This is the cover of the issue featuring the paper on goldfish. Associated text:
Goldfish, such as this one found in a pond in France, is one of the most frequently and widely introduced aquatic species in the world. In their article, Lejeune et al. (e17435) show that goldfish introductions in naturally fishless ponds have dramatic consequences on food web structure and ecosystem functioning, calling for increased recognition and management of this global issue.
[en] In a global context of invasive alien species (IAS), native predators are often eradicated by functionally different IAS, which may induce complex cascading consequences on ecosystem functioning because of the key role predators play in structuring communities and stabilizing food webs. In permanent ponds, the most abundant freshwater systems on Earth, global human-mediated introductions of alien omnivores such as the pet trade goldfish are driving broad-scale patterns of native predators’ exclusion, but cascading consequences on food web structure and functioning are critically understudied. We compared food webs of naturally fishless ponds vs. ponds where dominant native predators (newts) had been extirpated by invasive goldfish within the last decade. Integrating community-wide isotopic, taxonomic and functional traits approaches, our study reveals that pond food webs collapsed in both vertical and horizontal dimensions following goldfish introduction and the associated exclusion of native predators. Consumer taxonomic diversity was drastically reduced, essentially deprived of amphibians as well as predatory and mobile macroinvertebrates to the profit of burrowing, lower trophic level consumers (detritivores). Changes in community structure and function underlined a regime shift from a macrophyte-dominated system mainly characterized by benthic primary production (periphyton), to a macrophyte-depleted state of ponds hosting communities mainly associated with phytoplankton primary production and detritus accumulation, with higher tolerance to eutrophication and low dissolved oxygen concentration. Results underline major impacts of widely introduced omnivores such as the goldfish on the functioning of pond ecosystems with potentially dramatic consequences on the key ecosystem services they deliver, such as global biodiversity support or water quality improvement. They also shed light on the key role of submerged aquatic vegetation in supporting diverse communities and complex food webs in shallow lentic systems and call for urgent consideration of threats posed by IAS on ponds’ ecosystems by managers and policymakers.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Lejeune, Benjamin ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Lepoint, Gilles ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution
Denoël, Mathieu ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens (LECA)
Language :
English
Title :
Food web collapse and regime shift following goldfish introduction in permanent ponds
Publication date :
2024
Journal title :
Global Change Biology
ISSN :
1354-1013
eISSN :
1365-2486
Publisher :
Blackwell, Oxford, United Kingdom
Volume :
30
Issue :
7
Pages :
e17435
Peer reviewed :
Peer Reviewed verified by ORBi
Development Goals :
14. Life below water
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Amoros, C. (1984). Introduction pratique à la systématique des organismes des eaux continentales françaises: Crustacés cladocères. Bulletin Mensuel de La Société Linnéenne de Lyon, 53, 72–183.
Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA+ for PRIMER: A guide to software and statistical methods. Primer-E Limited.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Batzer, D. P., & Boix, D. (2016). Invertebrates in freshwater wetlands. Springer International Publishing. https://doi.org/10.1007/978-3-319-24978-0
Batzer, D. P., Pusateri, C. R., & Vetter, R. (2000). Impacts of fish predation on marsh invertebrates: Direct and indirect effects. Wetlands, 20(2), 307–312.
