner et al., 2018;
Zehner, Umstatter, Niederhauser, & Schick, 2017), multidimensional
accelerometers (Andriamandroso et al., 2017; Greenwood et al., 2017;
Smith et al., 2016), inertial measurement units (IMU) and GPS
(Andriamandroso, Bindelle, Mercatoris, & Lebeau, 2016) and micro-
phones (Galli, Cangiano, Milone, & Laca, 2011; Galli et al., 2018; Laca,
Ungar, Seligman, Ramey, & Demment, 1992). It aims to alert farmers
about animal behavioural changes associated with diseases, oestrus, or
parturition. For example, sound sensors are employed for monitoring
feeding activities. They characterise the JM associated with feeding
activities (Millone et al., 2011; Chellotti et al., 2016; Martinez-Rau et al.,
2022), and the grazing and rumination episodes (Chelotti et al., 2020;
Rau, Chelotti, Vanrell, & Giovanini, 2020; Vanrell et al., 2018). More-
over, feed intake is estimated using sound energy (Galli et al., 2018; Laca
& WallisDeVries, 2000; Lorenzén, 2022).

Recent advancements in hardware and image-processing algorithms
have stimulated the use of videos as a monitoring technique. Fixed video
cameras allow the monitoring of individual or group behaviour auto-
matically, continuously, and non-intrusively in a given fixed area
(Fuentes, Yoon, Park, & Park, 2020). Their use is limited to small farm
areas, such as pens and barns. On the other hand, small wearable video
cameras on animals would expand the region of action, although their
application still needs further development (Saitoh & Kato, 2021).

This article reviews and analyses recent trends and advances in
monitoring, automatic analysis, and prediction of ruminant feeding
behaviour based on different sensors/signals using a combination of
signal processing and ML techniques. Articles from 2005 to 2022 were
analysed using ScienceDirect and Google Scholar databases. Keywords
like machine learning, deep learning, acoustic monitoring, ruminant feeding
behaviour, dairy cows, inertial unit, accelerometer, and precision livestock
management were employed combined to search them. These papers
included related studies from science and engineering conferences,
journal articles, review articles, books, theses, and other electronic
document repositories. To simplify the wording of the text, numerous
abbreviations and acronyms were used in this review (Nomenclature).

The selection criteria for the state-of-the-art techniques included the
initial selection of hundreds of research articles published in the fore-
named search engines. Subsequently, the selection criteria were
improved by reading full-text articles to finally pick 131 articles that
best fit the objective of this paper. It excludes articles based on manual
techniques or direct human supervision since the latter work reported
dated to 2006. The articles that analyse behaviours like reproduction or
physical activities, those whose performance metrics were unavailable,
or those written in languages different from English were excluded.
Finally, commercial devices that have been significant for the subject
were included. The technical information provided by the development
teams limited the analysis.

Over fifty surveys and reviews about using ML and the Internet of
Things (IoT) for PLF have been published in the last decade. The subjects
of these works are diverse and cover different aspects of livestock pro-
duction like welfare assessment (Azarpajouh, Calderon Diaz, Bueso
Quan, & Taheri, 2021; Chapa, Maschat, Iwersen, Baumgartner, &
Drillich, 2020; Spigarelli, Zuliani, Battini, Mattiello, & Bovolenta,
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2020), health monitoring (Eckelkamp, 2019; Fan, Bryant, & Greer,
2022; Karthick, Sridhar, & Pankajavalli, 2020; Alfons et al., 2020;
O’Leary et al., 2020), herd management (Cockburn, 2020; Hossain et al.,
2022; Yousefi, Rafie, Al-Haddad, & Azrad, 2022) and commercially
available technologies (Stygar et al., 2021). They also include systems
implementation (Farooq, Sohail, Abid, & Rasheed, 2022; Kim et al.,
2021; Lokhorst, De Mol, & Kamphuis, 2019; Oliveira, Pereira, Bresolin,
Ferreira, & Dorea, 2021; Subeesh & Mehta, 2021) and opportunities and
challenges offered by PLF (Aquilani, Confessore, Bozzi, Sirtori, &
Pugliese, 2022; Bailey, Trotter, Tobin, & Thomas, 2021; Morrone,
Dimauro, Gambella, & Cappai, 2022; Niloofar et al., 2021).

Few articles introduce a general overview of PLF (Aquilani et al.,
2022; Cockburn, 2020; Garcia, Aguilar, Toro, Pinto, & Rodriguez, 2020;
Tzanidakis, Tzamaloukas, Simitzis, & Panagakis, 2023), including rele-
vant management topics, like animal identification, posture monitoring,
body weight estimation, and oestrus detection using different sensing
technologies. Additional studies explored the use of wearable sensors
(Lee & Seo, 2021) or motion sensors (Kleanthous, Hussain, Khan,
Sneddon, & Liatsis, 2022; Riaboff et al., 2022; da Silva Santos, de
Medeiros, & Gongcalves, 2023) for monitoring different behaviours,
including feeding patterns. Wurtz et al. (2019) reviewed the papers
based on machine vision technology for monitoring indoor-housed farm
animals. Mahmud, Zahid, Das, Muzammil, and Khan (2021) discussed
algorithms based on images/videos and deep learning (DL) methods. In
this context, Andriamandroso et al. (2016) analysed algorithms
employing various sensing methods to monitor feeding behaviours and
their associated parameters.

This work has deviated from the meta-analytical framework most
frequently used in systematic reviews. It represents a self-contained
overview based on the author’s expertise and a selective review of the
relevant literature in precision livestock farming. This approach allowed
for a thorough examination of the topic through targeted searches of
resources such as ScienceDirect and Google Scholar. This article pro-
vides three main contributions. Firstly, it introduces a detailed
description of the forage intake mechanism to understand the feeding
phenomenon and the advantages and drawbacks of the sensing methods
employed for monitoring. This fact allows a better analysis of the ad-
vantages and disadvantages of sensing techniques. Secondly, non-
invasive monitoring methodologies are analysed and compared, high-
lighting the advantages and disadvantages of the most ubiquitous sen-
sors. Thus, we will focus our analysis on algorithms that provide the
most relevant information about ruminants’ feeding behaviour. This
choice leaves out of the scope methodologies that measure internal body
variables like rumen pH, temperature, and movements (Hajnal, Kovacs,
& Vakulya, 2022). Finally, taking advantage of the multidisciplinary
background of the authors, a general discussion about the current state
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and future challenges is presented.

The paper is structured as follows. Section 2 introduces the basis of
the ruminant forage intake mechanism. Section 3 describes several
monitoring methodologies based on different types of sensors. Section 4
introduces some commercial devices developed in this area. Finally,
Sections 5 to 7 present the discussion, conclusions, and future works,
respectively.

2. The forage intake mechanism

Voluntary forage intake is one of the factors that best explains cow
milk production. Cows dedicate 5-9 h to grazing (spread over 10 to 15
bouts) and a similar amount of time to rumination during the day. For
this reason, feeding monitoring is so relevant for the productive man-
agement of a livestock system. The number of total chews per food unit
(mainly during rumination) is associated with particle size reduction
and the amount of produced saliva. In this way, the nutrients available
in the food are better assimilated and help to maintain an adequate
rumen environment (De Boever, Andries, De Brabander, Cottyn, &
Buysse, 1990). These factors improve the productivity and health of the
animals. Thus, changes in the daily pattern of these activities can explain
the productive results and expose limiting conditions in animal pro-
duction systems.

The choice of variables used to monitor and diagnose the foraging
behaviour depends on the spatio-temporal integration model used as a
reference. Bailey et al. (1996) proposed a conceptual model of ingestive
behaviour based on six increasing levels: from the bite, the feeding
station, the patch, the feeding site, the field or pasture, and up the
habitat (Fig. 1). The model was modified to employ it in this work:
grazing is a process that combines different movements and activities at
different scales of time and space (Fig. 2a). At the level of production
systems with a certain intensification, it would be enough to integrate
the scales from bite to pasture level, combining the intermediate feeding
scales, to adequately describe daily forage intake for one or more days.

Underlying relationships between plants and animals during grazing
explain the behaviour variations over time and space, which is critical
for managing grasslands and pastures. The essential component of
ingestive behaviour in grazing cattle is the bite. It includes the move-
ments of apprehension and severing of forage, affected by different
characteristics of the mouth (size and mass of jaws, muscle character-
istics, etc.) and pasture, such as structure, leaves distribution, chemical
composition (water or fibre content), and the amount of forage har-
vested in each bite.

Grazing at a bite level (Fig. 2c) comprises three phases. Firstly, the
animal approaches the pasture and sweeps around with the tongue to
bring herbage into the mouth (bite apprehension). Then, it presses the

Spaceltemporal level

Intake rate

Grazing bout
time

Bout
intake

Bite I seg
T Feeding station / seg —min
Feeding patch / min
Feeding site / min — hour

Daily grazing
time

Pasture — Paddock /day

Fig. 1. Conceptual model of ingestive behaviour and its spatio-temporal levels (adapted from Bailey et al. (1996)).
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Fig. 2. Sound recorded during (a) grazing and (b) rumination activities, including representative JM ratios and rate (JM s ') by activity (adapted from Chelotti

et al., 2020).

forage between the lower incisors and the upper dental pad (bite cut-
ting). Finally, it finishes harvesting each bite, tugging and breaking the
forage with a quick head movement. Once a bite process concludes, the
forage in the mouth is comminuted using premolars and molars in a
chewing process known as grazing chew (Fig. 2¢). Animals execute these
activities through JM (opening and closing their jaws). Each JM is
associated with specific feeding actions: biting, chewing, or a compound
movement that includes chewing and biting when the animal closes its
jaw called chew-bite (Laca & Wallis DeVries, 2000; Ungar et al., 2006)
(Fig. 2c). The forage consumption process concludes when, after
severing one or several bites, the chewed forage in the mouth forms a
cud that generates a stimulus to swallow it.

The bite volume, defined by the bite area and depth, and the forage
density determine the amount of forage reaped in each bite (Laca et al.,
1992; Ungar et al., 2006). The average bite mass (grams per bite) and the
bite rate (bites per unit of time) determine the speed of animal forage
ingestion or intake rate. Finally, the daily intake will be the product of
the intake rate by the effective hours that animals graze per day (daily
grazing time). Daily grazing time is the accumulation of grazing bouts
performed during the day (Fig. 1).

Like grazing, rumination occurs in spaced regular sessions
throughout the day. During rumination, ruminants no longer need to
move their heads to harvest and grind herbage. Food particles are sorted
in the rumen by the reticulum-rumen (Fig. 3b) generating a bolus that is

(a) (©)

/ O Homy
Ly pad
’ Diastema
Biting
sound
Molars
/~Premolars Y 2
¥ €
Chewing N
sound

Incisors

Large
intestine

reprocessed in the mouth to decrease their size, increasing the food
surface-to-volume ratio. Rumination only requires JM to crush the
rumino-reticular bolus. It is composed of three phases (Fig. 2b): regur-
gitation when the animal regurgitates a bolus to the mouth; jumbling
and binding when the animal chews and salivates the bolus in the
middle region of the jaws using molars and premolars (Fig. 3a); and
deglutition when the animal swallows the bolus. During the second
phase, the animal performs a JM known as rumination chew. Rumination
bouts last between 45 s and 70 s, containing 30 to 60 rumination chews
with a minor variation in their number. Rumination bouts are repeated
uninterruptedly during a rumination session. Daily rumination time is
the aggregation of all rumination sessions. The rumination process
stimulates saliva secretion to help buffering the rumen pH, reduce forage
particle size, and improve rumen bacteria to attach to forage particles
during microbial fermentation (De Boever et al., 1990).

The biomechanical characteristics of the mouth (size and mass of
jaws, muscle characteristics, etc.), the saliva and food availability, and
the forage density determine the JM rate (Virot, Ma, Clanet, & Jung,
2017). The mouth opens between 2 and 4 c¢cm for rumination, grazing,
and drinking (Fig. 4). The JM rate during grazing ranges from 0.75 to
1.20JMs ! (an average of 1.00 + 0.25J M s’l), while it has an average
of 1.06 + 0.06 J M s * during rumination (Andriamandroso et al.,
2016). Food availability and characteristics (sward height, tensile
strength, and bulk density) explain the greater JM rate variation during

Small Rumen

Oesophagus
intestine PR

Abomasum
Omasum

Reticulum

Fig. 3. Diagrams of a) the jaw with places that produce ingestive sounds and (b) the digestive system.
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Fig. 4. Time series of typical mouth opening for a) rumination, b) grazing, and
¢) drinking (adapted from Zehner et al., 2017).

grazing.

JM and food characteristics (fibre content, tensile strength, water
content, and density) determine the distinctive features (shape, in-
tensity, energy, and frequency content) of sounds produced during JM.
Sounds associated with grazing chews have moderate energy, moderate
amplitude, and middle duration (Fig. 2c). They arise in the middle re-
gion of the jaws (Fig. 3a), where premolars and molars grind the forage.
The rupture of the plant cells and the extrusion of internal water content
determine the energy of the sound (Galli, Cangiano, Demment, & Laca,
2006). Sounds associated with bites have moderate energy, high
amplitude, and short duration (Fig. 2¢) because of herbage tearing and
cutting. These sounds originate when the animal cuts the plants with the
lower incisors and the upper horny pad (Fig. 3a). Finally, sounds asso-
ciated with chew-bites combine bite and grazing chew features, result-
ing in a sound of high amplitude and energy, and long duration (Fig. 2c).
In penning systems, ruminants do not need to perform all the grazing
phases because forage is supplied in feeders or on the ground. They just
need to chew and manipulate the food to swallow it.

Sounds associated with rumination chews have low energy, low
amplitude, and middle duration (Fig. 2d) due to the chewing of the cud.
Its energy and amplitude are low because grass fibres have incorporated
extra water (during their dwellings in the rumen) and have already
broken down. The sounds arise in the middle region of the jaws (Fig. 3a),
and regurgitation and deglutition pauses produce very low-intensity
sounds (Fig. 2b).

3. Monitoring and analysis methodologies

Ruminants perform specific body and head movements and produce
distinctive sounds when grazing and ruminating. Monitoring techniques
record and analyse these movements and sounds to characterise rumi-
nants’ feeding activities. Thus, monitoring techniques are classified ac-
cording to the technique used to record the movements and sound.

