Extraction process; Functional properties; Physicochemical properties; Structure; White lupin protein isolates; Different solvents; Free sulfhydryl groups; Lupin proteins; Particles sizes; Physicochemical property; Protein isolates; White lupin; White lupin protein isolate; Biotechnology; Food Science; Chemistry (all); Biochemistry; Industrial and Manufacturing Engineering; General Chemistry
Abstract :
[en] Lupin Protein Isolates (L) are considered as promising ingredients. The effects of different solvent extractions of un-defatted (L-U), hot (L-HD) and cold (L-CD) lupin flour on the physicochemical, functional and structural parameters were determined. Hot defatting increased the protein yield and the purity, and increased the particle size, while cold defatting decreased the particle size of lupin isolates. Regarding the amount of free sulfhydryl groups, hot defatting allowed a reduction in free sulfhydryl groups and an increase in the amount of disulfide bridges. Hot and cold defatting resulted in a remarkable decrease in the maximum fluorescence intensity of lupin protein isolates. Regarding the secondary structure determined by mid-infrared, all protein isolates showed similar behavior, although some differences are observed. Hot defatting promoted a significant increase in β-sheet and a decrease in β-turn and aggregates A2 levels. In terms of functionality, L-CD and L-HD behaved fundamentally differently from L-U. Hot defatting leads to protein isolates with improved functional profiles in emulsifying stability index and cold defatting improves significantly solubility, oil adsorption capacity and emulsifying activity index.
Disciplines :
Food science
Author, co-author :
Nahimana, Paterne; Univ. Artois, Univ. Lille, Univ. Littoral Côte d’Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, Lens, France ; Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Morocco
Abdelmoumen, Hanaa; Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, Rabat, Morocco
Blecker, Christophe ; Université de Liège - ULiège > TERRA Research Centre > Technologie Alimentaire (TA)
This work was carried out in the framework of the BIHAUTSECO de France project, which is financed by the French state and the French region of Hauts-de-France. We acknowledge financial support from the Major Domain of Interest (DIM) ‘Eco-Energy Efficiency’ of Artois University.
Das D, Mir NA, Chandla NK, Singh S (2021) Combined effect of PH treatment and the extraction PH on the physicochemical, functional and rheological characteristics of amaranth (Amaranthus Hypochondriacus) seed protein isolates. Food Chem 353:129466. 10.1016/j.foodchem.2021.129466 DOI: 10.1016/j.foodchem.2021.129466
Bader S, Oviedo JP, Pickardt C, Eisner P (2011) Influence of different organic solvents on the functional and sensory properties of lupin (Lupinus Angustifolius L.) proteins. LWT Food Sci Technol 44:1396–1404. 10.1016/j.lwt.2011.01.007 DOI: 10.1016/j.lwt.2011.01.007
Mir NA, Riar CS, Singh S (2019) Effect of PH and holding time on the characteristics of protein isolates from chenopodium seeds and study of their amino acid profile and scoring. Food Chem 272:165–173. 10.1016/j.foodchem.2018.08.048 DOI: 10.1016/j.foodchem.2018.08.048
Sethi S, Yadav DN, Snigdha S, Gupta A (2021) Optimization of process parameters for extraction of protein isolates from Khesari Dhal (Lathyrus sativus L). LWT Food Sci Technol 137:1–9. 10.1016/j.lwt.2020.110368 DOI: 10.1016/j.lwt.2020.110368
Bartkiene E, Sakiene V, Bartkevics V, Rusko J, Lele V, Juodeikiene G, Wiacek C, Braun PG (2018) Lupinus angustifolius L. lactofermentation and protein isolation: effects on phenolic compounds and genistein, antioxidant properties, trypsin inhibitor activity, and protein digestibility. Eur Food Res Int. 10.1007/s00217-018-3066-8 DOI: 10.1007/s00217-018-3066-8
Johnson SK, Jonathan C, Villarino CBJ, Coorey R (2017) Lupins: their unique nutritional and health-promoting attributes. Gluten-Free Anc Grains. 10.1016/B978-0-08-100866-9/00008-X DOI: 10.1016/B978-0-08-100866-9/00008-X
Czubinski J, Grygier A, Siger A (2021) Lupinus mutabilis seed composition and its comparison with other lupin species. J Food Compos 99:1–11. 10.1016/j.jfca.2021.103875 DOI: 10.1016/j.jfca.2021.103875