Benkendorf, D. J., & Whiteman, H. H. (2021). Omnivore density affects community structure through multiple trophic cascades. Oecologia, 195(2), 397–407. https://doi.org/10.1007/s00442-020-04836-0
Bernabò, I., Iannella, M., Cittadino, V., Corapi, A., Romano, A., Andreone, F., Biondi, M., Gallo Splendore, M., & Tripepi, S. (2023). Survived the glaciations, will they survive the fish? Allochthonous ichthyofauna and alpine endemic newts: A road map for a conservation strategy. Animals, 13(5), 871. https://doi.org/10.3390/ani13050871
Bernery, C., Bellard, C., Courchamp, F., Brosse, S., Gozlan, R. E., Jarić, I., Teletchea, F., & Leroy, B. (2022). Freshwater fish invasions: A comprehensive review. Annual Review of Ecology, Evolution, and Systematics, 53(1), 427–456. https://doi.org/10.1146/annurev-ecolsys-032522-015551
Biggs, J., von Fumetti, S., & Kelly-Quinn, M. (2017). The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia, 793(1), 3–39. https://doi.org/10.1007/s10750-016-3007-0
Carpenter, S. R., Kitchell, J. F., & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. Bioscience, 35(10), 634–639. https://doi.org/10.2307/1309989
Clavero, M., & García-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution, 20(3), 110. https://doi.org/10.1016/j.tree.2005.01.003
Crone, E. R., Sauer, E. L., & Preston, D. L. (2023). Non-native fish facilitate non-native snails and alter food web structure in experimental pond communities. Functional Ecology, 37(4), 947–958. https://doi.org/10.1111/1365-2435.14274
Denoël, M., Džukić, G., & Kalezić, M. L. (2005). Effects of widespread fish introductions on paedomorphic newts in Europe. Conservation Biology, 19(1), 162–170. https://doi.org/10.1111/j.1523-1739.2005.00001.x
Denoël, M., & Ficetola, G. F. (2014). Heterochrony in a complex world: Disentangling environmental processes of facultative paedomorphosis in an amphibian. Journal of Animal Ecology, 83(3), 606–615. https://doi.org/10.1111/1365-2656.12173
Denoël, M., Ficetola, G. F., Sillero, N., Džukić, G., Kalezić, M. L., Vukov, T., Muhovic, I., Ikovic, V., & Lejeune, B. (2019). Traditionally managed landscapes do not prevent amphibian decline and the extinction of paedomorphosis. Ecological Monographs, 89(2), e01347. https://doi.org/10.1002/ecm.1347
Denoël, M., & Lehmann, A. (2006). Multi-scale effect of landscape processes and habitat quality on newt abundance: Implications for conservation. Biological Conservation, 130(4), 495–504. https://doi.org/10.1016/j.biocon.2006.01.009
Denoël, M., & Winandy, L. (2015). The importance of phenotypic diversity in conservation: Resilience of palmate newt morphotypes after fish removal in Larzac ponds (France). Biological Conservation, 192, 402–408. https://doi.org/10.1016/j.biocon.2015.10.018
Dickey, J. W. E., Arnott, G., McGlade, C. L. O., Moore, A., Riddell, G. E., & Dick, J. T. A. (2022). Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NeoBiota, 73, 109–136. https://doi.org/10.3897/neobiota.73.80542
Dickey, J. W. E., Liu, C., Briski, E., Wolter, C., Moesch, S., & Jeschke, J. M. (2023). Identifying potential emerging invasive non-native species from the freshwater pet trade. People and Nature, 5(6), 1948–1961. https://doi.org/10.1002/pan3.10535
Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J. M., & Middelburg, J. J. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388
Enríquez, S., Duarte, C. M., & Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 94(4), 457–471. https://doi.org/10.1007/BF00566960
Estes, J., Terborgh, J., & Brashares, J. (2011). Trophic downgrading of planet Earth. Science, 333(6040), 301–306. https://doi.org/10.1126/science.1205106
Fages, A. (2004). La quête de l'eau. Du Néolithique à nos jours.
Fahimipour, A. K., Levin, D. A., & Anderson, K. E. (2019). Omnivory does not preclude strong trophic cascades. Ecosphere, 10(7), e02800. https://doi.org/10.1002/ecs2.2800
Fehlinger, L., Mathieu-Resuge, M., Pilecky, M., Parmar, T. P., Twining, C. W., Martin-Creuzburg, D., & Kainz, M. J. (2023). Export of dietary lipids via emergent insects from eutrophic fishponds. Hydrobiologia, 850(15), 3241–3256. https://doi.org/10.1007/s10750-022-05040-2
Fehlinger, L., Misteli, B., Morant, D., Juvigny-Khenafou, N., Cunillera-Montcusí, D., Chaguaceda, F., Stamenković, O., Fahy, J., Kolář, V., Halabowski, D., Nash, L. N., Jakobsson, E., Nava, V., Tirozzi, P., Cordero, P. U., Mocq, J., Santamans, A. C., Zamora, J. M., Marle, P., … Rimcheska, B. (2022). The ecological role of permanent ponds in Europe: A review of dietary linkages to terrestrial ecosystems via emerging insects. Inland Waters, 13, 30–46. https://doi.org/10.1080/20442041.2022.2111180
Fry, B., & Davis, J. (2015). Rescaling stable isotope data for standardized evaluations of food webs and species niches. Marine Ecology Progress Series, 528(Phillips 2012), 7–17. https://doi.org/10.3354/meps11293
Gabrion, J. (1976). La néoténie chez Triturus helveticus Raz. Etude morphofonctionnelle de la fonction thyroidienne [PhD thesis]. Université des Sciences et Techniques du Languedoc.