1. Motion: Feeding activities are estimated indirectly by sensing body
movements and postures (Brennan, Johnson, & Olson, 2021, among
others) and movements (Tani, Yokota, Yayota, & Ohtani, 2013)
through motion sensors. In other cases, JM can be directly measured
by sensing changes in pressure or length of a sensor around the nose
(Nydegger et al., 2010; Chen et al., 2022, among others). All these
devices are wearable sensors;

. Sound: JM can be characterised indirectly by recording and ana-
lysing the sound patterns produced during feeding activities (Milone,
Galli, Cangiano, Rufiner, & Laca, 2012; Navon, Mizrach, Hetzroni, &
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Ungar, 2013; Chelotti et al., 2016; Chelotti, Vanrell, Galli, Giovanini,
& Rufiner, 2018, among others). Different types of microphones are
wearable sensors; and

3. Images: Imaging systems sense and monitor the body movements
and postures associated with feeding activities (Gu et al., 2017;
Hansen, Smith, Smith, Jabbar, & Forbes, 2018, among others).
Cameras are employed either in fixed positions or as wearable
devices.

Wearable sensors are the most widely used acquisition devices to
cover large areas of farms and fields. However, operational re-
quirements (device portability, robustness, and energy capacity) and the
computational cost of algorithms typically pose challenges to further
technological development and adoption (Stone, 2020). Other impor-
tant considerations include the specificity of the sensor placement on the
animal body and the surrounding environmental noises and distur-
bances that can negatively impact signal acquisition (Fig. 5).

Several algorithms have been developed in the last decade to analyse
the information provided by sensors (microphones, pressure sensors,
accelerometers, cameras) used to monitor the ruminants’ feeding
behaviour. They are pattern recognition systems that aim at classifying
input data (pressure, sound, accelerations, and images) into a set of
specific classes of JM (ruminating chew, grazing chew, bite, and chew-
bite) and feeding behaviours (grazing, ruminating, others).

A pattern recognition system implements a series of generic stages
(Fig. 6) that allows: i) the description and analysis of the input signal
through distinctive features that simplify (ii) their recognition and
organisation into classes, enabling the identification of patterns (Duda,
Hart, & Stork, 2000). The first stage of a pattern recognition system is
signal conditioning, where the input signal d(t) is prepared to meet the
system requirements. It uses analogue and digital signal processing
techniques to transform d(t) into d*(k). The preprocessing stage pro-
cesses d*(k) to simplify the extraction of features and to reduce the
computational load by transforming d*(k) into the segmented signal m
(k). The goal of the feature extraction stage is to characterise events using
features X(k), arranging the events into classes by seeking X(k) that
unequivocally identified d*(k) with each event. Finally, feature selection
optimises X(k) to improve and simplify the classification task by
retaining the features that boost discrimination and by removing the
others. This transformation of d*(k) into x(k) can be “continuous”
(window-based) or triggered by specific events (event-based). The
classifier is trained and its parameters are tuned using a portion of the
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Ear
tag
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Fig. 5. Typical of and devices for monitoring
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database. After a successful learning process, the classifier uses x(k) as
input to identify patterns and then generate the output of the system,
which is often organised into categories or classes.

There are two approaches for training models: learning its parame-
ters from a training dataset assembled from a database (offline learning)
or updating the training dataset and the parameters every time new data
is available (online learning). Each of these approaches has advantages
and drawbacks. Their applicability depends on the features’ nature:
time-varying features require online learning, while time-invariant ones
need offline learning. Model development ends with its testing and
validation (Fig. 7).

A central part of any pattern recognition system is ML. Fig. 7 shows a
typical ML workflow to create a model. Data collection and preparation
are the first tasks in this process. Data curation is required to develop a
model with good performance. The curated data are split into three
independent datasets (training, testing, and validation) to be used in the
following task of the development process. The candidate model and
training algorithms are chosen based on the characteristics of the
problem. The candidate model is trained using the training data and
evaluated using the validation data. Performance metrics associated
with the model and collected data distribution measure the model per-
formance to choose the best trained model. The next task consists of
evaluating the chosen model using the test data. A poorly performing
model may require retraining. Contrary, a tested model providing solid
performance achieves appropriate training, indicating good data
generalisation capabilities. Finally, the model is deployed and sent to
production. Its performance is monitored along its deployment in case it
may require retraining.

Articles found in the literature follow different approaches to
develop their models. Two methodological issues, regardless of the
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classification/regression problem, linked to the training and the per-
formance evaluation of ML models must be taken into account (Sokolova
& Lapalme, 2009). Firstly, it must be analysed how to split the dataset
for training and testing/validation (Fig. 7). A simple approach splits the
dataset into two subsets: one for training and another for testing/vali-
dation. It is referred to as holdout validation. The model parameters are
adjusted using the training dataset, while the testing/validation dataset
is used to evaluate the resulting model. It usually includes a classifica-
tion bias in the model since it is validated using a subset of the original
dataset. The most commonly used method is the k-fold cross-validation
(CV). This method involves dividing the dataset into k groups (folds),
and the training-evaluation process is repeated k times. In the i-th-iter-
ation (1 < i < k), the i-th-fold is used to test the model, while the
remaining folds are for training. A third approach integrates the previ-
ous ones by initially dividing the original dataset into two parts one for
training and the other for testing. The model parameters are then tuned
using a k-fold CV approach with the training set. Finally, the testing set,
independent of the training one, is used only to report the final results.

The robustness of classifiers can be enhanced by incorporating data
from animals different from those used for model training. During a CV
process, a common strategy involves training the model with specific
animals and reserving one animal for evaluation (called leave-one-ani-
mal-out). Some authors suggest a similar approach but utilise data from
more than one animal in each fold without grouping data from a single
animal in more than one fold (Pavlovic et al., 2021). Other authors
applied a similar concept but at the level of signals and independently of
the animal. When the dataset is small, the leave-one-signal-out method-
ology is usually employed (Chelotti et al., 2018; Milone et al., 2012),
utilising one signal for evaluation and the remaining signals for training.

Finally, a typical aspect of this type of problem is the skewed class
proportion in the dataset, known as class imbalance (Hasib et al., 2020).
This occurs when one class is much more abundant than the others. In
such cases, models tend to predict the majority classes but may fail to
accurately capture the minority ones. Resampling is a widely adopted
technique for highly unbalanced datasets (Fogarty, Swain, Cronin, Mo-
raes, & Trotter, 2020; Sakai, Oishi, Miwa, Kumagai, & Hirooka, 2019;
Watanabe et al., 2021). It involves either removing samples from ma-
jority classes (under-sampling) or adding synthetic examples to minority
ones (over-sampling). In these cases, the model is evaluated using metrics
aimed at avoiding bias toward the majority classes, such as the area
under the operation curve, characteristic curve, confusion matrix, pre-
cision, recall, and F1-score (Ali, Shamsuddin, & Ralescu, 2015).

In the following subsections, several of the above-mentioned aspects
associated with the most popular sensing technologies in the field (i.e.
motion sensors, sound sensors, image sensors, and others) are described
in terms of a general pattern recognition system (Fig. 6).
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Fig. 7. ML workflow (adapted from https://www.altexsoft.com/).
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3.1. Motion sensors

Movement sensors have been extensively used to monitor livestock
activities by identifying the ruminants’ behaviours based on their head
and body postures and movements. Ungar et al. (2005) introduced ML
techniques for feeding activity recognition. Since this seminal work,
many authors have employed ML techniques to estimate feeding be-
haviours alone (Schmelinga, Elmamoozc, Nicklasc, Thurnera, & Rauchb,
2021; Yoshitoshi et al., 2013), alongside other types of behaviours
(Dutta, Smith, Rawnsley, Bishop-Hurley, & Hills, 2014), and in combi-
nation with others (Nielsen, 2013).

Through a 3D accelerometer located on the neck, along with the
magnitude and spectrograms of two individual events, it is possible to
capture typical signals from grazing cattle (Fig. 8). Following the pro-
cessing of these graphical records, subtle differences associated with
each JM can be detected, allowing for very accurate identification and
classification.

3.1.1. Data acquisition and management

Feeding behaviour studies require large amounts of reliable data.
Gathering them is a complex and extensive task that requires significant
logistics and efforts to plan and conduct field experiments, usually under
difficult environmental conditions. Due to the magnitude of this effort, a
small number of authors record their particular databases and make
them available online (Barker et al., 2018; Hamilton et al., 2019; Li,
Cheng, & Cullen, 2021; Pavlovic et al., 2021; Vazquez-Diosdado et al.,
2015). Creating a database involves performing experiments, collecting
data, and meticulously curating and labelling them. The labelling pro-
cess requires ground-truth references. Direct visual observation is a
dependable (although tedious) method to generate such references. Its
complexity increases with the number of animals and the data-collecting
period (Elischer, Arceo, Karcher, & Siegford, 2013). Thus, researchers
usually use video records to reduce mislabelling when animals are
spatially confined in indoor environments (Peng et al., 2019; Shen et al.,
2021) or in closed grazing patches or paddocks (Barwick, Lamb, Dobos,
Welch, & Trotter, 2018; Kamminga et al., 2018), where multiple fixed
cameras can be employed. To simplify this task and to expand the
collection period, some studies use commercial sensors to gather
ground-truth references (Pavlovic et al., 2021, 2022). The quantity of
data collected in the experiments depends on parameters like i) the
number of animals, ii) the data collection period, and iii) the experiment
duration, among others. They vary from study to study, requiring clear
rules for their selection. In the papers considered in this review, it was
found that the number of animals ranges from 3 (Guo, Welch, Dobos,
Kwan, & Wang, 2018; Hamilton et al., 2019; Li et al., 2021) to 225 (Jung
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etal., 2021), the collecting period ranges from 57 h (Riaboff et al., 2020)
to 403 h (Hamilton et al., 2019), and the period ranges from 1 day
(Roland et al., 2018) to 31 days (Gonzales, 2015). Different ruminant
species were analysed in these studies.

The reviewed articles show varying proportions for each ruminant
species (Fig. 9a). Bovines are the most commonly employed species in
78% of the studies, followed by sheep with almost 15%. Goats and
reindeer are the less explored species, employed in 5% and 1% of the
works, respectively.

The selection of the motion sensor is a fundamental aspect of activity
recognition as it determines the type of information used. Initial studies
employed commercial collars based on global positioning systems (GPS)
(Augustine & Derner, 2013; Ungar et al., 2005) or accelerometers
(Martiskainen et al., 2009; Nielsen, 2013; Yoshitoshi et al., 2013). They
record head and body postures and movements. In the last decade,
motion sensors based on accelerometers have been broadly adopted by
researchers since they are easy to use and robust (Benaissa, Tuyttens,
Plets, De Pessemier et al., 2019; Hamilton et al., 2019; Kasfi, Hellicar, &
Rahman, 2016; Pavlovic et al., 2021, 2022; Rayas-Amor et al., 2017;
Shen et al., 2021). Additional sensors are usually included in the devices
to improve activities recognition. Accelerometers and gyroscopes
located in the neck are employed to obtain supplementary information
on head movements (angular velocity) as well as position (angle)
(Andriamandroso et al., 2017; Carslake, Vazquez-Diosdado, & Kaler,
2020; Guo et al., 2018; Li et al., 2022; Mansbridge et al., 2018; Smith
et al., 2016). Furthermore, magnetometers provide information on head
orientation (Kleanthous et al., 2018; Peng et al., 2019). Accelerometers
and GPS are used together to track the cattle herds’ locations and spatial
scattering (Cabezas et al., 2022) and to improve recognition tasks
(Brennan et al., 2021; Gonzélez, Bishop-Hurley, Handcock, & Crossman,
2015). Finally, studies combined an accelerometer with either a force
sensor (Decandia et al., 2018) or a temperature sensor (Dutta, Natta,
Mandal, & Ghosh, 2022; Fonseca, Corujo, Xavier, & Goncalves, 2022) to
improve feeding activity recognition.

The sensor location determines the type of behaviours the device can
identify, enabling it to identify feeding behaviours (Arablouei et al.,
2021; Nielsen, 2013; Riaboff et al., 2020), diverse behaviours (Arci-
diacono, Porto, Mancino, & Cascone, 2017; Rahman et al., 2018; Roland
et al., 2018; Tamura et al., 2019; Vazquez-Diosdado et al., 2015), or
behaviours and locomotion (Alvarenga et al., 2016; Barwick, 2018;
Carslake et al., 2020; Fogarty et al., 2020; Li et al., 2021; Martiskainen
et al.,, 2009; Rahman et al., 2016; Riaboff et al., 2019). Its optimal
location has been assessed in several studies (Barwick, 2018; Ding,
2022; Rahman et al., 2018). Many studies place the sensor around the
neck (at its top -Arcidiacono et al., 2017- at its bottom -Bishop-Hurley
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Fig. 8. Acceleration signals recorded during a grazing period and spectrogram obtained from the magnitude vector.
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Fig. 9. Ruminant species considered in the bibliography for movement monitoring (a). Sensor locations for feeding behaviour monitoring using motion sensors
(“Others” item includes nasal bridge, horn, chest, Calan broadbent, rumen, forehead, and back) (b). ML methods used for motion-based monitoring techniques (c).

et al., 2014; Brennan et al., 2021- or at its side -Riaboff et al., 2019;
Riaboff et al., 2020-). Other studies install the sensor either at the side of
the jaw (Nielsen, 2013; Rayas-Amor et al., 2017; Shen et al., 2021) or
under it (Alvarenga et al., 2016; Decandia et al., 2018; Giovanetti et al.,
2017, 2020). Another common location for motion sensors is the ear,
within a tag (Chang, Fogarty, Swain, Garcia-Guerra, & Trotter, 2022;
Fogarty et al., 2020; Roland et al., 2018; Simanungkalit et al., 2021).
Some authors explore atypical positions such as the leg (Benaissa,
Tuyttens, Plets, De Pessemier et al., 2019; Tran, Nguyen, Khanh, & Tran,
2022; Wang, He, Zheng, Gao, & Zhao, 2018), the upper part of the back
(Sakai et al., 2019), or the skin near the rumen (Hamilton et al., 2019).
The accuracy of recognition tasks is improved if the devices use multiple
sensors placed in different locations (Benaissa, Tuyttens, Plets, De Pes-
semier et al., 2019; Pavlovic et al., 2021, 2022).

Fig. 9b shows the locations of the motion sensors used in the litera-
ture. The most common mounting site is the neck because it is easy to fix
and provides information about head position (relative to the ground)
and movements, which allows the recognition of feeding activities. The
second preferred site is the lower jaw because sensors provide direct
information on JM (Shen et al., 2020). However, it is difficult to mount
and fix sensors in this place. Finally, the ear is the third preferred
mounting location because it is easy to install and provides information
about the position (relative to the ground) and the movements of the
head. However, the measurements are disturbed by continuous ear
movement. These three places comprise 82% of the studies.

