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• Multi-scale simulations 

– Concurrent solution at two different scales

• Macro-scale resolution

• Meso-scale resolution

• Finite element simulations have FE2 

complexity 

– Impractical for lattice based meta 

materials

• Material is dissipative & rate dependent

• Fine discretization for geometrical 

resolution

– Reduction of the FE2 complexity is sought

• Accelerated Multi-scale simulations

– Substitute a surrogate in-place of meso-

scale

• Surrogate is trained offline

• Substitutes expensive meso-scale FE 

resolution

• Speeds up the (online) simulation  

Motivation
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•  Neural networks

– Theoretically generic

• Material parameters

• Rate dependency

• Geometrical parameters

• Basic unit of a Neural Network

– Neuron

• Non-linear function on 𝑛0 inputs 𝑢𝑘 

• Requires evaluation of weights 𝑤𝑘 

• Requires definition of activation function

• Feed-Forward Neuron Network

– Simplest architecture 

– Layers of neurons

• Input layer

• 𝑁 − 1 hidden layers

• Output layers

– Mapping ℜ𝑛0 → ℜ𝑛𝑁  : 𝒗 =  𝒈(𝒖)

– Doesn’t allow for history dependence

Recurrent Neural Network accelerated multi-scale simulations
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• Recurrent neural network

– Allows a history dependent relation 

• Input 𝒖𝒕

• Output 𝒗𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏 

• Internal variable 𝒉𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏 

– Weights matrices 𝐔, 𝐖, 𝐕

• Trained using sequences

– Inputs  𝒖𝒕−𝒏
(𝒑)

, …, 𝒖𝒕
(𝒑)

  

– Output 𝒗𝒕−𝒏
(𝒑)

, …, 𝒗𝒕
(𝒑)

  

Recurrent Neural Network accelerated multi-scale simulations
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• Recurrent neural network design

– 1 Gated Recurrent Unit (GRU)

• Rest gate: select past information 

 to be forgotten 

• Update gate: select past information 

 to be passed along 

• Hidden variables account for history 

dependence

– 2 feed-forward NNWs

• NNWI to treat inputs 𝒖𝒕

• NNWO to produce outputs 𝒗𝒕

Recurrent Neural Network accelerated multi-scale simulations
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• Identification of inputs & outputs of the training dataset

• Generation of training & testing datasets

• Training of the meso-scale surrogate

• Validation of the meso-scale surrogate

– Against testing data

– Against FE2 simulations

– Against experimental tests

Recurrent Neural Network accelerated multi-scale simulations
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• Focus is on lattice based meta materials:

– Polymeric base material – Polyamide 12 

(PA12):

• Visco elastic – visco plastic constitutive behavior 

• Stress - Strain relation is not a one-to-one 

mapping which must be accounted for

• Stress – Stress relation is rate-dependent which 

must be tracked

– Topology of the lattices

• Different lattices display different mechanical 

response e.g., auxetic behavior    

• Different volume fractions of the unit lattices 

result in different mechanical response

Identification of inputs & outputs of the training dataset
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• Hence the input parameters of the dataset must be rich in:

– Rate dependent strain (history): 𝐄M, ሶ𝐄M

– Geometrical parameters: 𝝋m

• Such that the output parameters of the dataset span the prediction space 

– Homogenized stress (history): 𝐒M

Identification of inputs & outputs of the training dataset
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• Dataset Composition:

– Input:

• Random rate dependent strain 

(history): 𝐄M, ሶ𝐄M

– Random Walk Strain Paths

– Cyclic Strain Paths 

• Random geometrical parameters: 𝝋m

– Type of unit lattice cell

– Volume fraction specified as the radius 

of unit lattice strut 

Identification of inputs & outputs of the training dataset

EMMC 2024
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Identification of inputs & outputs of the training dataset
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Strain Path in volumetric Space

Homogenized stress plotted against  (volumetric) strain path

𝐒M(𝑡) 

Unit lattice cell subjected to strain path 
for generating stresses
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• Dataset Composition:

– Input:

• Random rate dependent strain 

(history):𝐄M, ሶ𝐄M

• Random geometrical parameters: 𝝋m

– Output:

• Homogenized stress (history): 𝐒M



• Mean square error (MSE) evolution during training

– Computed on training and testing data (Excluded from training data - Pristine)

Training of mesoscale surrogate 
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• Performance evaluation on testing data  [Actual vs RNN prediction]

Validation of the recurrent neural network 
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Random walk strain path Cyclic strain path 

FE (actual solution) vs RNN prediction FE (actual solution) vs RNN prediction
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• Performance evaluation on multiscale (FE2) simulations.

– Establishing control for comparison using uniaxial compression test

– Substituting microscale FE resolution by RNN surrogate in the uniaxial compression test

Testing of mesoscale surrogate 
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• Comparison between Multiscale (FE2) and RNN surrogate predictions.

– Uni-axial compression test

Testing of mesoscale surrogate 
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Testing of mesoscale surrogate 

Experimental Setup

Equivalent Multiscale Setup Simulation using RNN surrogate at 
the mesoscale

𝐴𝑑𝑎𝑝𝑡𝑒𝑟 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑
 𝑡𝑜 𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

Applied c𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

𝐴𝑑𝑎𝑝𝑡𝑒𝑟 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑
 𝑡𝑜 𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

Applied c𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 
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• Validation against experimental data

– ¼ sample of a cylinder constituting of a repeated unit lattices subjected to a tensile force



• Validation against experimental data

– ¼ sample of a cylinder constituting of a repeated unit lattices subjected to a tensile force

Testing of mesoscale surrogate 
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• Conclusions

– Neural Network based surrogates can be employed to accelerate multiscale simulations, this 

approach reduces the FE2 complexity and enables simulations within reasonable time and 

resources

– Recurrent Neural Network were investigated for accelerated multi-scale simulations involving 

lattice based meta-materials

• Results and validations indicate that RNN can predict scenarios that involve

–  Rate dependent dissipative mesoscale response

– Geometrically variant mesoscale response

– Training an effective surrogate requires careful identification of Input-Output parameters such 

that the surrogate is sensitive to the desired predictions 

– Time and resource gains observed in the online phase of the simulation are dependent on the 

training done during the offline phase.

– Predictions sought outside the range of the training dataset will severely reduce the quality of 

the results, however additional training with new data can be performed to increase the range 

and applicability of the surrogates. 

Recurrent Neural Network accelerated multi-scale simulations
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Public access repository
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• Public Access Repository

– https://gitlab.uliege.be/moammm/moammmPublic/syntheticdata/sveresponses 

https://gitlab.uliege.be/moammm/moammmPublic/syntheticdata/sveresponses
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