Gallardo, B., Clavero, M., Sánchez, M. I., & Vilà, M. (2016). Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22(1), 151–163. https://doi.org/10.1111/gcb.13004
García-Berthou, E., Alcaraz, C., Pou-Rovira, Q., Zamora, L., Coenders, G., & Feo, C. (2005). Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences, 62(2), 453–463. https://doi.org/10.1139/f05-017
Gherardi, F. (2010). Invasive crayfish and freshwater fishes of the world. Revue Scientifique et Technique (International Office of Epizootics), 29(2), 241–254.
Gu, J., Jin, H., He, H., Ning, X., Yu, J., Tan, B., Jeppesen, E., & Li, K. (2016). Effects of small-sized crucian carp (Carassius carassius) on the growth of submerged macrophytes: Implications for shallow lake restoration. Ecological Engineering, 95, 567–573. https://doi.org/10.1016/j.ecoleng.2016.06.118
Hanson, M. A., Buelt, C. A., Zimmer, K. D., Herwig, B. R., Bowe, S., & Maurer, K. (2015). Co-correspondence among aquatic invertebrates, fish, and submerged aquatic plants in shallow lakes. Freshwater Science, 34(3), 953–964. https://doi.org/10.1086/682118
Hanson, M. A., Herwig, B. R., Zimmer, K. D., Fieberg, J., Vaughn, S. R., Wright, R. G., & Younk, J. A. (2012). Comparing effects of lake- and watershed-scale influences on communities of aquatic invertebrates in shallow lakes. PLoS One, 7(9), e44644. https://doi.org/10.1371/journal.pone.0044644
Hartel, T., Nemes, S., Cogǎlniceanu, D., Öllerer, K., Schweiger, O., Moga, C. I., & Demeter, L. (2007). The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia, 583(1), 173–182. https://doi.org/10.1007/s10750-006-0490-8
Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J., & Kosten, S. (2017). Translating regime shifts in shallow lakes into changes in ecosystem functions and services. Bioscience, 67(10), 928–936. https://doi.org/10.1093/biosci/bix106
Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x
Jones, J. I., & Sayer, C. D. (2003). Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology, 84(8), 2155–2167.
Kloskowski, J., & Nieoczym, M. (2022). Strong behavioral effects of omnivorous fish on amphibian oviposition habitat selection: Potential consequences for ecosystem shifts. Frontiers in Ecology and Evolution, 10, 856258. https://doi.org/10.3389/fevo.2022.856258
Layman, C. A., Arrington, D. A., Montaña, C. G., & Post, D. M. (2007). Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88(1), 42–48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
Lejeune, B., Clément, V., Nothomb, T., Lepoint, G., & Denoël, M. (2023). Trophic interactions between native newts and introduced mosquitofish suggest invaded ponds may act as demographic sinks. Biological Invasions, 25(9), 2993–3007. https://doi.org/10.1007/s10530-023-03089-1
Lejeune, B., Sturaro, N., Lepoint, G., & Denoël, M. (2018). Facultative paedomorphosis as a mechanism promoting intraspecific niche differentiation. Oikos, 127(3), 427–439. https://doi.org/10.1111/oik.04714
Lorenzoni, M., Corboli, M., Ghetti, L., Pedicillo, G., & Carosi, A. (2007). Growth and reproduction of the goldfish Carassius auratus: A case study from Italy. In F. E. Gherardi (Ed.), Biological invaders in inland waters: Profiles, distribution, and threats (pp. 259–273). Springer. https://doi.org/10.1007/978-1-4020-6029-8_13
Lorenzoni, M., Ghetti, L., Pedicillo, G., & Carosi, A. (2010). Analysis of the biological features of the goldfish Carassius auratus auratus in Lake Trasimeno (Umbria, Italy) with a view to drawing up plans for population control. Folia Zoologica, 59(2), 142–156.
Morgan, D. L., & Beatty, S. J. (2007). Feral goldfish (Carassius auratus) in western Australia: A case study from the Vasse River. Royal Society of Western Australia, 90, 151–156.