Finally, the sensor attachment (hold and orientation) is another
major issue since it can introduce errors and biases that affect the
recognition task. An unsuitable subjection can lead to sensor rotations or
displacements during the experiments that disturb the measurements,
diminishing the performance of recognition algorithms (Li et al., 2021).
Ensuring the proper sensor location and orientation during a study is a
challenging task. Furthermore, techniques for orientation compensation
do not guarantee good results, increasing the readability and complexity
of recognition algorithms (Kamminga et al., 2018).

3.1.2. Preprocessing

The preprocessing stage conditions the sensor signal, generating
alternative signals with more useful information, and segments it. Mo-
tion signal conditioning involves the interpolation of missing values
(Martiskainen et al., 2009) and the removal of outliers (Gonzalez et al.,
2015), gravity acceleration, and biases (Rahman et al., 2016; Smith
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et al., 2016). The execution of these tasks depends on the quality of the
recorded signals, which rely upon the experiments performing condi-
tions (weather, environment, sensor quality, and recording device).
Usually, researchers execute a priori data analysis to assess its quality
and accordingly define the tools and techniques to condition the data.
Then, new signals are estimated to reduce the computational load of the
following tasks and to improve activity recognition. Examples of this
concept include the computation of the vector magnitude (Alvarenga
et al., 2016; Barker, 2018) and the magnitude area (Alvarenga et al.,
2016) from three-dimensional acceleration and rotational speed mea-
surements (Benaussa, 2019; Mansbridge, 2018).

The segmentation stage divides the new signals into fixed-length
segments (windows) of arbitrary fixed length (Barwick, 2018; Dutta
et al., 2015; Martiskainen et al., 2009). Few studies explore the effect of
window length on recognition performance (Andriamandroso et al.,
2017; Decandia et al., 2018). Hu et al. (2020) simultaneously use several
windows of different sizes with promising results. Similarly, the
accepted approach is arbitrarily fixed window overlap (Arablouei et al.,
2021; Cabezas et al., 2022; Li et al., 2021), but few studies explore its
effect on the system performance (Riaboff et al., 2019).

3.1.3. Feature extraction

The feature extraction stage computes new signals, known as fea-
tures, from segments generated in the conditioning stage. The idea is to
univocally characterise the JM or behaviour, arranging them into clas-
ses. The features are computed either in time or frequency domains
(Cong Phi Khanh, Tran, Van Duong, Hong Thinh, & Tran, 2020).

Frequency-domain features are estimated from the frequency rep-
resentation of motion signals using the Fast Fourier Transform. Then,
statistical characteristics of the frequency representation are computed
(mean, standard deviation, skewness, kurtosis, maximum and minimum,
energy, and entropy) as features (Rahman et al., 2016, 2018; Smith
et al., 2016). Some authors use spectral data like the fundamental fre-
quency (Smith et al., 2016) and specific bands (Bishop-Hurley et al.,
2014) to extract additional features.

Time-domain features are computed from raw or conditioned signal
segments using statistics, signal processing, or ML (self-learned) tools.
Measured signals are directly employed when data segments provide
discriminative information that can be used by the classifier, like posi-
tion or velocities (Nielsen, 2013; Wang et al., 2018). When raw data
does not have enough discriminative information, statistical features of
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the data segment are usually computed (Bishop-Hurley et al., 2014;
Dutta et al., 2014; Gonzalez et al., 2015; Martiskainen et al., 2009). The
most accepted statistics are the mean, standard deviation, median,
quartiles, minimum and maximum value, entropy, kurtosis, and skew-
ness. Researchers also used time-domain features computed with signal
processing methods like energy (Bishop-Hurley et al., 2014; Dutta et al.,
2014), zero-crossing rate (Kamminga et al., 2018), or average intensity
(Barwick, 2018; Riaboff et al., 2019).

Feature analysis can be a time-demanding and complex task. Thus,
many authors developed automatic feature analysis methods to simplify
this task. They use auto-encoders (Rahman et al., 2016) and convolu-
tional neural networks (CNNs) (Kaski, 2016; Li et al., 2021; Pavlovic
et al., 2021; Peng et al., 2019) to process the raw data for determining
the set of features to be used by the system.

Time-domain features based on statistics are the most frequently
used in the literature because they are easy to compute. However, they
are often supplemented with frequency-domain or self-learned features
to improve recognition performances (Kamminga et al., 2018; Rahman
et al., 2016; Smith et al., 2016).

3.1.4. Classification

The goal of the classification stage is to build and validate a model to
classify the behaviour from the features obtained in the feature extrac-
tion stage. The classification model can be categorised, according to the
tools employed to build it, into heuristic methods, classic ML methods,
and DL approaches (Fig. 9c). Classical techniques are the most
commonly used (76%). Random Forest (RF), Support Vector Machine
(SVM), Decision Tree (DT), and k-Nearest Neighbors (k-NN) are the
preferred ones, comprising 51% of the published works. DL (8%) and
Heuristics (3%) follow classic ML techniques in researchers’ preferences.
Some authors use only one of these methods (Foldager, Trénel,
Munksgaard, & Thomsen, 2020; Ramirez-Agudelo, Bedoya-Mazo, Pos-
ada-Ochoa, & Rosero-Noguera, 2022), while others compare several
methods to find the most suitable one (Eikelboom et al., 2020;
Schmeling et al., 2021).

Heuristics methods discriminate JM and animal feeding behaviours
using simple empirical rules and thresholds for evaluating features to
perform classification (Arcidiacono et al., 2017). They are usually
assigned manually, given observational data, derived from expert
knowledge, or estimated from feature distribution (Porto, Castagnolo,
Mancino, Mancuso, & Cascone, 2022).

Classic ML methods encompass statistical inference and ensemble
models. Statistical inference methods use statistics tools to classify either
motion patterns from raw data of motion (acceleration, rotation, and
position) or computed features. Statistical methods include models like
Linear Regression (LR) (Ding et al., 2022; Rayas-Amor et al., 2017;
Simanungkalit et al., 2021), Logistic Regression (Arablouei et al., 2021),
and HMM (Pavlovic et al., 2022; Rautiainen, Alam, Blackwell, & Skarin,
2022; Vazquez-Diosdado et al., 2015), among others. An ensemble
model consists of a finite set of independently trained alternative models
that allow better performance than could be obtained from any of the
individual models of the ensemble (Kunapuli, 2023). The most
commonly used ensemble model for classifying feeding activities are
Adaptive Boosting (AdaBoost) (Carslake et al., 2020; Wang et al., 2018),
RF (Balasso, Marchesini, Ughelini, Serva, & Andrighetto, 2021; Chang
et al., 2022) and eXtreme Gradient Boosting (XGB) (Chen et al., 2022;
Dutta et al., 2022).

Classifiers based on DL methods include different types of Artificial
Neural Networks (ANN) with hierarchical layers such as Multilayer
Perceptron (MLP), CNN, Recurrent Neural Network (RNN) (Goodfellow,
Bengio, & Courville, 2016), and Long Short Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997). Although DL methods are still less
used than classic ML methods (Hai, 2022; Pavlovic et al., 2021; Peng
et al., 2019; Petranovi¢, 2022), its use as a classification model has
increased recently because of its success in other applications. One
distinctive feature of these models is their ability to process the raw data
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without feature engineering.

Supervised ML methods learn a function that maps features (inputs)
to labels (output) based on example input-output pairs. The most widely
used learning algorithms include k-NN (Bishop-Hurley et al., 2014;
Dutta et al., 2014; Sakai et al., 2019), Linear Discriminant Analysis
(LDA) (Nielsen, 2013; Yoshitoshi et al., 2013), SVM (Vazquez-Diosdado
et al., 2015), DT (Chebli, EI Otmani, Cabaraux, Keli, Chentouf, 2022;
Riaboff et al., 2019) and ANN (Chang et al., 2022). Unsupervised ML
methods learn patterns from untagged data. The goal is to build a
concise representation of the problem through machine output imitation
and then generate imaginative content from the machine. The k-means
classification has been successfully employed with accelerometers
(Vazquez-Diosdado et al., 2019).

3.1.5. Validation methodology

Model validation is the process of evaluating a trained model, on a
validation dataset, using a performance metric that indicates its gener-
alisation capability. The validation data set provides an unbiased eval-
uation of a model fitted on the training data set while tuning the model’s
parameters.

The most popular technique for generating validation data sets is k-
fold CV (Barwick et al.,, 2018; Bishop-Hurley et al., 2014;
Vazquez-Diosdado et al., 2015), being 5 (Hu et al., 2020; Riaboff et al.,
2019) and 10 (Hamilton et al., 2019; Mansbridge et al., 2018) the most
frequent values of k. Dataset segmentation into training and tes-
ting/validation sets was exploited by several authors using different
ratios (Alvarenga et al., 2016; Li et al., 2021; Martiskainen et al., 2009;
Nielsen, 2013; Pavlovic et al., 2021). These previous two approaches are
combined by creating an initial partition between training and testing,
and then using a k-fold CV over the training partition to validate the
model (Li et al., 2022; Pavlovic et al., 2022). Several authors explored
model training and testing with sets of animals, implementing
leave-one-animal-out (Arablouei et al., 2021; Fogarty et al., 2020;
Rahman et al., 2018) and leave-several-animal-out variant (Rahman
et al., 2016) approaches.

The second methodological issue to consider is the metrics used to
monitor and measure the performance of a model during training and
validation. The most widely used are accuracy, precision, recall (sensi-
tivity), specificity, and Fl-score (Guo et al., 2018; Mansbridge et al.,
2018; Nielsen, 2013; Yoshitoshi et al., 2013). Less frequently selected
metrics are kappa (Barker et al., 2018; Gonzalez et al., 2015; Martis-
kainen et al., 2009; Rolan et al., 2018), Matthew’s correlation coefficient
(Arablouei et al., 2021; Gonzales et al., 2015; Simanungkalit et al.,
2021), the area under the curve (Cabezas et al., 2022), R2 (Rayas-Amor
et al., 2017), misclassification rate (Tani et al., 2013), quality percent-
age, branching factor, and miss factor (Arcidiacono et al., 2017).

Finally, resampling techniques and metrics that prevent class bias are
combined to address class imbalance problems. For example, Pavlovic
etal. (2021) used a weighted F1-score, while Shen et al. (2021) analysed
the results class by class.

3.2. Acoustic sensors

Sounds produced during ruminants’ feeding activities contain in-
formation about JM, feeding activities, and the type and amount of
herbage intake and regurgitated. Thus, researchers develop specialised
algorithms to extract this information from the sound: (i) individual
event recognisers (JM recognition), (ii) continuous activity recognisers
(rumination and grazing recognition), and (iii) parameter estimation
algorithms (DMI, type of herbage). Since the pioneering work of Alkon
and Cohen (1986), acoustic monitoring has become a practical meth-
odology for studying animal feeding behaviour. Laca et al. (1992)
instrumented inward-facing microphones on the forehead of steers to
register louder and distinguishable feeding sounds, proving to be a more
effective technique for discriminating subtle differences in feeding ac-
tivities than previous devices or methods. Since then, it has been
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increasingly adopted as a research tool for studying different aspects of
ruminant feeding behaviour (Galli et al., 2006; Galli et al., 2011;
Lorenzon, 2022).

Fig. 10 shows a typical sound record (and its time-frequency repre-
sentation) of grazing cattle recorded using a microphone on the animal’s
forehead (Vanrell et al., 2020). It shows individual JMs (bite and
grazing-chew). As has been demonstrated, there is a relationship be-
tween sound signals and the amount of dry matter ingested by the ani-
mal (Galli et al., 2018). However, sounds need to be processed to extract
all this meaningful information.

3.2.1. Data acquisition and management

Acoustic monitoring faces challenges due to the scarcity of stand-
ardised and accessible datasets, with most studies relying on data
collected by individual research teams and not shared with the broader
research community. These datasets exhibit variations in experimental
conditions such as the ruminant species, number of animals, observation
period, grazing conditions, sensor types and locations, and pasture
characteristics (type and height). Addressing the essential issue of data
availability is crucial for further progress in this field.

While proprietary datasets remain prevalent in the literature, a
notable exception is the audio dataset of ingestive JM made available by
Vanrell et al. (2020). This dataset captures sounds produced by dairy
cows during individual grazing sessions of tall and high fescue and al-
falfa, recorded using microphones (Nady 151 VR, Nady Systems, Oak-
land, CA, USA) attached to the forehead of the cows and shielded with
rubber foam, according to Milone et al. (2012). Comprising 52 raw
audio signals in WAV format at 16-bits and 22.05 kHz, the dataset in-
cludes sequences of 3038 J M events (bites, grazing chews, and
chew-bites) and periods of silence contaminated with environmental
noise.

Martinez-Rau et al. (2023) published a wider audio dataset
comprising 708 h of daily recordings acquired on five lactating
multiparous Holstein cows for six non-consecutive days in both pasture
and barn settings, registering 392 h of grazing and rumination bouts.
This dataset also includes two audio signals recorded during grazing and
rumination sessions, respectively, containing more than 6200 J M events
(bites, grazing chews, rumination chews, and chew-bites). Audio signals
were recorded in MP3 format using two electret microphones located in
the forehead of the cows (Milone et al., 2012), connected to digital re-
corders (Sony Digital ICD-PX312, Sony, San Diego, CA, USA).

Different ruminant species were employed in acoustic studies
(Fig. 11a). It shows that bovines are the most frequently used, almost
two-thirds of all papers, followed by sheep with one-third of them. The
contribution of goats studies to literature is minor, rising to only 6% of
all works. This fact can be due to their economic significance and
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proportional population.

The works published in the literature analysed different grazing
conditions, animal quantities, and observation periods. Some studies
recorded data from animals confined in individual fenced plots (Duan
et al, 2021; Sheng et al, 2020) or tiestalls (Goldhawk,
Schwartzkopf-Genswein, & Beauchemin, 2013). Others recorded data
from animals bounded in loose indoor housing (Goldhawk et al., 2013;
Jung et al., 2021; Li et al., 2021; Meen, Prior, & Lam, 2016; Wang, Xuan,
Wu, Liu, & Fan, 2022) or barns (Tani et al., 2013). Few studies recorded
data from animals in free grazing conditions (Chelotti et al., 2016, 2020;
Clapham, Fedders, Beeman, & Neel, 2011; Navon et al., 2013; Vanrell
etal., 2018; Wang, Wu, Cui, Xuan, & Su, 2021), which is one of the most
challenging scenarios. The number of animals employed in these ex-
periments ranges from 3 to 225, while the observation period lasts from
5 h to 25 days. These facts make it difficult to compare experimental
results and comprehend the advantages and drawbacks of each
algorithm.

Other technical conditions changing in the studies are the type of
sensor and its location in the animal’s body. In most cases, the devices
are commercial wireless microphones (Duan et al., 2021; Milone et al.,
2012; Milone, Rufiner, Galli, Laca, & Cangiano, 2009; Sheng et al., 2020;
Ungar et al., 2006; Wang et al., 2021; Wang et al., 2022). In other cases,
a commercial device (from SCR Engineers Ltd.) has been used for
recording activities (Goldhawk et al., 2013; Rodrigues et al., 2019). Few
researchers have designed specific devices built upon open-hardware
platforms (Deniz et al., 2017; Jung et al., 2021).

Most studies employ sensors attached to the animal’s forehead
(Chelotti et al., 2016, 2020; Martinez-Rau et al., 2022; Milone et al.,
2012; Navon et al., 2013; Ungar et al., 2006; Vanrell et al., 2018). Tani
et al. (2013) compared the performance in activity monitoring of cattle
with sensors attached to the horn, nasal bridge, and forehead. Goats’ and
sheep’s feeding behaviours have been monitored with piezoelectric
microphones placed on the horns (Navon et al., 2013). Microphones are
not unique sensors used to record sounds. A study has shown the
effectiveness of a single-axis accelerometer in this task. It recorded the
vibrations generated by animals during grazing and ruminating using a
voice recorder (Tani et al., 2013).

The locations of the acoustic sensors were varied (Fig. 11b). The most
common mounting place is the forehead because it is easy to mount and
provides direct information on JM, allowing recognition of feeding ac-
tivities and estimation of forage intake. The other favoured places (jaw,
mouth, and horn) are in the head, but the resulting signals have a lower
SNR. They concentrate a small fraction (20%) of the studies, while the
forehead concentrates the remainder (80%).
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Fig. 10. Sound signals recorded during grazing using a microphone on the cattle’s forehead.
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Fig. 11. Ruminant species considered in the bibliography for acoustic monitoring (a). Location of sensors used for feeding behaviour monitoring based on sound (b).

ML methods used for acoustic monitoring of ruminants (c).

3.2.2. Preprocessing

Acoustic preprocessing methods are diverse and mostly influenced
by those used in automatic speech recognition. Segmentation or win-
dowing are typical strategies employed by acoustic monitoring algo-
rithms. They allow the audio signal to be processed in real-time and at a
low computational cost using fixed-length segments (Chelotti et al.,
2016, 2020; Duan et al., 2021; Martinez-Rau et al., 2022; Navon et al.,
2013). Most of these works use rectangular windows to define segments,
while others use specific windowing such as sliding Hanning or Ham-
ming windows (Sheng et al., 2020).

The SNR of the incoming audio signals is improved using different
filters. In the literature, most of the algorithms employ linear time-
invariant filters: high-pass (Clapham et al., 2011), fixed low-pass (Che-
lotti et al., 2016; Li et al., 2021; Navon et al., 2013; Tani et al., 2013), or
notch filters (Galli et al., 2011). Specifically, notch filters remove
band-limited noises and sounds introduced intentionally during the
signal recording for synchronisation purposes. More robust algorithms
are necessary to deal with time-varying and non-linear disturbances. In
these cases, adaptive filters have been implemented with excellent re-
sults (Chelotti et al., 2018, 2020; Martinez-Rau et al., 2022).

3.2.3. Feature extraction

There is no clear agreement on the type of features (frequency-
domain or time-domain) to use in the monitoring algorithms since both
provide valuable information to achieve good classification results.

Mel-Frequency Cepstral Coefficients (MFCC) and their variants (log-
scaled Mel-spectrogram representation) are the preferred frequency-
domain features for the feature extraction stage (Deller, Hansen, &
Proakis, 2000). Its popularity lies in the fact that they have been a
popular technique in automatic speech recognition, providing infor-
mation to classify JMs (grazing chew, rumination chew, bite, and
chew-bite) and estimate the amount of herbage processed (forage and
dry matter intake (DMI)) by the animal. MFCC has been used to estimate
forage intake in sheep (Sheng et al., 2020), and classify ingestive JM
events in sheep (Millone et al., 2008; Galli et al., 2020; Duan et al., 2021)
and dairy cows (Li et al., 2021; Millone et al., 2012). Tani et al. (2013)
used time-frequency representations to classify grazing and rumination
activities and count the total number of JMs.

Time-domain features are widely used because of their low compu-
tational cost, allowing real-time implementations in low-cost embedded
systems (Deniz et al., 2017). Galli et al. (2020) highlighted their
contribution to recognise JM events related to grazing behaviour.
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Time-domain features are computed from the conditioned sound signal
segments, providing a physical description of JM through a set of intrinsic
properties. They describe and quantify JM in terms of shape, duration,
rate of change, maximum intensity, symmetry, and energy content
(Fig. 12).

Clapham et al. (2011) used temporal and spectral features to identify
bite events in free-grazing cattle. Navon et al. (2013) proposed a set of
four temporal features to detect JMs, without distinguishing their type
or class, in cattle, goats and sheep. Chelotti et al. (2016; 2018), and
Martinez-Rau et al. (2022) used different sets of three to five temporal
features to recognise JM events in dairy cows. Moreover, Chelotti et al.
(2020) computed statistical features of recognised JM events to recog-
nise grazing and rumination bouts in dairy cattle. Galli et al. (2011),
Galli et al. (2018) and Lorenzon (2022) used temporal features of JM
and LR models for DMI estimation in sheep and cattle. Based on the
analysed literature, there is a tendency to use time-domain features.

3.2.4. Classification

Different ML techniques have been reported to address problems
related to ruminants’ feeding behaviour, such as forage intake estima-
tion, JM events classification, and feeding and rumination activities
recognition. Clapham et al. (2011) classified bite events using rule-based
analysis of the computed acoustic features. Galli et al. (2011) and Wang
et al. (2022) proposed LR models based on a set of explanatory variables
computed from the chewing and biting sounds to estimate DMI in sheep.
Similarly, Galli et al. (2018) used a LR model to estimate DMI in dairy
cows. Sheng et al. (2020) proposed a classifier based on SVM to first
identify chewing sound segments, and then estimate the forage intake
using features extracted from detected JM in a least squares regression
model combined with an elastic network.

Fig. 11c shows ML methods used for acoustic methods. Classic ML
techniques comprise almost two-thirds (65.4%) of published works,
followed by DL (19.2%) and heuristic (15%) models. The most widely
used learning algorithms include SVM, MLP, DT, and RF (Bishop &
Nasrabadi, 2006). They have been used to classify JM and feeding ac-
tivities. DL methods include different types of ANN, including CNN and
RNN. They can process the raw acoustic signal instead of working with
the extracted features used by the heuristic and classic ML models. LR is
the preferred statistical-based method used for estimating forage con-
sumption and DMI (Galli et al., 2011; Galli et al., 2018; Wang et al.,
2022). On the other hand, heuristics methods use empirical rules and
thresholds to discriminate JM and animal behaviours (Vanrell et al.,
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Fig. 12. Acoustic signal during JM and corresponding distinctive features (adapted from Chelotti et al., 2016; 2018; Martinez-Rau et al., 2022).

2018). Thresholds’ values can be assigned manually derived from expert
knowledge (Clapham et al., 2011; Ungar et al., 2006) or estimated from
feature distribution (Chelotti et al., 2016).

The different types or classes of JM events can be detected and
classified using a variety of approaches, ranging from heuristic rules to
complex DL models. Tani et al. (2013) proposed an algorithm to identify
cattle chewing activity based on the template-matching method applied
to spectrogram segments. It distinguishes ingestive and ruminative JM
without discriminating against individual JM. Milone et al. (2009)
proposed four Hidden Markov Models (HMM) to classify JMs in sheep:
the first one based on the acoustic level and linear prediction coefficients
(LPC) as inputs; the second and third model coupled a sub-event level
with an event level; and a compound model inspired by the language
models widely used for speech recognition. Milone et al. (2012) built an
acoustic model for classifying JM in dairy cows using HMM, filter-bank
energies as features, and a long-term statistical model for capturing
broad dependencies and constraints in possible JM event sequences.
Galli et al. (2020) introduced an algorithm that uses a statistical clas-
sifier based on the LDA of LPC and a reduced set of spectral features. The
common characteristic of the previous algorithms is that they were
designed for offline operation, processing the full acoustic signal in a
single step.

Alternatively, a series of acoustic algorithms have been developed
for online operation, processing sample-by-sample or segments of the
acoustic signal. Navon et al. (2013) discriminated JM from background
noise. The algorithm used the level difference on the event sound en-
velope and noise segments to construct a maximum margin classifier.
Chelotti et al. (2016) developed an algorithm that classifies individual
JM (chew, bite, and chew-bite) in grazing cattle. It combined
time-domain features computed from the sound envelope with heuristic
rules. Its computational load allows real-time execution in low-cost
embedded systems (Deniz et al., 2017). Chelotti et al. (2018) replaced
the heuristic rules with classic ML techniques and enlarged the original
set of features to improve the algorithm’s performance. They also
investigated the effect of different ML models (DT, RF, SVM, and MLP)
on the system performance, without finding significant differences.
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Martinez-Rau et al. (2022) developed an algorithm that combines
time-domain features with an MLP classifier. This work presented the
first acoustic-based method for classifying four types of JM instead of
three: three JM involved in grazing (grazing-chew, bite, and chew-bite)
and one JM involved in rumination (rumination-chew).

Deep learning models have also proven to be highly effective. Li et al.
(2021) proposed and compared different DL models for JM classification
in cattle using sound. The models also analysed the effect of pasture
heights on sounds. Their models combined 1D- and 2D-CNN with LSTM
models. Wang et al. (2021) tackled the same problem for sheep using
CNN and Gated Recurrent Units (GRU). Duan et al. (2021) proposed
another algorithm based on LSTM networks for feeding event classifi-
cation. The sound related to the events was isolated using a segmenta-
tion method based on short-term energy and average zero-crossing rate
thresholds. A discrete wavelet transform-based MFCC feature, dimen-
sionally reduced using principal component analysis, was used to train
the neural network. The algorithm has successfully classified bite,
ingestion-chew, bolus-regurgitation, rumination-chew, and
unrelated-behaviour categories. Jung et al. (2021) presented a DL model
for real-time classification of behavioural sounds of cattle. The sounds
include feeding-related vocalisations like food-anticipating calls. The
algorithm uses a 2D-CNN for identifying cattle vocals and removing
background noises and a similar convolutional model to perform
behaviour classification. Both models use MFCC as input.

While most of the authors focused on the recognition of JM events
and the estimation of forage intake, acoustic methods have also been
developed for classifying grazing and rumination activities. Vanrell et al.
(2018) proposed an algorithm based on statistical information on sound
signals to recognise feeding activities. It has two stages: segmentation
and classification. The segmentation stage uses the regularity patterns of
masticatory events to break down the sound record into segments. These
regularity patterns are detected using the autocorrelation of the sound
envelope. Then, the classification stage analyses the sound envelope
energy to detect pauses and characterise their regularity. Chelotti et al.
(2020) proposed an ML approach for grazing and rumination classifi-
cation. It used a set of statistical features of recognised JM, analysed
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with an ML model, to recognise feeding activity bouts. This algorithm
achieved a higher performance than that achieved by Vanrell et al.
(2018), having a low computational load and being feasible for real-time
implementation for online monitoring of foraging behaviour.

3.2.5. Validation methodology

Depending on the objective (JM recognition, activities classification
or DMI estimation), each algorithm needs specific metrics and methods
to be evaluated. Similar to motion-based sensors, the most popular
validation technique for acoustic-based algorithms is k-fold CV (Galli
et al, 2018, 2020; Wang et al.,, 2022). The leave-one-signal-out
approach is employed when multiple acoustic signals are available
(Chelotti et al., 2018; Martinez-Rau et al., 2022). A simple separation
into training and validation was also used in some works (Chelotti et al.,
2016; Vanrell et al., 2018). Wang et al. (2021) and Li et al. (2021)
separated the dataset into training, validation and test sets, while Che-
lotti et al. (2020) divided the dataset into two sets, one for training and
validation using k-fold CV, and the other one for testing. At this point, it
is important to emphasise that many works do not provide details of the
hyperparameters tuned during the training and validation process.

A second methodological issue to analyse is the metrics used to
monitor and measure the model performance during training and
testing. For the recognition of JM events such as chew, bite, and chew-
bite (Chelotti et al., 2016; Clapham et al., 2011; Galli et al., 2020;
Millone et al., 2009; Millone et al., 2011; Navon et al., 2013; Tani et al.,
2013) the authors used simple metrics such as accuracy, recognition
rate, false positives, and false negatives to report their results. In recent
years, many studies have used a set of standard metrics, such as speci-
ficity, recall, precision, and F1-score (Chelotti et al., 2018; Duan et al.,
2021; Li et al., 2021; Martinez-Rau et al., 2022; Sheng et al., 2020).
Among the advantages, this approach obtains more robust results
regarding the data imbalance.

Measuring the performance of a feeding activity recogniser implies a
particular challenge due to its continuous nature (Ward, 2011). Unlike
discrete events, activity recognition requires the recognition of cate-
gories and the partial overlaps between the reference and the recognised
sequences. In this sense, Vanrell et al. (2018) and Chelotti et al. (2020)
addressed this problem wusing spider plots to provide a
multi-dimensional analysis. Moreover, these diagrams presented both
frame and block-based metrics, allowing us to analyse the activities
recognition at different temporal scales. Studies addressing the DMI
estimation evaluated the algorithm performance using standard metrics
for regression such as R2 or MSE (Galli et al., 2011; Galli et al., 2018;
Wang et al., 2021).

Most of the analysed works applied, resampling techniques and
metrics that prevent class bias to tackle class imbalance problems.

3.3. Image sensors

Although wearable sensors (Fig. 5) offer precise information, they
have several limitations. They can be easily damaged, cause animal
stress and discomfort (Kuan, Tsai, Hsu, Ding, & Te Lin, 2019), and have
limited autonomy (Farooq et al., 2022). Furthermore, due to their spe-
cific location on the animal’s body, wearable sensors often face com-
promises when tracking several behaviours simultaneously (Li, Jiang,
Wu, Yin, & Song, 2019).

The approaches based on computer vision are non-invasive, offer a
high-speed response, and can avoid stress problems caused by wearable
sensor monitoring. Cameras collect images since they are easy to deploy,
providing a complete real-time understanding of the livestock farming
scene. So, computer vision is an emergent development direction to
improve animal behaviour recognition and analysis (Wu et al., 2021).

Image sensors have received increasing attention in the academic
community, particularly in the last ten years. This interest arises from
the availability of low-cost cameras and communication devices and the
latest developments in image-processing methodologies (Chen,
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Dongjian, Yinxi, & Huaibo, 2017; Porto, Arcidiacono, Anguzza, & Cas-
cone, 2015). Although image sensors have been used to estimate feed
intake and classify animal activities and behaviours, none of the studies
analysed focused on the recognition of JM events.

The body measurements of a ruminant are important characteristics
to monitor, since they are closely related to its nutritional status and
health. In this sense, methods and devices using 3D cameras have gained
great popularity due to improvements in image quality and processing
techniques in recent years (Du et al., 2022; Luo, Hu, Gao, Guo, & Su,
2023). Several studies have used ML (particularly DL techniques) and
similar computational approaches to assess the body condition score
from 3D images, obtaining performance rates of approximately 75% or
higher (Alvarez et al., 2018; Liu, He, & Norton, 2020; Song, Bokkers,
Van Mourik, Koerkamp, & Van Der Tol, 2019; Zhang et al., 2023).

3.3.1. Data acquisition and management

Like the other sensing techniques, the development of image-based
solutions also faces the problem of the lack of accessible and stand-
ardised databases, hindering the evaluation and comparison of algo-
rithms. Thus, each study uses its dataset, except for works presented by
the same team of researchers.

A wide variety of experimental conditions have been considered in
the literature, including the ruminant species (bovine (Ayadi et al.,
2020), goat (Jiang, Rao, Zhang, & Shen, 2020) and sheep (Deng et al.,
2021)), the number of animals (ranging from 3 (Shiiya, Otsuka, Zin, &
Kobayashi, 2019) to 46 (McDonagh et al., 2021)), the position of cam-
eras, and the observation period (amount of images (Yu et al., 2022) or
period of time (Guo, Qiao, Sukkarieh, Chai, & He, 2021)). Some studies
recorded data from animals in fenced plots (Guo et al., 2021; Qiao, Guo,
Yu, & He, 2022) or paddocks (Nguyen et al., 2021; Wu et al., 2021; Yin,
Wu, Shang, Jiang, & Song, 2020). Other studies focus on free-stall barns
(Kuan et al., 2019; Yu et al., 2022), indoor pens (Chen et al., 2022; Li
et al.,, 2019), and other indoor scenarios (Achour, Belkadi, Filali,
Laghrouche, & Lahdir, 2020; Ayadi et al., 2020; 2018, Chen et al., 2017;
Fu, Fang, & Zhao, 2022).

Fig. 13a shows the proportion of ruminant species employed in
image and video studies. It shows that bovines are the most frequently
used, 90.5% of all papers, followed by sheep and goats with 4.7% each.
This fact can be due to their economic significance and availability.

The number of studies using ML with images and video is similar.
The studies based on image sensors last from half an hour (Jiang et al.,
2020) up to six and a half hours (Nguyen et al., 2021; Wu et al., 2021).
The studies based on video use different amounts of data, ranging from
247 images (Fu et al., 2022) to 10,288 (Yu et al., 2022). Most studies use
640x480 pixels images and videos, which are downsized before being
used for model training (Achour et al., 2020; Ayadi et al., 2020).
However, few studies use a higher video resolution: Guo et al. (2021)
used 704x576 pixels at 25 frames per second, while Li et al. (2019) used
1440 x 1080 pixels at 30 frames per second.

Training video-based algorithms requires more data than image-
based ones, even at low frame rates. This fact stimulates data augmen-
tation techniques to improve models’ accuracy and robustness. Exam-
ples of these techniques are the random variations of the brightness in
the Hue, Saturation, Value colour space, and rotations up to 25° to make
models invariant to the different postures (Kuan et al., 2019). In this
sense, other operations for data augmentation include random flipping,
random clipping, random rotation, and random scaling (Deng, 2021).

One aspect that most of these studies have in common is the fixed
position of cameras, capturing the animals from a certain distance.
Fig. 14 shows different camera locations used in the bibliography. In
most cases, there is one camera located in height: Shiiya et al. (2019)
used a directional camera (Fig. 14a), and Wu et al. (2021) used a dome
webcam (Fig. 14b). Some studies used multiple cameras to prevent oc-
clusion problems. Nguyen et al. (2021) used three cameras set on the
top, the left, and the right of the area under study (Fig. 14c). Yu et al.
(2022) used two ZED2 binocular cameras (Stereolabs Inc., San
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Fig. 14. Camera locations used in the bibliography for capturing animal behaviour images and videos (adapted from (de Oliveira et al., 2020; Nguyen et al., 2021;
Qiao et al., 2022; Shiiya et al., 2019; Wu et al., 2021; Yu et al., 2022)).

Francisco, CA, USA), one placed on top of animals and another settled in (see Chen et al., 2017; Chen, He, & Song, 2018; Guo et al., 2021; Jiang

front of them (Fig. 14d). Qiao et al. (2022) used two frontal cameras in et al., 2020) because of its low cost, simple operation, installation, and
different locations for recording individualised calf and adult cows maintenance.
(Fig. 14e). Finally, a multi-camera video-recording system of ten Vivotek Studies that use cameras mounted on the animal’s body are rare. de
FD7131 cameras (Vivotek Inc., New Taipei City, Taiwan) was proposed Oliveira et al. (2020) proposed a device attached to a cattle’s neck to
to obtain panoramic top-view images of the area under study (Porto provide a close look at the mouth of the animal. It has a structural
et al., 2015). backbone with two portable cameras to capture frontal videos (during
These studies used different types of cameras. However, the dome IP grazing) and lateral videos for observing the food bolus passing through
camera DS-2DM1-714 by Hikvision (Hangzhou Hikvision Digital Tech- the oesophagus (Fig. 14f). These wearable cameras are often uncom-
nology Co., Ltd., Hangzhou, Zhejiang, China) is the most frequently used fortable for the animal and may interfere with its natural behaviour.
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3.3.2. Preprocessing and feature extraction

Images are usually captured with high-quality sensors under
controlled lighting conditions, facts that reduce the impact of noise.
Moreover, occlusions and illumination conditions are considered during
image acquisition to improve the robustness of the models (Deng et al.,
2021; Jiang et al., 2020).

In traditional computer vision approaches, preprocessing steps such
as image normalisation and filtering, and feature extraction are often
necessary to extract meaningful information from images (Jingqiu,
Zhihai, Ronghua, & Huarui, 2017). ML-based approaches hardly
perform preprocessing on images and videos since algorithms can usu-
ally capture the relevant information (Chen et al., 2021; Koohzadi &
Charkari, 2017). Sometimes, it is required to improve algorithm per-
formance and robustness. For example, the ML-based approach pro-
posed by Porto et al. (2015) calibrates, rotates, and resizes the images
based on snapshots. Then, they are blended to obtain an output image to
cover the area of interest. In a DL-based approach, preprocessing con-
sisting of histogram equalisation was performed to improve the quality
of the images by enhancing contrast (Kuan et al., 2019). Achour et al.
(2020) performed motion detection and background subtraction to
compute a similarity index of consecutive images based on relevant
images selected for model training.

Features extraction stages based on learning models provide a
simpler processing pipeline and better model performances. Most of the
developments based on images are built upon DL neural networks, using
convolutional layers to perform feature extraction at different levels
(Ayadi et al., 2020; Bezen, Edan, & Halachmi, 2020; Guo et al., 2021;
Jiang et al., 2020; Kuan et al., 2019; Qiao et al., 2022; Yu et al., 2022).
DL models automatically extract relevant features from the raw or pre-
processed image data without the need for manual feature engineering
(Chen et al., 2022; Deng et al., 2021; Fu et al., 2022; McDonagh et al.,
2021; Nguyen et al., 2021; Shang, Wu, Wang, & Gao, 2022).

Achour et al. (2020) proposed a feature extraction stage based on
four convolutional and pooling layers. Yin et al. (2020) used an efficient
DL model based on EfficientNet to extract spatial features from videos of
cow behaviour. EfficientNet is a CNN model with high parameter effi-
ciency and speed (Koonce, 2021). In this model, the features of the first
layers provide information about textures and edges, being susceptible
to interference because of the complex background of cattle farms
(Jeong, Park, Henao, & Kheterpal, 2023). Thus, the size of these feature
maps becomes boundless, increasing the model complexity and
computational time. Then, the authors proposed a multilevel fusion of
features using a bidirectional feature pyramid network (Cao, Dang, &
Zhong, 2021) to overcome this problem.

3.3.3. Classification

Fig. 13b shows the frequency of heuristic, classic ML methods and DL
models used for image and video analysis. Heuristic methods represent
only a small fraction of 4.8% of the studies (Li et al., 2019; Shiiya et al.,
2019). In contrast to wearable sensors, most algorithms based on images
and videos employ DL for their implementation. CNN-based models
(CNN, You-Only-Look-Once (YOLO), ResNet, VGG, MobileNet, and
Inception) represent almost two-thirds of the studies (59.6%). CNNs can
achieve outstanding performances on a wide range of classification
problems, being the most successful DL technique for image and video
classification tasks. CNNs can automatically learn hierarchical repre-
sentations by concatenating convolutional, pooling and flatten layers
followed by ANNs. Therefore, they can effectively uncover spatial re-
lationships and local patterns within images, making them particularly
well-suited for object recognition, scene classification, and image/video
classification.

To the best of the authors’ knowledge, only seven publications were
published using computer vision and classic ML methods, representing
28.6% of the image sensor-based studies (included in “Others” in
Fig. 13b). Porto et al. (2015) developed an algorithm for cow feeding
and standing classification based on the Viola-Jones object detection
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framework. It uses Haar-like features and an ensemble classification
approach called AdaBoost (Wang, 2014; Ying, Qi-Guang, Jia-Chen, &
Lin, 2013). Chen et al. (2017) introduced an algorithm based on the
Mean Shift Tracking (MST) framework to detect cow rumination
behaviour. The MST is a non-parametric estimation method for clus-
tering, tracking, segmentation, and image smoothing (Dong & Catbas,
2021). Lately, Chen et al. (2018) also introduced a target tracking
framework, known as Spatio-Temporal Context learning, to solve the
same problem. Li et al. (2019) presented an approach for tracking
multiple ruminant mouth areas based on Horn-Schunck and Inter-Frame
Difference algorithms. The Horn-Schunck algorithm estimates the mo-
tion (Dong & Catbas, 2021), while the Inter-Frame Difference algorithm
discriminates between foreground and background by analysing
consecutive frames. The authors used the Horn-Schunck algorithm to
automatically detect cows’ mouth areas, while the Inter-Frame Differ-
ence algorithm to track each cow’s mouth area. Shiiya et al. (2019)
introduced a computer vision approach for cow feeding behaviour
detection. It uses colour distance images to extract the cow region,
computing the difference between frames, and then the feeding behav-
iour is determined using the extraction ratio and bounding box. Finally,
Fuentes et al. (2022) proposed a regression algorithm based on MLP to
estimate feed intake and rumination time, among other welfare targets,
from video data.

de Oliveira et al. (2020) evaluated and compared different classic ML
approaches (including SVM, RF, k-NN, and Adaboost) to analyse cows’
mouth positions (mouth opened, closed, or intermediate) during rumi-
nation. The work also includes a performance comparison of several
CNN-based models. It includes VGG16, VGG19, ResNet-50, InceptionV3,
and Xception models. VGG16 and VGG19 are CNN models consisting of
16 and 19 layers of convolution, fully connected, MaxPool, and SoftMax
operations. ResNet-50 is a residual neural network with 50 layers (Jeong
et al., 2023). A residual network learns residual functions referenced to
the layer inputs instead of unreferenced functions. These networks
include skip connections (which perform identity mappings) merged
with the outputs layer. InceptionV3 is a convolutional architecture from
the Inception family based on depthwise separable convolution layers
(Jeong et al., 2023). It uses label smoothing and an auxiliary classifier to
propagate label information through the model. Similarly, Ayadi et al.
(2020) tuned a pretrained VGG16 model using transfer learning (Weiss,
Khoshgoftaar, & Wang, 2016) to recognise rumination activity. They
also compared the DL architecture’s performance versus other
CNN-based models (DenseNet, Inception, and ResNet). In another work,
McDonagh et al. (2021) analysed video frame-by-frame with a
ResNet-50 to classify cow activities like eating and drinking.

Other authors concatenated multiple single-task CNNs. Achour et al.
(2020) introduced an architecture based on four CNNs for monitoring
the feeding behaviour of dairy cows. The first CNN detects the presence
of a cow in the feeder zone. The second one determines the activity
performed by the cow in the feeder. The third CNN checks the food
availability and recognises the food category. The last CNN was coupled
to an SVM to identify individual cows. Bezen et al. (2020) introduced an
architecture based on two CNNs to estimate the intake of dairy cows.
The first CNN identifies individuals based on the digits on their collars,
while the second one estimates the feed intake.

The YOLO family consists of different YOLO models identified by
version numbers. They have been used to develop classifiers in several
studies on livestock monitoring. The YOLO model is a popular object
detection framework known for its real-time performance and accuracy
(Jiang et al., 2020). The YOLO model implements a single-shot detection
approach: one pass of the input data through the network to detect an
object. YOLO’s architecture consists of a CNN connected to a set of
detection layers, which incorporates feature fusion at multiple scales to
handle the different sizes of objects and capture the context and the
details at different scales. Then, the feature maps passed through a series
of detection layers responsible for predicting bounding boxes, object
class probabilities, and confidence scores. YOLO architecture can



J.0. Chelotti et al.

perform multi-class object detection: predicts the probabilities corre-
sponding to each object class for each bounding box.

Kuan et al. (2019) introduced an architecture based on two CNNs to
estimate the intake of dairy cows. The first CNN, a Tiny-YOLOv2 (a
YOLOv2 with fewer layers), detects the cow face, and the second one, a
MobileNetV1, recognises the cow face. Jiang et al. (2020) compared the
performances of YOLOv3, YOLOv4, and faster Region-based CNN
(R-CNN) InceptionV2 for goat activities classification. Results showed
that YOLOv4 provides better real-time performance than the other
models in speed detection and classification accuracy.

Yu et al. (2022) proposed a DL model to automatically identify
feeding, chewing, and grass-bending behaviours in multiple cows. This
architecture aims to track and quantify the feeding process and head
movement trajectory in real-time. It is based on a YOLOv4 model with
the addition of transformer enhancement modules (Chen et al., 2021).
The reported results show improvements in feature extraction and
monitoring accuracy. Deng et al. (2021) proposed a model based on
YOLO to identify eating and postures in sheep. It uses a YOLOv3 model
to extract the features and a pyramid feature fusion with a multi-scale
prediction module for classification. Similarly, Shang et al. (2022)
combined transformer modules with a MobileNetV3 model to obtain an
architecture that improved the classification performance of standing,
feeding, and lying activities. Furthermore, other studies have proven the
advantages of YOLOv5 for the image classification of activities like
drinking, feeding, standing, and lying in cows (Fu et al., 2022) and sheep
(Chen et al., 2022).

