Paper published in a journal (Scientific congresses and symposiums)
Learning Diffusion Priors from Observations by Expectation Maximization
Rozet, François; Andry, Gérôme; Lanusse, François et al.
2024In Advances in Neural Information Processing Systems, 37
Peer Reviewed verified by ORBi
 

Files


Full Text
diem.pdf
Author postprint (7.73 MB) Creative Commons License - Public Domain Dedication
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Computer Science - Learning; Statistics - Machine Learning
Abstract :
[en] Diffusion models recently proved to be remarkable priors for Bayesian inverse problems. However, training these models typically requires access to large amounts of clean data, which could prove difficult in some settings. In this work, we present DiEM, a novel method based on the expectation-maximization algorithm for training diffusion models from incomplete and noisy observations only. Unlike previous works, DiEM leads to proper diffusion models, which is crucial for downstream tasks. As part of our methods, we propose and motivate an improved posterior sampling scheme for unconditional diffusion models. We present empirical evidence supporting the effectiveness of our approach.
Disciplines :
Computer science
Author, co-author :
Rozet, François  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Andry, Gérôme  ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Lanusse, François
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Language :
English
Title :
Learning Diffusion Priors from Observations by Expectation Maximization
Publication date :
22 May 2024
Event name :
The Thirty-Eighth Annual Conference on Neural Information Processing Systems
Event place :
Vancouver, Canada
Event date :
December 10-15, 2024
Audience :
International
Journal title :
Advances in Neural Information Processing Systems
ISSN :
1049-5258
Publisher :
Curran Associates, United States
Volume :
37
Peer review/Selection committee :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Tier-1 supercomputer
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 20 June 2024

Statistics


Number of views
80 (22 by ULiège)
Number of downloads
46 (6 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
6

Bibliography


Similar publications



Contact ORBi