Unpublished conference/Abstract (Scientific congresses and symposiums)
Multi-scale Modelling using Recurrent Neural Network for Mesoscale Surrogation to Achieve Acceleration in Simulation of Rate-Dependent Dissipative Lattice Based and Cellular Meta-Materials
Mustafa, Syed Mohib; Wu, Ling; Noels, Ludovic et al.
202419th European Mechanics of Materials Conference EMMC
Editorial reviewed
 

Files


Full Text
2024_EMMC_MM.pdf
Author postprint (1.61 MB) Creative Commons License - Attribution, Non-Commercial, No Derivative
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Computational homogenisation; Surrogate Modelling; Cellular Materials; Meta-Materials
Abstract :
[en] FE2 complexity renders multi-scale cellular meta material simulations impractical on account of excessive time and (computational) resource requirements. Especially the rate dependent, dissipative material nature of the base material alongside the fine discretization of the underlying repeated lattices necessitates acceleration of the numerical scheme. Resolution of the micro scale boundary value problem by a surrogate is investigated and its applicability is demonstrated using lattice based meta materials. An effective surrogate model sensitive to (strain) rate and (microscale) geometrical parameters using a recurrent neural network (RNN) is trained (offline) on a dataset populated by performing full-field simulations. Populating the dataset, including identification of generation parameters, establishing bounds for spanning a functional space, and designing of the surrogate model and tuning of the training parameters is presented. The quality of the trained surrogate is evaluated by means of testing data and FE2 counterparts by substitution in equivalent multiscale simulations. Comparisons are made on the predictions demonstrating the sensitivity on (strain) rate, local constitutive behaviour, local (lattice) geometrical parameters using various loading scenarios. One potential area of application for surrogated multiscale modelling is microscale level optimization to maximize / minimize an objective function defined on macroscale level. This is achieved by the reduction in computational resources enabling fast and cheap evaluation of the objective function (multiscale FE simulation).
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering
Author, co-author :
Mustafa, Syed Mohib  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Wu, Ling ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Segurado Javier;  IMDEA Materials Institute > Multiscale Materials Modelling
Language :
English
Title :
Multi-scale Modelling using Recurrent Neural Network for Mesoscale Surrogation to Achieve Acceleration in Simulation of Rate-Dependent Dissipative Lattice Based and Cellular Meta-Materials
Publication date :
31 May 2024
Event name :
19th European Mechanics of Materials Conference EMMC
Event date :
29 - 31 May 2024
Audience :
International
Peer reviewed :
Editorial reviewed
Development Goals :
9. Industry, innovation and infrastructure
European Projects :
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Name of the research project :
MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Funders :
EC - European Commission
EU - European Union
Funding number :
862015
Funding text :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015
Available on ORBi :
since 05 July 2024

Statistics


Number of views
27 (2 by ULiège)
Number of downloads
147 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi