Planets and satellites: Atmospheres; Planets and satellites: Aurorae; Planets and satellites: gaseous planets; Aurorae; Auroral emission; Characteristic energy; Emission model; Energy distributions; Planet and satellite: aurora; Planet and satellite: gaseous planet; Planets and satellites; Planets and satellites: atmospheres; Astronomy and Astrophysics; Space and Planetary Science; Jupiter; Juno
Abstract :
[en] Context. Juno, which studies the Jovian system, continues to expand our knowledge of Jupitera s magnetosphere and its environment. Thanks to onboard instruments such as Jupiter Energetic Particle Detector Instrument (JEDI) and Jovian Auroral Distributions Experiment (JADE), in situ measurements have allowed us to derive a realistic representation of charged particle energy distributions precipitating in the auroral regions. Because of the distance between Junoa s measurement location and the position of impact of the charged particles, where auroral emissions are produced, these energetic distributions of magnetospheric particles are likely to be affected by various phenomena such as wave-particle interactions on their way from Juno to the atmosphere. These processes can accelerate or decelerate the particles, changing their average energies. Hence, the energy distributions of particles measured at Junoa s altitude are likely different from those at auroral altitudes. Aims. In this study we develop a UV emission model, combined with an electron transport model, that allows us to relate the auroral emission spectra of H2 molecules with the energy distribution of impinging electrons. Methods. Thanks to observations of the Jovian aurora by the Ultraviolet Spectrograph (UVS) on board Juno, we determined the characteristic energies of electrons precipitating in auroral regions during perijove 32. We modeled the relationship between color ratio (CR) and the characteristic energy of precipitating electrons. Initially, we considered mono-energetic electron fluxes. In a second step, we considered fluxes governed by a kappa distribution. Results. We derived characteristic energy maps for electrons precipitating in Jupitera s auroral regions. In comparison with similar previous studies based on Space Telescope Imaging Spectrograph on board Hubble Space Telescope (HST/STIS) observations, we find that modeling the CR with a mono-energetic distribution leads to a systematic underestimation of the average energy of electrons precipitating in the auroral regions by a factor of 3a "5. Conclusions. In this study we show that it is possible to derive a more realistic estimate of electron energy flux distributions at auroral altitudes.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Benmahi, Bilal ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Benne, B.; University of Edinburgh, School of Geosciences, Edinburgh, United Kingdom
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gladstone, G.R. ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
Gronoff, G. ; NASA Langley Research Center, Hampton, United States ; Science Systems and Applications Inc., Hampton, United States
Lilensten, J. ; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France
Sicorello, Guillaume ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Head, Linus Alexander ; Université de Liège - ULiège > Unités de recherche interfacultaires > Space sciences, Technologies and Astrophysics Research (STAR)
Barthélemy, M.; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France
Simon Wedlund, C.; Institut für Weltraumforschung (IWF), Austrian Academy of Sciences, Graz, Austria
Giles, R.S. ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
Greathouse, T.K.; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULiège - Université de Liège
Funding text :
This work was supported by the University of Liege under Special Funds for Research, IPD-STEMA Programme. C.S.W. thanks the Austrian Science Fund (FWF) and project P35954-N. V.H. acknowledges support from the French government under the France 2030 investment plan, as part of the Initiative d\u2019Excellence d\u2019Aix-Marseille Universit\u00E9 \u2013 A*MIDEX AMX-22-CPJ-04.
Abgrall, H., Roueff, E., Launay, F., & Roncin, J.-Y. 1994, Can. J. Phys., 72, 856
Abgrall, H., Roueff, E., Liu, X., & Shemansky, D. E. 1997, ApJ, 481, 557
Abgrall, H., Roueff, E., Liu, X., Shemansky, D. E., & James, G. K. 1999, J. Phys. B: At. Mol. Opt. Phys., 32, 3813
Ajello, J. M., Pryor, W., Esposito, L., et al. 2005, Icarus, 178, 327
Au, J. W., Cooper, G., Burton, G. R., Olney, T. N., & Brion, C. E. 1993, Chem. Phys., 173, 209
Benmahi, B. 2022, PhD thesis, Université de Bordeaux, France
Blelly, P. L., Robineau, A., & