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Motivation

e Multi-scale simulations Macro-scale BVP

— Concurrent solution at two different scales
* Macro-scale resolution
* Meso-scale resolution
* Finite element simulations have FE?

complexity _ Meso-scale BVP ¥
— Impractical for lattice based meta X e »
materials resolition

Material is dissipative & rate dependent
« Fine  discretization  for  geometrical |

resolution /

_ i 2 i i . ,
Reduction of the FE2 complexity is sought Off - line On - line
Meso-scale BVP
« Accelerated Multi-scale simulations resolution
: . Macro-scale BVP
— Substitute a surrogate in-place of meso- Fy P
scale 2
« Surrogate is trained offline i/
« Substitutes expensive meso-scale FE l = — PM
resolution PM FM C
» Speeds up the (online) simulation C M
M —_— Surrogate
A Trained

Z
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Recurrent Neural Network accelerated multi-scale simulations

 Neural networks

— Theoretically generic
* Material parameters
* Rate dependency
» Geometrical parameters

 Basic unit of a Neural Network

— Neuron
* Non-linear function on n, inputs u;
* Requires evaluation of weights w,,
* Requires definition of activation function

* Feed-Forward Neuron Network
— Simplest architecture

— Layers of neurons
* Input layer
e N - 1 hidden layers
* Output layers

Mapping R" — R"™ : v = g(u)
Doesn’t allow for history dependence
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Recurrent Neural Network accelerated multi-scale simulations

Recurrent neural network

— Allows a history dependent relation

Input u;

Output v, = g(u, he—yq )

Internal variable h; = g(uy, hy—1 )

— Weights matrices U,W,V

Trained using sequences

(»)

@ u

— Inputs u,”,,, .

»)

(»
ey o U

— Output v

Stress

v
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Recurrent Neural Network accelerated multi-scale simulations

* Recurrent neural network design

— 1 Gated Recurrent Unit (GRU)
* Rest gate: select past information
to be forgotten
« Update gate: select past information
to be passed along

« Hidden variables account for history

dependence

— 2 feed-forward NNWs

* NNW, to treat inputs u,

* NNW to produce outputs v,

Output, v,

A

Feed forward NNW,

Hidden
State, h, ,

Hidden
State, h,

Feed forward NNW,

A
Input, u,
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Recurrent Neural Network accelerated multi-scale simulations

« ldentification of inputs & outputs of the training dataset
« Generation of training & testing datasets
« Training of the meso-scale surrogate

« Validation of the meso-scale surrogate
— Against testing data
— Against FE2 simulations
— Against experimental tests
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|dentification of inputs & outputs of the training dataset

Focus is on lattice based meta materials:
— Polymeric base material — Polyamide 12
(PA12):
» Visco elastic — visco plastic constitutive behavior

» Stress - Strain relation is not a one-to-one
mapping which must be accounted for

« Stress — Stress relation is rate-dependent which
must be tracked

— Topology of the lattices

» Different lattices display different mechanical
response e.g., auxetic behavior

» Different volume fractions of the unit lattices
result in different mechanical response

eng. stress [MPa]

N
o
1

PA12 (V) Compression Medium~High rates

60
40

—— Strain rate 10.0/s
—— Strain rate 166/s
—— Strain rate ~380/s
—— Strain rate ~640/s
Strain rate ~750/s
—— Strain rate ~890/s

0.0 0.1 0.2 0.3 0.4
eng. strain [-]
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Identification of inputs & outputs of the training dataset

Hence the input parameters of the dataset must be rich in:
— Rate dependent strain (history): Ey, Ey
— Geometrical parameters: ¢,

Such that the output parameters of the dataset span the prediction space
— Homogenized stress (history): Sy
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|dentification of inputs & outputs of the training dataset

Dataset Composition: P ) 006 v, = 0.104
— Input:
* Random rate dependent strain
(history): Ey, Eym
— Random Walk Strain Paths

=pl

— Cyclic Strain Paths o S 02 o B3 066
« Random geometrical parameters: ¢, v, = 0.046 V; =0.095 18;
— Type of unit lattice cell '
— Volume fraction specified as the radius '
of unit lattice strut " %
2 WPl 2 MPa] 2 MPal
O it O ettt e

Unit lattices in increasing order of volume
fraction subjected to random walk & cyclic

strain paths

Ezz [-]

Cyclic strain
paths

Random walk strain
paths

B
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Identification of inputs & outputs of the training dataset

—— path: data_path13918

Dataset Composition:

— Input:
Random rate dependent strain
(history):Ey;, Ey

Random geometrical parameters: ¢,

Ezz [-]

— Output:
Homogenized stress (history): Sy

J2 [MPa]
0.013 122
E— ]