Sujak A, Kotlarz A, Strobel W (2006) Compositional and nutritional evaluation of several lupin seeds. Food Chem 98:711–719. 10.1016/j.foodchem.2005.06.036 DOI: 10.1016/j.foodchem.2005.06.036
Alderks OH (1949) The study of 20 varieties of soybeans with respect to quantity and quality of oil, isolated protein, and nutritional value of the meal. J Am Oil Chem Soc 26(3):126–132 DOI: 10.1007/BF02665174
Tesarowicz I, Zawi A, Maciejaszek I (2022) Effect of Alcalase modification of yellow lupin (Lupinus luteus L.) protein isolate on some functional properties and antioxidant activity. Inter J Food Sci. 10.1155/2022/6187441 DOI: 10.1155/2022/6187441
Trugo LC, Baer EV, Baer DV (2015) Lupin: mreeding. Encyclopedia of Food Grains, Second Edition 4:325–332. 10.1016/B978-0-12-394437-5.00211-4 DOI: 10.1016/B978-0-12-394437-5.00211-4
Fadimu GJ, Gill H, Farahnaky A, Truong T (2021) Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food Bioproc Technol 14:2004–2019. 10.1007/s11947-021-02700-4 DOI: 10.1007/s11947-021-02700-4
Aguilar-Acosta LA, Serna-Saldivar SO, Rodríguez-Rodríguez J, Escalante-Aburto A, Chuck-Hernández C (2020) Effect of ultrasound application on protein yield and fate of alkaloids during lupin alkaline extraction process. Biomolecule 10(292):1–22. 10.3390/biom10020292 DOI: 10.3390/biom10020292
Jiang S, Yildiz G, Ding J, Andrade J, Rababahb TM, Almajwalc A, Abulmeatyc MM, Feng H (2019) Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (Vitamin D3). Food Bioproc Technol 12:1031–1040. 10.1007/s11947-019-02276-0 DOI: 10.1007/s11947-019-02276-0
Machida A, Huang YP, Diasn FFG, Barile D, de Moura Bell JML (2022) Leveraging bioprocessing strategies to achieve the simultaneous extraction of full-fat chickpea flour macronutrients and enhance protein and carbohydrate functionality. Food Bioproc Technol 15:1760–1777. 10.1007/s11947-022-02847-8 DOI: 10.1007/s11947-022-02847-8
Berghout JAM, Boom RM, Van Der Goot AJ (2014) The potential of aqueous fractionation of lupin seeds for high-protein foods. Food Chem 159:64–70. 10.1016/j.foodchem.2014.02.166 DOI: 10.1016/j.foodchem.2014.02.166
Muranyi IS, Otto C, Pickardt C, Koehler P, Schweiggert-Weisz U (2013) Microscopic characterisation and composition of proteins from lupin seed (Lupinus angustifolius L.) as affected by the isolation procedure. Food Res Int 54:1419–1429. 10.1016/j.foodres.2013.10.004 DOI: 10.1016/j.foodres.2013.10.004
Berghout JAM, Nikiforidis CV, Boom RM, Van Der Goot AJ (2015) Aqueous fractionation yields chemically stable lupin protein isolates. Food Res Int 72:82–90. 10.1016/j.foodres.2015.03.039 DOI: 10.1016/j.foodres.2015.03.039
Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509 DOI: 10.1016/S0021-9258(18)64849-5
AACC (1983) Method 08–01: Ash-Basic method, 10th edn. AACC international, St. Paul
AACC (1983) Method 30–25: Crude fat in wheat, corn, and soy flour, feeds, and mixed feeds, 10th edn. AACC International, St. Paul
AOAC (2000) Official methods of analysis of AOAC international, 17th edn. AOAC, Gaithersburg
Erdem BG, Kaya S (2021) Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates. Food Chem 339:127976. 10.1016/j.foodchem.2020.127976 DOI: 10.1016/j.foodchem.2020.127976
Shen X, Fang T, Gao F, Guo M (2017) Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre- and post-thermal aggregation. Food Hydrocoll 63:668–676. 10.1016/j.foodhyd.2016.10.003 DOI: 10.1016/j.foodhyd.2016.10.003
Beveridge TSJ, Nakai T (1974) Determination of sh- and ss-groups in some food proteins using Ellman’s reagent. J Food Sci 39:49–51 DOI: 10.1111/j.1365-2621.1974.tb00984.x
Wang C, Wang J, Zhu D, Hu S (2019) Effect of dynamic ultra-high pressure homogenization on the structure and functional properties of whey protein. J Food Sci Technol. 10.1007/s13197-019-04164-z DOI: 10.1007/s13197-019-04164-z
Moufle AL, Jamet J, Karoui R (2018) Multifactors accelerated aging of sterilized acidic pudding determined by traditional and fluorescence techniques. J Food Eng 41:1–12. 10.1111/jfpe.12807 DOI: 10.1111/jfpe.12807
Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254 DOI: 10.1016/0003-2697(76)90527-3
Deng Y, Huang L, Zhang C, Xie P, Cheng J, Wang X, Li S (2019) Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chem 283:539–548. 10.1016/j.foodchem.2019.01.083 DOI: 10.1016/j.foodchem.2019.01.083