RNNs are often combined with CNNs to capture and exploit temporal
information when analysing video. A bidirectional RNN integrates a
forward and a backward RNN, capturing the hidden information from
the past and future (Schuster & Paliwal, 1997). Yin et al. (2020) inte-
grated an EfficientNet model with a bidirectional LSTM model,
including an attention mechanism to classify cows’ lying, standing,
walking, drinking, and feeding activities. The EfficientNet extracts the
features from each video frame, while the bidirectional LSTM is used to
classify activities from the extracted features. Similarly, Wu et al. (2021)
introduced a framework where the VGG16 model was used as the
backbone to extract video feature sequences and a bidirectional LSTM
for classification. This architecture provided better results than
well-known models (VGG19, ResNet18, ResNet101, MobileNetV2, and
DenseNet201) in activity classifications such as drinking, rumination,
walking, standing, and lying. Following these ideas, Guo et al. (2021)
used an InceptionV3 to extract features from each video frame and a
bidirectional GRU (BiGRU) (Yu, Si, Hu, & Zhang, 2019) to extract
spatial-temporal-features, incorporating an attention mechanism to
keep the focus on key spatial-temporal-features. The classification re-
sults obtained in exploring, feeding, grooming, standing, and walking
activities, show improvements compared to similar architectures
without attention mechanisms.

Qiao et al. (2022) proposed an architecture that combined a 3D-CNN
with a convolutional-LSTM module (Yu et al., 2019) to classify feeding
activities. While standard LSTM models are unsuitable for modelling
spatial data sequences (they only process one-dimensional data), the
proposed architecture extends the convolution along the temporal di-
rection to learn discriminative visual features and their temporal re-
lations from the frames. Nguyen et al. (2021) used a cascade of R-CNNs
(Cai & Vasconcelos, 2018) to detect cows, and a Temporal Segment
Network (TSN) was used to classify activities. The TSN is a CNN that
aims to model long-range temporal structures using a particular
segment-based sampling and aggregation module (Koohzadi & Charkari,
2017).

3.3.4. Validation methodology

CV or multi-fold validation techniques are rare among works using
images or videos (Oliveira et al., 2021; Shang et al., 2022). The most
common procedure to validate image- and video-based models uses a
single data partition: training and validation datasets. The most common

165

Biosystems Engineering 246 (2024) 150-177

setup uses 80% of the data for training and the remaining 20% for
validation. Some researchers separated images or video frames into
different sets (Ayadi et al., 2020; Bezen et al., 2020), while others split
completed video clips (Guo et al., 2021; McDonagh et al., 2021; Qiao
et al,, 2022). Wu et al. (2021) slightly modified these percentages,
keeping 30% of videos for validation and the remaining for training.
These changes in the sizes of the training and validation datasets were
extended to works using images (Achour et al., 2020; Deng et al., 2021;
Fu et al., 2022; Kuan et al., 2019; Porto et al., 2015; Yu et al., 2022).

Using leave-one-out validation, Shiiya et al. (2019) used five videos
for evaluation and one for training. The idea behind this approach is to
maximise the generalisation capabilities of the models. Some authors
used an additional third test dataset to evaluate model performance,
obtaining an indicator of generalisation capability and checking for
possible overfitting. (Fuentes et al., 2022; Nguyen et al., 2021; Yin et al.,
2020). Shang et al. (2022) initially employed a dataset for cow face
detection and cow action classification. Subsequently, they utilised a
secondary dataset to assess the model’s generalisation capability across
other livestock species such as pigs, sheep, and goats. Chen et al. (2022)
divided the dataset using leave-one-animal-out rather than splitting
fixed images.

Although most of the papers clearly describe all the elements for
model training and validation (datasets and methodologies), there are
few papers where this information is not detailed (Chen et al., 2017;
Chen et al., 2018; Jiang et al., 2020; Li et al., 2019).

There is no standardised methodology and tools for model evaluation
and comparison of monitoring methodologies based on image sensors.
The most basic and widespread metric for behaviour classification or
animal recognition is accuracy (McDonagh et al., 2021; Nguyen et al.,
2021; Shang et al., 2022). However, accuracy alone has limitations and
can be misleading when the datasets are imbalanced. Besides, it treats all
misclassifications equally, disregarding the potential consequences of
the different types of errors. Due to these problems, studies incorporate
other metrics besides accuracy for a more appropriate evaluation.
Metrics like precision, recall, and Fl-score are usually combined to
achieve an accurate evaluation (Ayadi et al., 2020; Cheng et al., 2022;
Fu et al., 2022; Guo et al., 2021; Oliveira et al., 2021; Qiao et al., 2022;
Yin et al., 2020; Yu et al., 2022). Other commonly used metrics for
behaviour event recognition are sensitivity (Porto et al., 2015) and
specificity (Wu et al., 2021). Confusion matrix is another powerful tool
for performance analysis often used (Achour et al., 2020; Guo et al.,
2021; Kuan et al., 2019; Qiao et al., 2022). It provides a detailed
breakdown of the model’s predictions for each class, allowing the
identification of specific types of errors.

Feed intake estimation is another important task in this domain. The
metrics considered for this problem are mean absolute error (Bezen
etal., 2020), mean square error (Bezen et al., 2020; Fuentes et al., 2022),
and correlation coefficient (Fuentes et al., 2022; Kuan et al., 2019).

Finally, a subproblem related to behaviour recognition and feed
intake estimation is object detection. In this case, the objective is to
detect the animal to be segmented and isolated from the background
such that it is tracked in a video sequence to determine its activity. The
metric used to evaluate the models developed for this task is the inter-
section over union measure (Deng et al., 2021; Kuan et al., 2019).

3.4. Other sensors

When cows feed, they move their jaws up and down, causing vi-
brations in the temporal bone. Movements can be sensed by measuring
either the strain (pressure) changes on a rubber band (a tube filled with
o0il) mounted on the cow’s nose (Fig. 15a) or the vibrations in the tem-
poral bone (Chen, Cheng, Wang, & Han, 2020). Thus, noseband sensors
directly sense JM (Fig. 15b) (Dado & Allen, 1993; Kroger et al., 2016;
Rutter, 2000; Rutter, Champion, & Penning, 1997), providing relevant
information for JM classification.

Noseband sensors require generating data for calibration and
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Fig. 15. Technical components of the noseband sensor and raw signals recorded during b) rumination and c) grazing (adapted from Zehner et al., 2017).

validation. This task is laborious, and the device’s storage capacity and
power supply limit the recording time (Nydegger et al., 2010). This type
of sensor has been used for monitoring and assessing feeding activities
(Li et al., 2021; Raynor, Derner, Soder, & Augustine, 2021; Werner et al.,
2018), health problems (Antanaitis et al., 2022), drinking activities
during transition periods and lactation (Brandstetter, Neubauer, Humer,
Kroger, & Zebeli, 2019), peripartum period (Braun et al., 2014) and
calving (Fadul et al., 2022), among others.

3.4.1. Data acquisition and management

One factor that hinders the development of pressure sensors is the
difficulty of manufacturing. Nydegger et al. (2010) developed the first
compact-built noseband pressure sensor system. This work establishes
the basis for developing the commercial RumiWatch sensor system (Itin
+ Hoch GmbH, Liestal, Switzerland) designed for research purposes. The
RumiWatch sensor includes a noseband pressure sensor (Kroger et al.,
2016; Li et al., 2021; Ruuska, Kajava, Mughal, Zehner, & Mononen,
2016; Zehner et al., 2017; Guccione et al., 2019), optionally accompa-
nied by an accelerometer located in the leg (pedometer) for measuring
body motions and postures (Zehner et al., 2012; Werner et al., 2018;
Poulopoulou et al., 2019). Most of the pressure-based studies employed
the RumiWatch system for data acquisition. However, other authors
developed their own pressure sensors. This system allowed individual
JM recording but required animal-specific learning data. Chen et al.
(2020) developed an activity sensor system based on an ultra-low power
bubble activity sensor in the temporal fossa. Similarly, Chen et al. (2022)
developed their noseband pressure sensor.

Another difficulty is the lack of standardised and accessible datasets.
Most studies used datasets compiled by the research team, which are not
generally available to the research community. Most of the analysed
articles deal with the validation of the RumiWatch system in different
grazing conditions (Werner et al., 2018), varying the number, species
and age of animals (Eslamizad et al., 2018; Guccione et al., 2019), and
the experimental periods. Some studies recorded data from animals
confined in tie stalls (Braun, Trosch, Nydegger, & Hassig, 2013). Others
recorded data from animals bound in loose indoor housing (Kroger et al.,
2016; Ruuska et al., 2016). Most studies recorded data in free-grazing
conditions (Li et al., 2021; Werner et al., 2018; Zehner et al., 2017).
The number of animals employed in these experiments ranges from 3
(Chen et al., 2022) to 60 (Zehner et al., 2017), the experimental period
goes from half a day (Guccione et al., 2019) to 30 days, and recording
periods range from 100 min (Guccione et al., 2019) to 403 h (Ruuska
et al., 2016). These facts make it difficult to compare experimental re-
sults and comprehend the advantages and drawbacks of each algorithm
(Pereira, Sharpe, & Heins, 2021).

3.4.2. Preprocessing and feature extraction
The range of raw pressure data varies significantly between indi-
vidual animals, and such scale difference affects the data modelling
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(Singh & Singh, 2020). Data preprocessing techniques eliminate this
scale difference and normalise the scale. Data collected from cattle have
different initial pressures (generated after wearing the noseband)
because of the differences in cattle heads. This initial pressure value is a
relatively stable constant during device operation. There are two ways to
eliminate it: one is to extract local changes in the data, and the other is
signal filtering. Some authors used first-order difference and local slope
to extract local variation of data (Chen et al., 2020; Chen et al., 2022). A
high-pass filter was used to remove unstable initial variables (Chen
et al., 2022).

The segmentation stage divides the conditioned signals into fixed-
length segments (windows) of arbitrary fixed values of 1 min with 10 s
overlapped (Benaissa, Tuyttens, Plets, Cattrysse, et al., 2019; Braun
et al., 2013; Chen et al., 2020; Chen et al., 2022; Zhener et al., 2017).
Some authors used larger windows to consolidate the partial estimates
(5 min (Braun et al., 2013), 10 min (Norbu et al., 2021; Zehner et al.,
2017), and 60 min (Zhener et al., 2017; Steinmetz, von Soosten, Hum-
mel, Meyer, & Danicke, 2020).

Time-domain features are the most frequently used with noseband
sensors because of their low computational cost (Chen et al., 2022;
Nydegger et al., 2010). They are computed from the conditioned pres-
sure signal segments using statistics and signal processing. They describe
the JM through a set of physical properties that describe them (rate of
change, maximum amplitude, event period, inter-event period, and local
slope), as well as a set of statistics (average, variance, and standard
deviation).

Statistical characteristics of the frequency representation (mean,
standard deviation, and correlation) are also computed as features
(Chen et al., 2020). Some authors use spectral data like the fundamental
frequency (Chen et al., 2020) and specific bands (Chen et al., 2022).

3.4.3. Classification

Heuristics methods are the most popular classification methods used
by pressure-based noseband sensors. Data collected with the RumiWatch
sensor are processed with proprietary software to discriminate JM
events (Li et al., 2021; Werner et al., 2018) and animal behaviours
(Braun et al., 2013; Nydegger et al., 2010). The software uses simple
empirical rules derived from expert knowledge to evaluate feature
values (Zehner et al., 2017) (Fig. 16). Benaissa, Tuyttens, Plets, Cat-
trysse, et al. (2019) proposed a method that utilises DT and SVM algo-
rithms to recognise feeding and rumination activities. They employed
data collected from the RumiWatch and a neck-mounted accelerometer,
achieving similar performance with each sensor.

Regarding self-developed pressure sensors, Chen et al. (2020)
compared the performance of ANN, RNN and CNN to identify the
feeding behaviour of dairy cows. However, this method requires manual
sensor calibration. Chen et al. (2022) proposed a classic ML approach
using the XGB algorithm to eliminate the influence of the initial pressure
of noseband sensors on rumination and eating behaviour identification.
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Fig. 16. Classification tree of ingestive behaviours applied by the RumiWatch algorithm (Zehner et al., 2017).

The method mainly used the local slope to obtain the local data variation
and combined it with the Fast Fourier Transform to extract the
frequency-domain features.

3.4.4. Validation methodology

As previously mentioned, some authors validated the performance of
a commercial noseband pressure in particular animal or grazing condi-
tions. Ground-truth references are generated by visual observation
(Braun et al., 2013), sometimes assisted by cameras (Zehner et al.,
2012). Zehner et al. (2012) measured the performance for counting the
number of JM produced during eating and rumination using the mean
absolute percentage error and the standard error of the mean. Braun
et al. (2013) used a statistical test to discover statistically significant
differences in the number and duration of individual rumination, eating
and resting phases, the total daily length of these phases, the number of
regurgitated cuds per day, the number of chewing cycles per cud and the
total daily number of chewing cycles during eating and rumination.
Kroger et al. (2016) studied variation in diets and discovered significant
differences in several chewing variables using the analysis of variance
(ANOVA) test and the concordance correlation coefficient (CCC) met-
rics. Ruuska et al. (2016) proposed a random coefficient regression
model discovering systematic errors in eating and drinking behaviours
in dairy cows. Similarly, Eslamizad et al. (2018) also used a random
coefficient regression model in calves. Zehner et al. (2017) and Poulo-
poulou et al. (2019) used the Spearman correlation coefficients to
measure the device performance for different behaviours of stable-fed
cows and grazing beef cattle, respectively. Werner et al. (2018) evalu-
ated the grazing, rumination, walking, standing, and lying duration per
hour using the CCC in a pasture-based system. The Cohen’s Kappa co-
efficient metric has been used to analyse the number of bites and
rumination chew events (Werner et al., 2018), among other character-
istics of the feeding behaviours (Guccione et al., 2019). Li et al. (2021)
used the CCC metric to evaluate the confidence level for quantifying and
differentiating prehension bites, eating chews, and rumination chews
events. Finally, Steinmetz et al. (2020) classified several behaviours at
1-min and 1-h scales using typical metrics (sensitivity, specificity, pre-
cision, accuracy, and Matthews Correlation Coefficient).