Unit lattice cell subjected to strain path
for generating stresses

Strain Path in volumetric Space

= Sxx = Syy = Szz = Sxy = Sxz — Svz

S [Mpa]

Homogenized stress plotted against (volumetric) strain path
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Training of mesoscale surrogate

 Mean square error (MSE) evolution during training

— Computed on training and testing data (Excluded from training data - Pristine)

10724 ; —— Testing MSE
5 1077
=
L
10744
5 -~ 10734
| —— Training MSE i
102 104 106 104 105  10°® 107
Epoch Epoch
A

AN
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S [MPa]

Validation of the recurrent neural network

—— path: 5

0.00

Performance evaluation on testing data [Actual vs RNN prediction]

—— path: 10

0.3
0.2
0.1
0.0
-0.1

Ezz [-]

0.15

—0.04 0.10

_0.0%‘000 s . 0%_05 &
Sy %006 05 <

Cyclic strain path

— Sxx
o 0.50
Szz
Sxy _0.25q9 *®
S ©
XZ o
g = 0.001
YZ —
n
-0.25+
-0.50
0.00 0.05 —0.025 0.000 0.025 0.050
Exx Exx
A FE (actual solution) vs RNN prediction FE (actual solution) vs RNN prediction
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Testing of mesoscale surrogate

« Performance evaluation on multiscale (FE?) simulations.

— Establishing control for comparison using uniaxial compression test
— Substituting microscale FE resolution by RNN surrogate in the uniaxial compression test

w /0/)%

AW %‘
, £ RNN
; = Surrogate
——————————— =
£ RNN
e - Surrogate
sig_yy - step 1in [0,10] Microscale Microscale
O 0825 — Cell 3 0.6 mm radius Surrogote
Macroscale Discretized SVEs
Single Element
A
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Testing of mesoscale surrogate

« Comparison between Multiscale (FE2) and RNN surrogate predictions.

— Uni-axial compression test

80

70

60 m —RNN
0 \\ — FE2
) RN

0 A

0 AN
0 AN

-6 -5 -4 -3 -2 -1 0

Force [N]

Displacement [mm]
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Testing of mesoscale surrogate

Validation against experimental data

— Y, sample of a cylinder constituting of a repeated unit lattices subjected to a tensile force

Adapter subjected Adapter subjected
to traction to traction

Applied constraints von Mises Stress [MPa]

0.00377 0.42 18.8
Equivalent Multiscale Setup Simulation using RNN surrogate at
the mesoscale
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Testing of mesoscale surrogate

« Validation against experimental data

— Yasample of a cylinder constituting of a repeated unit lattices subjected to a tensile force

50

----- Experimental Data JKU

————— Experimental Data IMDEA -
407 —— RNN Surrogated Simulation ,f’x

800 005 010 015 020 025 030
A € [-]
& %7
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Recurrent Neural Network accelerated multi-scale simulations

« Conclusions

— Neural Network based surrogates can be employed to accelerate multiscale simulations, this
approach reduces the FE2 complexity and enables simulations within reasonable time and

resources

— Recurrent Neural Network were investigated for accelerated multi-scale simulations involving
lattice based meta-materials
* Results and validations indicate that RNN can predict scenarios that involve
— Rate dependent dissipative mesoscale response
— Geometrically variant mesoscale response
— Training an effective surrogate requires careful identification of Input-Output parameters such

that the surrogate is sensitive to the desired predictions
— Time and resource gains observed in the online phase of the simulation are dependent on the
training done during the offline phase.

— Predictions sought outside the range of the training dataset will severely reduce the quality of
the results, however additional training with new data can be performed to increase the range

and applicability of the surrogates.
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Public access repository

* Public Access Repository

— https://qgitlab.uliege.be/moammm/moammmPublic/syntheticdata/sveresponses

main v sveresponses History Find file oy v

[l README 5 Creative Commons Attribution 4.0 International

Name Last commit
| [=]X |
Eacell3 [HOT-FIX] - Duplicate folders . -
-
Eacells [DataPath Update 041223]
u L}
Eacelo [Feature, Refractor] - Post Processing for HO DataPaths . =
" |} = n
B3 scripts [DataPath Update 041223]
- ‘ u -
83 LICENSE clean history -
n I.I
|} B n
s M u
m+ README.md Merge branch 'dev_mm' into 'main’ I.
sveResponses

e (GeBY40] - moarenn]

This repository contains:

» Data generated by simulation of synthetic volume elements (SVE) constructed using lattices under investigation in MOAMMM project.
» Code to visualize and generate further SVE data.

» Recurrent Neural Network (RNN) based surrogate models, trained on the SVE data.

= Code to train surrogate model and visualize its predictions against the testing data.

A’
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https://gitlab.uliege.be/moammm/moammmPublic/syntheticdata/sveresponses
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