Lam RSH, Nickerson MT (2014) The effect of PH and temperature pre-treatments on the physicochemical and emulsifying properties of whey protein isolate. LWT Food Sci Technol. 10.1016/j.lwt.2014.07.031 DOI: 10.1016/j.lwt.2014.07.031
Boukid F, Pasqualone A (2022) Lupine (Lupinus Spp.) proteins: characteristics, safety and food applications. Eur Food Res Technol 248:345–356. 10.1007/s00217-021-03909-5 DOI: 10.1007/s00217-021-03909-5
Muranyi IS, Volke D, Hoffmann R, Eisner P, Herfellner T, Brunnbauer M, Koehler P, Schweiggert-Weisz U (2016) Protein distribution in lupin protein isolates from Lupinus angustifolius L. prepared by various isolation techniques. Food Chem 207:6–15. 10.1016/j.foodchem.2016.03.073 DOI: 10.1016/j.foodchem.2016.03.073
Flores-Jiménez NT, Ulloa JA, Urías-Silvas JE, Ramírez-Ramírez CR, Bautista-Rosales PU, Gutiérrez-Leyva R (2022) Ultrasonics sonochemistry influence of high-intensity ultrasound on physicochemical and functional properties of a Guamuchil Pithecellobium Dulce (Roxb) seed protein isolate. Ultrason Sonochem 84:105976. 10.1016/j.ultsonch.2022.105976 DOI: 10.1016/j.ultsonch.2022.105976
Berghout JAM, Venema P, Boom RM, Van Der Goot AJ (2015) Comparing functional properties of concentrated protein isolates with freeze-dried protein isolates from lupin seeds. Food Hydrocoll 51:346–354. 10.1016/j.foodhyd.2015.05.017 DOI: 10.1016/j.foodhyd.2015.05.017
Burgos-Díaza C, Wanderslebenb T, Olivosa M, Lichtina N, Bustamantec M, Solans C (2019) Food-grade pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA®): chemical characterization and emulsifying properties. Food Hydrocoll 87:847–857. 10.1016/j.foodhyd.2018.09.018 DOI: 10.1016/j.foodhyd.2018.09.018
Jiang L, Wang J, Li Y, Wang Z, Liang J, Wang R, Chen Y, Ma W, Qi B, Zhang M (2014) Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res Int 62:595–601. 10.1016/j.foodres.2014.04.022 DOI: 10.1016/j.foodres.2014.04.022
Zhou M, Liu J, Zhou Y, Huang X, Liu F, Pan S, Hu H (2016) Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. Innov Food Sci Emerg Technol 34:205–213. 10.1016/j.ifset.2016.02.007 DOI: 10.1016/j.ifset.2016.02.007
Jiang S, Ding J, Andrade J, Rababah TM, Almajwal A, Abulmeaty MM, Feng H (2017) Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrason Sonochem 38:835–842. 10.1016/j.ultsonch.2017.03.046 DOI: 10.1016/j.ultsonch.2017.03.046
Berghout JAM, Boom RM, Van der Goot AJ (2015) Understanding the differences in gelling properties between lupin protein isolate and soy protein isolate. Food Hydrocoll 43:465–472. 10.1016/j.foodhyd.2014.07.003 DOI: 10.1016/j.foodhyd.2014.07.003
Lo B, Kasapis S, Farahnaky A (2022) Effect of low frequency ultrasound on the functional characteristics of isolated lupin protein. Food Hydrocoll 124:1–10. 10.1016/j.foodhyd.2021.107345 DOI: 10.1016/j.foodhyd.2021.107345
Wang W, Li J, Yan L, Huang G, Dong Z (2016) Effect of oxidization and chitosan on the surface activity of soy protein isolate. Carbohydr Polym 151:700–706. 10.1016/j.carbpol.2016.06.004 DOI: 10.1016/j.carbpol.2016.06.004
Fang L, Xiang H, Sun-Waterhouse D, Cui C, Lin J (2020) Enhancing the usability of pea protein isolate in food applications through modifying its structural and sensory properties via deamidation by glutaminase. J Agric Food Chem 68:1691–1697. 10.1021/acs.jafc.9b06046 DOI: 10.1021/acs.jafc.9b06046
Liang O, Ren X, Qu W, Zhang X, Cheng Y, Ma H (2021) The impact of ultrasound duration on the structure of β-lactoglobulin. J Food Eng 292:1–7. 10.1016/j.jfoodeng.2020.110365 DOI: 10.1016/j.jfoodeng.2020.110365
Karaca AC, Nicholas L, Nickerson M (2011) Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res Int 44:2742–2750. 10.1016/j.foodres.2011.06.012 DOI: 10.1016/j.foodres.2011.06.012
Shrestha S, Hag LV, Haritos VS, Dhital S (2021) Lupin proteins: structure, isolation and application. Trends Food Sci Technol 116:928–939. 10.1016/j.tifs.2021.08.035 DOI: 10.1016/j.tifs.2021.08.035
Liu G, Hu M, Du X, Liao Y, Yan S, Zhang S, Qi B, Li Y (2022) Correlating structure and emulsification of soybean protein isolate: synergism between low-PH-shifting treatment and ultrasonication improves emulsifying properties. Colloids Surf A 646:128963. 10.1016/j.colsurfa.2022.128963 DOI: 10.1016/j.colsurfa.2022.128963