A train/validation split of the dataset was performed in studies
developing their classification algorithms. Nydegger et al. (2010) used
the train data to adjust the threshold values and heuristic rules to count
JMs associated with different behaviours. The authors used the valida-
tion data to assess the performance using the percentage error metric.
Chen et al. (2020) used 75% of the dataset to train the CNN model and
the remaining 25% to evaluate the accuracy in recognising feeding

behaviours.

Other authors used a CV strategy for training and evaluating the
algorithms. While Chen et al. (2022) split the dataset into 5 folds,
Benaissa, Tuyttens, Plets, Cattrysse et al. (2019) used
leave-one-animal-out. They measured the performance using precision,
sensitivity, specificity, and F1-score.

4. Commercial devices

Commercial devices for cattle monitoring have been available on the
market since the last decade of the previous century. These devices can
distinguish behaviours associated with feeding, drinking, postures,
locomotion, physical condition, and health (Stygar et al., 2021). Typi-
cally, commercial sensors have two parts: a data-logger acquisition
system and a data analysis software tool. The software runs proprietary
algorithms to report the information output. The lack of technical in-
formation about the algorithms and the validation procedures has
motivated the development of alternative software. However, process-
ing the raw data recorded by a commercial data logger is no longer
feasible and depends on the sensor model.

More than a hundred retailed systems for animal-based welfare
assessment are available in the market. Only 14% of the systems have
been validated by groups different from the one that developed. Systems
based on accelerometers are the most certified (30% of tools available
on the market), while systems based on cameras and boluses are less
validated (10% and 7% respectively). Validated attributes focused on
animal activity, feeding and drinking behaviours, physical condition,
and animal health. The majority of these systems have been verified on
adult cows. Non-active behaviour (lying and standing) and rumination
were the most often validated. The precision and accuracy of feeding
and drinking assessment varied depending on measured traits and the
used sensor. Table 1 summarises the most widespread technologies for
monitoring feeding-related activities.

In the literature reviewed, studies differ in the commercial sensor
employed as a data logger. The choice depends on the sensing principle,
the quality and quantity of the data sensed, the sensor location, and the
study objectives, among other issues. Ungar et al. (2005) and Augustine
and Derner (2013) were the first to use a GPS collar sensor (3300LR GPS
collars, Lotek Engineering, Newmarket, Ontario, Canada). Commercial
accelerometer-based sensors are more readily available on the market.
In this way, Roland et al. (2018) used an ear-tag sensor (Smartbow
Eartag, Smartbow GmbH, Weibern, Austria), while Pavlovic et al. (2021;
2022) used a neck collar (Afimilk Silent Herdsman, NMR, Chippenham,
UK). Recently, Chebli, El Otmani, Cabaraux, Keli and Chentouf (2022)
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Technologies for monitoring feeding-related activities (adapted from Stygar et al., 2021).

Technology (provider)

Reference

Measured traits Used sensor and attached position

Growsafe (GrowSafe Systems Ltd., Airdrie,

AB,Canada)

Insentec (Insentec, Marknesse, the
Netherlands)

Hi-Tag (SCR Engineers Ltd., Netanya,
Israel)

Ice Tag (IceRobotics Ltd., Edinburgh,
Scotland)

CowManager SensOor (Agis, Harmelen,
Netherlands)

Intergado (Intergado Ltd., Contagem,
MinasGerais, Brazil)

Smartbow (Smartbow GmbH, Jutogasse,
Austria)

RumiWatch (Itin + Hoch GmbH, Liestal,
Switzerland)

MooMonitor+ (Dairymaster, Tralee,

DeVries, Von Keyserlingk, Weary, and
Beauchemin (2003)

Chapinal, Veira, Weary, and von
Keyserlingk (2007)

Schirman et al. (2009)

Mattachini, Riva, Bisaglia, Pompe, and
Provolo (2013)
Bikker et al. (2014)

Chizzotti et al. (2015); Oliveira Jr et al.
(2018)

Borchers, Chang, Tsai, Wadsworth, and
Bewley (2016)

Zehner et al. (2017); Werner et al. (2018)

Werner et al. (2019)

Ireland)

Presence at the feeder RFID (neck collar), load cell

Presence at the feeder; Feed intake RFID (ear), load cell

Rumination time Microphone, collar

Lying and standing behaviours Accelerometer, leg

Lying and standing time; Rumination time Accelerometer, ear

Presence at the feeder; Feed intake RFID (ear), load cell

Rumination time Accelerometer, ear
Lying and standing time; Feeding time; Grazing
and rumination time

Grazing and rumination times

Accelerometer and pressure sensor,
halter and leg
Accelerometer, collar

and Chebli, El Otmani, Hornick, et al. (2022) combined diverse infor-
mation from a GPS collar sensor (3300SL GPS collar, Lotek Wireless,
Newmarket, ON, Canada) with a leg sensor with an accelerometer
(IceTag, IceRobotics Ltd., Scotland, UK).

Commercial sensors based on accelerometers have been used to
monitor feeding and physical activities, estimating the related parame-
ters. Several authors (Biekker et al., 2014; Borchers et al., 2016; Pereira,
Heins, & Endres, 2018; Zambelis, Wolfe, & Vasseur, 2019) used ear-tag
sensors (SensOor, CowManager) to determine rumination and eating
time (feeding time). Other authors (Grinter, Campler, & Costa, 2019;
Werner et al., 2019) used collar sensors (MooMonitor+, Dairymaster)
and Rumiwatch (Itin + Hoch GmbH, Switzerland) pressure sensor-based
system (Ruuska et al., 2016; Steinmetz et al., 2020; Werner et al., 2018;
Werner et al., 2019). Finally, rumination time was monitored with the
Hitag system (Allflex), which combines an accelerometer-based collar
with a sound-based device (Schirmann, von Keyserlingk, Weary, Veira,
& Heuwieser, 2009).

Individual feeding behaviour and feed intake for confined animals
have been monitored using Insentec (Hokofarm group, the Netherlands)
and Intergado (Intergado Ltd., Mina Gerais, Brazil) RFID-load cell sensor
systems (Chapinal et al., 2007; Chizzotti et al., 2015).

Commercial sensors have the advantage that end-users do not need
to worry about technical aspects of preprocessing, feature extraction,
and classification tasks. These facts simplify the data acquisition prob-
lem. However, they could be a disadvantage in research studies because
of the limited flexibility in the recorded data and sensor position.
Therefore, several works employed general-purpose data loggers.
Vazquez-Diosdado et al. (2015) and Barker et al. (2018) used a wireless
data logger that collected data from a GPS and an IMU (Omnisense Se-
ries 500 Cluster Geolocation System, Omnisense Ltd., Elsworth, UK).
Fogarty et al. (2020) and Simanungkalit et al. (2021) recorded only
accelerations with a commercial data logger (Axivity AX3, Axivity Ltd,
Newcastle, UK), whereas Rayas-Amor et al. (2017), Benaissa, Tuyttens,
Plets, De Pessemier et al. (2019), and Ding et al. (2022) choose to work
with another commercial data logger (UA-004-64, HOBO Pendant® G
Data Logger, Onset Computer Corporation) that records acceleration
and tilt measurements.

5. Discussion

The information and communication technologies revolution will
continue to have a far-reaching impact on animal farming. PLF tech-
nologies focused on monitoring animal welfare and feeding behaviour
are being developed and researched. However, only a small proportion
of these developments has been brought to market, and even a smaller
one has been adopted by farmers. These facts arise from the complexity

and multidisciplinary nature of monitoring tasks, which require
balancing the needs of farmers, researchers, and animals. In the
following paragraphs, we will analyse and discuss the advantages and
limitations of the methodologies and algorithms.

5.1. Comparison of monitoring methodologies

The lack of consensus on experimental parameters (sampling time,
recording period), protocols, validation strategies, and performance
measures, among others, makes the comparison of monitoring meth-
odologies difficult even for studies with the same sensing principle and
goals. This situation arises because all these factors heavily depend on
the experiments’ aims and the final application. However, some agree-
ments on them should be reached for each experimental goal, estab-
lishing a family of standardised experimental parameters, protocols,
validation strategies, and performance measures for future works.

Table 2 shows a qualitative comparison of relevant aspects of the
monitoring technologies described in previous Sections. It clearly states
that there is no universal monitoring technology since they have
strengths and weaknesses.

Algorithms based on sound signals provide detailed information
about JM and allow a precise estimation of the DMI (Galli et al., 2011;
Galli et al., 2018). Raw movement signals and the associated computed
features have been used to estimate the DMI using statistical and
machine-learning models. Movement and pressure-based monitoring
methodologies also provide temporal and frequency information
regarding JMs, although less detailed than sound-based algorithms.
Finally, many image-based monitoring methodologies allow the

Table 2

Comparison of monitoring methodologies and their main characteristics.
Characteristic Movement" Sound Image" Pressure
Allow a detailed analysis High Very high Medium High
Location flexibility © Medium Low High Very low
Noise robustness Low Very low High Very high
Wearable Yes Yes No Yes
Damage robustness Very low Very low Very high Very low
Data storage efficiency Very high Medium Very low Very high
Non-intrusiveness High High Very high Low
Device autonomy High Low Very high High

# Only accelerometers, gyroscopes and magnetometers are considered in this
category.

b Most of the characteristics for images consider them as non-wearable
Sensors.

¢ Typical locations of sensors and devices used for monitoring feeding
behaviour are shown in Fig. 5.
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supervision of multiple animals with a single sensor, generally located
far from individuals and therefore missing behavioural details at the
chewing level.

Movement, sound, and pressure-based devices are wearable, allow-
ing continuous individual supervision because they are in contact with
the body of the animal. In this case, the battery life of the devices is a
critical operating factor, mainly for devices that collect data at high-
sampled rates (like sound) and from global satellite positioning sys-
tems. On the other hand, image-based sensors are generally not wear-
able, remotely sensing animals’ behaviour, and have direct energy
sources. Therefore, they lost details of individual feeding behaviour.
Another disadvantage is the storage capacity required to save informa-
tion related to high-resolution images or videos.

Sensor position is a relevant factor in algorithms based on wearable
sensors. It must allow capturing behaviours without disturbing the an-
imal and guaranteeing the sensor’s integrity. Moreover, sensors must be
easy to install and remove. Algorithms based on accelerometers and
gyroscopes require an accurate sensor orientation to ensure the repli-
cation of the results. However, they have some flexibility in their loca-
tions, depending on the monitored behaviours. Sounds can be captured
in specific positions on animals’ foreheads (see Fig. 5). The location of
pressure-based sensors is around the animal’s mouth. Some of them can
upset natural animal behaviour, disturbing the measurements. Finally,
remote cameras are located in the farm infrastructure, making them the
most flexible sensors in this topic.

The presence of disturbances and noises in the recorded signal de-
teriorates the performance of monitoring algorithms. Each sensing
principle has advantages and drawbacks that must be exploited and
addressed in the algorithms. In this sense, pressure-based sensors are
reliable and accurate because they record the movements of the animal’s
jaw. They are robust against external disturbances due to noises and
weather, but the sensor’s parameters are time-varying, requiring
continuous calibration. Image-based sensors are susceptible to changes
in the scene illumination (light halos, reflections), which can be trou-
blesome to correct or modify. Motion-based GPS sensors are unaffected
by external signals when used in open fields, but the presence of
buildings and solid structures degrade their performance and reliability.
Motion sensors based on accelerometers and gyroscopes (including
IMUs) are disturbed by vibrations and movements different from those
objectives of the measurement. Another problem with these sensors is
the time-varying nature of their parameters, requiring continuous cali-
bration. Finally, sound-based sensors are susceptible to environmental
noises (such as wind blowing, birds singing, and other animals) that
disturb the animals’ sound recordings. This problem is particularly
challenging in confined environments (such as the barn) because of the
sound mixing and intensity.

Fig. 17 shows information about the articles analysed in this work
between 2005 and 2022 from different points of view using a Sankey

Bovine (73 %) Activity (80 %)

Movement (63 %)
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plot, excluding those related to the validation of commercial devices. It
shows the relationship between animal species, monitoring objectives,
physical phenomena, classification methods, and the features used in the
articles. Most of the studies were carried out in bovines (73%), followed
by sheep (22%) and goats (4%). The primary objective was feeding
activities recognition (80%), followed by JM event recognition (13%)
and DMI estimation (7%). The physical phenomena most frequently
measured were movement (63%), followed by sound (20%) and images
(16%). Sound is suitable for monitoring the three objectives, especially
JM recognition and feed intake estimation. Motion and image-based
sensors can only monitor activities. Regarding modelling strategies,
most of the published papers used classic ML (71%) and DL (22%)
techniques, followed by heuristic (7%) ones. Image or video-based
studies mostly used DL methods to monitor feeding behaviour. Finally,
temporal features (54%) are the most commonly used type, followed by
spectral (22%) and self-learned features (16%). A small percentage of
studies (6%) use raw data, and the remaining do not use features (2%).

Fig. 18 shows the evolution of physical phenomena (a) and compu-
tational methods (b) for monitoring ruminant feeding behaviour over
time. The use of movement (Acc), sound (Mic), and image/video (Img/
Vid) sensing has increased over the last two decades (Fig. 18a). Move-
ment sensing has expanded faster, especially since 2015. Acoustic
monitoring has seen moderate adoption, providing rich behavioural
information but remaining underused compared to movement. Vision-
based monitoring has emerged recently, enabled by improving cam-
eras, communications, and computer vision algorithms. Overall, the use
of all three phenomena has grown, with movement leading, sound in the
middle, and vision trailing but rising faster. In terms of computational
methods, the use of classic ML and DL models has substantially increased
over the last five years (Fig. 18b).

DL methods generally improve the recognition of feeding behaviour
over Classic ML ones. One key advantage of DL methods is their ability to
use even raw signals without any feature engineering: DL models can
extract relevant features from raw data without needing manual selec-
tion or feature extraction. However, they have a higher computational
load (two to three magnitude orders) than Classic ML ones. It is a sig-
nificant factor in applications where real-time operation is required.
However, the performance improvements may justify the additional
computational resources in the case of other applications. Classic ML is a
better option for portable or low-resource devices where high perfor-
mance is not required. Another related issue is the number of parameters
of the models. DL models typically have a large number of parameters,
which increase their computational cost and memory requirements. The
amount of data available for training is another issue to consider when
selecting the architecture. DL models may not provide acceptable per-
formances when the parameters-data relationship is small, as it may lead
to overfitting or poor generalisation.