Nishimura, Y., Ohtsuka, T., Yoshiyama, K., Nakai, D., Shibahara, F., & Maehata, M. (2011). Cascading effects of larval Crucian carp introduction on phytoplankton and microbial communities in a paddy field: Top-down and bottom-up controls. Ecological Research, 26(3), 615–626. https://doi.org/10.1007/s11284-011-0820-9
Östman, Ö., Eklöf, J., Eriksson, B. K., Olsson, J., Moksnes, P.-O., & Bergström, U. (2016). Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. Journal of Applied Ecology, 53(4), 1138–1147. https://doi.org/10.1111/1365-2664.12654
Paine, R. T. (1980). Food webs: Linkage, interaction strength and community infrastructure. Journal of Animal Ecology, 49(3), 667–685. https://doi.org/10.2307/4220
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2018). nlme: Linear and nonlinear mixed effects models. In R package version 3.1-137 (p. https://CRAN.R-project.org/package=nlme)
Pringle, R. M., Kartzinel, T. R., Palmer, T. M., Thurman, T. J., Fox-Dobbs, K., Xu, C. C. Y., Hutchinson, M. C., Coverdale, T. C., Daskin, J. H., Evangelista, D. A., Gotanda, K. M., A. Man in't Veld, N., Wegener, J. E., Kolbe, J. J., Schoener, T. W., Spiller, D. A., Losos, J. B., & Barrett, R. D. H. (2019). Predator-induced collapse of niche structure and species coexistence. Nature, 570(7759), 58–64. https://doi.org/10.1038/s41586-019-1264-6
R Core Team. (2021). R: A language and environment for statistical computing. R Core Team.
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94, 849–873. https://doi.org/10.1111/brv.12480
Rennie, M. D., & Jackson, L. J. (2005). The influence of habitat complexity on littoral invertebrate distributions: Patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences, 62(9), 2088–2099. https://doi.org/10.1139/f05-123
Ricciardi, A. (2007). Are modern biological invasions an unprecedented form of global change? Conservation Biology, 21(2), 329–336. https://doi.org/10.1111/j.1523-1739.2006.00615.x
Richardson, D. C., Holgerson, M. A., Farragher, M. J., Hoffman, K. K., King, K. B. S., Alfonso, M. B., Andersen, M. R., Cheruveil, K. S., Coleman, K. A., Farruggia, M. J., Fernandez, R. L., Hondula, K. L., López Moreira Mazacotte, G. A., Paul, K., Peierls, B. L., Rabaey, J. S., Sadro, S., Sánchez, M. L., Smyth, R. L., & Sweetman, J. N. (2022). A functional definition to distinguish ponds from lakes and wetlands. Scientific Reports, 12(1), 10472. https://doi.org/10.1038/s41598-022-14569-0
Richardson, M. J., Whoriskey, F. G., & Roy, L. H. (1995). Turbidity generation and biological impacts of an exotic fish Carassius auratus, introduced into shallow seasonally anoxic ponds. Journal of Fish Biology, 47, 576–585.
Ripple, W. J., Estes, J. A., Schmitz, O. J., Constant, V., Kaylor, M. J., Lenz, A., Motley, J. L., Self, K. E., Taylor, D. S., & Wolf, C. (2016). What is a trophic cascade? Trends in Ecology & Evolution, 31(11), 842–849. https://doi.org/10.1016/j.tree.2016.08.010
Romano, A., Bernabò, I., Rosa, G., Salvidio, S., & Costa, A. (2023). Artificial paradises: Man-made sites for the conservation of amphibians in a changing climate. Biological Conservation, 286, 110309. https://doi.org/10.1016/j.biocon.2023.110309
Romano, A., Ventre, N., De Riso, L., Pignataro, C., & Spilinga, C. (2010). Amphibians of the “Cilento e Vallo di Diano” National Park (Campania, Southern Italy): Updated check list, distribution and conservation notes. Acta Herpetologica, 5(2), 233–244.
Sagouis, A., Cucherousset, J., Villéger, S., Santoul, F., & Boulêtreau, S. (2015). Non-native species modify the isotopic structure of freshwater fish communities across the globe. Ecography, 38(10), 979–985. https://doi.org/10.1111/ecog.01348
Sanders, D., Thébault, E., Kehoe, R., & Frank van Veen, F. J. (2018). Trophic redundancy reduces vulnerability to extinction cascades. Proceedings of the National Academy of Sciences, 115(10), 2419–2424. https://doi.org/10.1073/pnas.1716825115
Savini, D., Occhipinti-Ambrogi, A., Marchini, A., Tricarico, E., Gherardi, F., Olenin, S., & Gollasch, S. (2010). The top 27 animal alien species introduced into Europe for aquaculture and related activities. Journal of Applied Ichthyology, 26(SUPPL. 2), 1–7. https://doi.org/10.1111/j.1439-0426.2010.01503.x
Scheffer, M., Hosper, S. H., Meijer, M.-L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8(8), 275–279. https://doi.org/10.1016/0169-5347(93)90254-M
Schmitz, O. J., & Leroux, S. J. (2020). Food webs and ecosystems: Linking species interactions to the carbon cycle. Annual Review of Ecology, Evolution, and Systematics, 51(1), 271–295. https://doi.org/10.1146/annurev-ecolsys-011720-104730
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(July 1928), 379–423. https://doi.org/10.1145/584091.584093
Shurin, J. B., Borer, E. T., Seabloom, E. W., Anderson, K., Blanchette, C. A., Broitman, B., Cooper, S. D., & Halpern, B. S. (2002). A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 5(6), 785–791. https://doi.org/10.1046/j.1461-0248.2002.00381.x
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 64(4), 583–616. https://doi.org/10.1111/1467-9868.00353
Suthers, I., & Rissik, D. (2009). Plankton: A guide to their ecology and monitoring for water quality. CSIRO Publishing.
Tachet, H., Richoux, P., Bournaud, M., & Usseglio-Polatera, P. (2010). Invertébrés d'eau douce Systématique, biologie, écologie. CNRS Editions.
Takimoto, G., & Post, D. M. (2013). Environmental determinants of food-chain length: A meta-analysis. Ecological Research, 28, 675–681. https://doi.org/10.1007/s11284-012-0943-7
Trovillion, D. C., Sauer, E. L., Shay, G., Crone, E. R., & Preston, D. L. (2023). Habitat complexity, connectivity, and introduced fish drive pond community structure along an urban to rural gradient. Ecological Applications, 33(4), e2828. https://doi.org/10.1002/eap.2828
Usseglio-Polatera, P., Bournaud, M., Richoux, P., & Tachet, H. (2000). Biological and ecological traits of benthic freshwater macroinvertebrates: Relationships and definition of groups with similar traits. Freshwater Biology, 43(2), 175–205. https://doi.org/10.1046/j.1365-2427.2000.00535.x
Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S-PLUS (4th ed.). Springer.
Ventura, M., Tiberti, R., Buchaca, T., Buñay, D., Sabás, I., & Miró, A. (2017). Why should we preserve fishless high mountain lakes? In J. Catalan, J. M. Ninot, & M. M. Aniz (Eds.), High mountain conservation in a changing world (pp. 181–205). Springer International Publishing. https://doi.org/10.1007/978-3-319-55982-7_8
Walker, R. M., & Johansen, P. H. (1977). Anaerobic metabolism in goldfish (Carassius auratus). Canadian Journal of Zoology, 55(8), 1304–1311. https://doi.org/10.1139/z77-170
Wang, S., Brose, U., & Gravel, D. (2019). Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology, 100(3), e02616. https://doi.org/10.1002/ecy.2616
Ward, C. L., & McCann, K. S. (2017). A mechanistic theory for aquatic food chain length. Nature Communications, 8(1), 2028. https://doi.org/10.1038/s41467-017-02157-0
Winandy, L., Darnet, E., & Denoël, M. (2015). Amphibians forgo aquatic life in response to alien fish introduction. Animal Behaviour, 109, 209–216. https://doi.org/10.1016/j.anbehav.2015.08.018
Winandy, L., Legrand, P., & Denoël, M. (2017). Habitat selection and reproduction of newts in networks of fish and fishless aquatic patches. Animal Behaviour, 123, 107–115. https://doi.org/10.1016/j.anbehav.2016.10.027
Winnie, J., & Creel, S. (2017). The many effects of carnivores on their prey and their implications for trophic cascades, and ecosystem structure and function. Food Webs, 12, 88–94. https://doi.org/10.1016/j.fooweb.2016.09.002
Wootton, K. L. (2017). Omnivory and stability in freshwater habitats: Does theory match reality? Freshwater Biology, 62(5), 821–832. https://doi.org/10.1111/fwb.12908
Xi'ao, Z., Xiaoyun, S., Zhi, L., & Yifeng, C. (2014). A prediction of the global habitat of two invasive fishes (Pseudorasbora parva and Carassius auratus) from East Asia using Maxent. Biodiversity Science, 22(2), 182–188. https://doi.org/10.3724/SP.J.1003.2014.13163
Zambrano, L., Martinez-Ramos, M., & Scheffer, M. (2001). Catastrophic response of lakes to benthivorous fish introduction. Oikos, 94(2), 344–350. https://doi.org/10.1034/j.1600-0706.2001.940215.x
Ziegler, J. P., Gregory-Eaves, I., & Solomon, C. T. (2017). Refuge increases food chain length: Modeled impacts of littoral structure in lake food webs. Oikos, 126(9), 1347–1356. https://doi.org/10.1111/oik.03517
Zou, K., Thébault, E., Lacroix, G., & Barot, S. (2016). Interactions between the green and brown food web determine ecosystem functioning. Functional Ecology, 30(8), 1454–1465. https://doi.org/10.1111/1365-2435.12626