Models’ simplicity and interpretability are other meaningful aspects

Temporal (54 %)
Classic ML (71 %)

Spectral (22 %)

Pressure (1 %)

Sheep (22 %)
Event (13 %)

Goat (4 %)

Acoustic (20 %)

—Reindeer (1 %) Feed intake (7 %)

Image/Video (16 %)

Heuristic (7 %) Raw data (6 %)

Self-learned (16 %)

Deep Learning (22 %) None (2 %)

Fig. 17. Sankey diagram showing the relationship among animal species, monitoring objectives, physical phenomena, modelling strategies, and type of features

used.
“None” indicates that heuristic approaches do not use features.
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Fig. 18. Cumulative number of articles per year describing the evolution of a) sensors and b) computational methods used to monitor feeding behaviour.

to consider when choosing between DL and Classic ML methods. Classic
ML methods often use white box models that are easier to interpret and
understand, while DL methods use black box models that can be more
difficult to interpret. It may be a relevant factor in applications where
interpretability is essential (Hoxhallari, Purcell, & Neubauer, 2022).

In summary, the choice between DL and Classic ML methods for
monitoring feeding behaviour depends on several factors, including
performance, computational cost, data availability, and interpretability.
Each method has advantages and disadvantages, and the best choice will
depend on the specific requirements and constraints of the application.

5.2. Limitations and opportunities in the field

Research groups and companies around the world are developing
new techniques for monitoring animals’ physical, feeding, and drinking
activities. They seek changes in animal behaviours that can indicate
management and disease issues or signal physiological states. This in-
formation is employed to manage and optimise farm processes by
implementing better everyday herd decisions. The adoption of these
technologies by end users depends on the technologies’ effectiveness,
validated by research groups, companies, or end users. An analogous
situation occurs in academia, where other groups must be able to
reproduce (validate) the results.

The proper development and assessment of algorithms require the
availability of widely accepted open-access databases to develop and
benchmark algorithms. A key factor for their accessibility is the cost of
building. In general, databases are expensive because of the complexity
and labouring efforts of recording, labelling, and curating data from
experiments with many animals under different conditions. Even the
availability of unlabeled databases is limited, although it could be
beneficial for developing models using unsupervised or semi-supervised
learning methods.

The number of animals available, recording session periods, and
devices used in the experiments are fundamental factors of the experi-
ment design. Information about the number of animals and recording
periods is available in the public databases. However, the characteristics
of the recording devices are often overlooked and not reported. More-
over, many methods and algorithms reported in the bibliography do not
publish their source codes and parameters, which limits reproducibility.

Many limitations and issues described in the previous paragraphs
arise from the lack of consensus on the experimental methodology and
setups. The values of experimental parameters are selected to optimise
the results, depending on the objectives. Therefore, they spread over a
wide range of values. Besides, there is no clear agreement on the devices
used for recording data, validation schemes, and performance measures
used in the experiments. This diversity of parameters and methodology
makes difficult the comparison of the algorithms, even for the same
monitoring methodology.

5.3. Challenges and future research directions

Precision livestock farming is transforming livestock management
through the integration of advanced technologies aimed at optimising
resource use and enhancing animal production and welfare. Monitoring
ingestive behaviour and activity in terms of movement and displace-
ment are the main characteristics to be sensed. In the first case, the
devices should be able to distinguish mandibular movements, which
requires working on a short time-scale. In the second case, the mea-
surement time-scale could be longer due to the duration of activity bouts
such as rumination and grazing, and under the idea that previous be-
haviours are compared with current ones. To advance in this field,
critical engineering requirements need to be addressed. These include
the development of sophisticated sensors and real-time monitoring
systems to enable accurate data collection on animal health, behaviours,
and productivity. Specifically, the recording and identification of large
volumes of data related to variables such as mandibular events (all three
of them), evaluation of movement rate and bite rate, as well as animal
movements, spatial movement rate of the animals, or their geolocation is
required. This implies developing devices capable of collecting and
processing the mentioned information, considering limitations of stor-
age capacity and energy supplementation. Another crucial aspect to

address is ensuring the sensors’ robustness and practicality, making
them small, durable, and impact-resistant in field conditions.
Advancements in artificial intelligence and machine learning are
essential for developing algorithms capable of analysing large datasets
and providing practical recommendations. The design and imple-
mentation of automation systems are necessary to facilitate precise and
early interventions in livestock management. Here it should be differ-
entiated according to the system objectives and the requirement con-
straints to optimise resources. For example, the determination of
ingestive behaviour variables such as type and rate of jaw movements,
that can define changes in intake rates, require continuous identification
on a scale of seconds. However, the identification of rumination as an
activity and whose objective is analysing changes in their total time to
then infer changes in intake or presence of a disease, in itself can be
considered as a block of several minutes or hours. Consequently, the
development of algorithms should be carried out with a larger scale of
temporal resolution. Furthermore, the integration of IoT and high-
quality connectivity is crucial for ensuring efficient and secure real-
time data transmission. Addressing these engineering research needs
will significantly advance precision livestock farming, thereby
enhancing sustainability, productivity, and animal welfare in livestock
production systems. The approach to developing these management
systems (platforms) is clearly interdisciplinary. The integration of
knowledge from diverse fields such as animal biology (physiology,
behaviour, nutrition, etc.), engineering (sensors, signal interpretation,
etc.), and computer science (algorithms, artificial intelligence, etc.) is
crucial for an effective and successful development.
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The development and standardisation of methods to collect infor-
mation that allows accurate and detailed characterisation of daily ac-
tivities is a priority for future research studies. The data should be
appropriate to analyse animal behaviour under different conditions,
derive models for DMI prediction, detect early welfare problems, and
assist in management decisions. For example, acoustic methods offer a
promising approach for accurately detecting individual variations of
behavioural variables relevant to herd management. Differences in
grazing time, rumination time, instantaneous intake rate, and bite rate
between animals or even days provide valuable diagnostic information
on the limitations in feeding management. This information about the
animal feeding behaviour is hard to obtain with other methods. It would
be necessary to know if all methods require specific calibrations for their
use in different pasture (species, phenological stages, biomasses) and
animal (age, breed, frame) conditions.

Deploying feeding behaviour monitoring techniques on portable
embedded systems requires further investigation and development. It is
an emergent research topic known as edge artificial intelligence (EAI)
that allows computations where data is collected rather than at a cen-
tralised computing facility. Because of the integration of IoT with Al this
is also known as artificial intelligence of things (AIT). Few algorithms
have been implemented on resource-constrained embedded systems
(Arablouei et al., 2021; Deniz et al., 2017; Yu et al., 2022). The
deployment of ML-based algorithms in low-power embedded systems
comprises either the adaptation of algorithms to the available resources
(hardware resources, available memory, numerical formats) or the al-
gorithm development for the embedded system-specific data set speci-
fications usually include using lightweight and compressed models,
which results in a loss of accuracy performance (Murshed et al., 2021).

While it is argued that isolated development of EAI/AIT may be
insufficient to achieve Agriculture 4.0 (Morrone et al., 2022), a
comprehensive vision that considers different levels is necessary. In
order to ensure the scalability of precision livestock solutions, it is
essential to propose new systems that can distribute intelligence across
several computing layers, including edge, fog and cloud (see Fig. 19).
This hierarchical distribution facilitates task delegation based on
computational power, data privacy needs, and response time re-
quirements. It enables real-time monitoring and analysis of large
numbers of animals across vast agricultural landscapes. The framework
of distributed intelligence optimises the efficiency of data processing
and management, while also ensuring that farm operations remain
adaptable to the evolving demands of the agricultural industry. The
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scalability of the systems in place is guaranteed, ensuring high levels of
performance, reliability, and accuracy even as the number of animals
and the complexity of farm ecosystems increase.

Algorithm development for embedded systems (edge intelligence)
implies algorithm optimisation to the resources available in micro-
controllers (Chelotti et al., 2016, 2018; Martinez-Rau et al., 2022). This
approach has been stimulated by the availability of commercial micro-
controllers with specialised hardware (floating point processor, Al
accelerator/neural processor unit, encryption, security, connectivity,
audio, and video interfaces). It provides algorithms with higher per-
formance at a higher development effort, reducing the communication
bandwidth and improving data security, among other features (Zhou
et al., 2019). Another approach, which could be efficient in energy and
performance terms, is to collect and transmit the data to be processed
either on local servers (fog intelligence) or in the cloud (cloud intelligence)
(Shi, Yang, Jiang, Zhang, & Letaief, 2020). The optimal solution for each
application will depend on the algorithm’s computational cost, signal
attributes, communication requirements (bandwidth, privacy, etc.), and
device autonomy. However, PLF algorithms have not used this approach
due to the poor communication infrastructure in rural environments.

In the search for better performance, there is a trend towards the
analysis of larger volumes of data. Increasingly powerful learning
methods are employed to address this challenge. Most of them employ
the DL paradigm to develop classification models. The high performance
obtained with these models, their ability to process unstructured data
(like images or video), and the availability of efficient training methods
make DL models increasingly accepted by the community. In the context
of the lack of data described in the previous section, one approach to
solving this problem is to generate new data of the same domain (data
augmentation) or use data from different domains (data fusion). As was
pointed out in previous sections, recording new data is a difficult and
expensive task that research groups are not prone to carry on. Therefore,
new techniques have been developed to artificially increase the size of
training sets by creating modified copies of the datasets using existing
data, known as data augmentation. These changes include the addition of
noise, chunking and mixing signals portion, and using DL to generate
new data points, among others.

Domain adaptation (Kouw & Loog, 2021) and transfer learning
(Kleanthous et al., 2022; Niu, Liu, Wang, & Song, 2020) are promising
techniques to address the scarcity of labelled data for training robust
feeding behaviour recognition models. These methods leverage labelled
data from a source domain to improve learning in a target domain with
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Fig. 19. An illustrative representation of a multi-tiered intelligent ecosystem within precision livestock farming, showcasing the hierarchical flow of data through

edge, fog, and cloud computing layers.
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limited labelled data. For instance, models pre-trained on video/signal
datasets of generic behaviours, objects, or scenes could be fine-tuned on
small cattle datasets to recognise feeding behaviours. Another technique
to address the lack of data is semi-supervised learning (Garcia et al., 2020;
Yang, Song, King, & Xu, 2023). It employs unlabeled data combined
with a limited amount of labelled data to boost model performance.
Finally, combining unlabeled and sparsely labelled cattle behavioural
data could improve generalisation. Overall, these techniques may
mitigate the high annotation costs and difficulty of obtaining large
labelled datasets, enabling effective learning from smaller labelled
datasets complemented by unlabeled or out-of-domain data (Marti-
nez-Rau et al., 2023).

Integrating complementary data sources (multimodal data fusion) can
lead to better recognition performances than algorithms using individ-
ual sources (Gao, Li, Chen, & Zhang, 2020). This idea has been suc-
cessfully employed in other research areas like human activities
recognition (Nweke, Teh, Mujtaba, & Al-garadi, 2019), environmental
monitoring (Himeur, Rimal, Tiwary, & Amira, 2022), and emotion
recognition (Zhang, Yin, Chen, & Nichele, 2020). However, in the topic
of this review, multimodal data fusion is still a promising emergent
research area since very few works have been found (Arablouei et al.,
2021). The main problem to solve is the development of algorithms
capable of robustly processing data from diverse domains such that they
integrate information from different sources.

It was observed that precision livestock farming and particularly the
monitoring of feeding behaviour in ruminants are at a turning point.
This review addresses these topics but may exclude some significant
studies. Given the breadth of the problem, it was difficult to cover all
aspects in a single article, which is why the focus was on the areas
related to the authors’ expertise. It is believed that fields such as animal
science or agricultural science may benefit from this research and thus
expand knowledge within these domains.

6. Conclusions

A review of methods and algorithms for monitoring the feeding
behaviour of ruminants has been performed. Different types of sensors
combined with advanced signal processing and ML techniques to assess
and classify feeding activities were analysed, considering all operational
aspects and features to determine their advantages and drawbacks. This
evaluation includes the behavioural information provided, the sensor
location on the animal, the robustness and reliability of the measure-
ment, the device’s portability and ease of use, the storage and commu-
nication requirements, the stress inflicted on the animals, and the energy
efficiency of the devices.

The challenges of this research area include the requirement for
additional open databases and standardised protocols to promote
collaboration and secure reproducibility among researchers and de-
velopers. It will enable the comparison across studies and the validation
of devices to ensure their accuracy and reliability in real-world settings.
The implementation of monitoring algorithms in embedded portable
devices is another relevant challenge. It is a limiting factor for the al-
gorithms’ performance since most researchers in this area do not
consider this issue. Finally, algorithms based on one source of infor-
mation (i.e. sound, movements, images) are achieving their performance
limits. Thus, there is a need for a new class of algorithms able to provide
a more comprehensive understanding of ruminant feeding behaviour.
They must allow the integration of different sources of information.

Precision livestock technologies must balance improving animal
production efficiency with safeguarding animal health and welfare.
While monitoring feeding behaviour can optimise outputs, over-
focusing on enhancing productivity could compromise welfare. How-
ever, promoting humane practices may reduce short-term profits, hin-
dering adoption unless consumer demand for sustainably produced
goods increases. The goal should be to enhance both animal well-being
and farm profitability, which requires a collective commitment across
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the supply chain to increase sustainability.

Furthermore, all these algorithms can produce valuable and timely
information on animal (as well as herd) behaviour without direct human
intervention, over long periods, and in locations that are difficult to
access. Combined with techniques for determining environmental con-
ditions (temperature, humidity, etc.) and pasture characteristics (forage
availability and quality), they would be critical to improving the effi-
ciency and sustainability of livestock systems. Moreover, the potential
applications of these algorithms can go beyond a single farm level,
including assistance in genetic and breeding evaluation, health sur-
veillance, and animal welfare monitoring at the farm and along trans-
port. In some countries, there are proposals to develop certification
systems for livestock farming based on real-time measurements and
animal behaviour as a criterion for quality labelling (Council on Animal
Affairs, 2020).

Establishing these certification systems requires the development of
new methodologies for data collection, processing, and integration.
Collected data from different recording technologies needs to be pro-
cessed and integrated into a single outcome of animal welfare, which
must be easy to understand for the end-users. Finally, the integration
process will require access to data from different devices and users,
requiring the resolution and agreement of data ownership rights, pri-
vacy, and confidentiality issues between the parties involved. The pro-
posed distributed intelligence model is also crucial for this integration in
the roadmap towards Agriculture 4.0.

Further efforts are needed in the development of technologies for
monitoring ingestive behaviour, foraging activities and intake patterns
in order to accurately characterise individual animals within a herd. The
time scales involved range from seconds to hours and even days, which
implies a great challenge in practical issues such as storage capacity,
power consumption, connectivity and robustness of electronic systems.
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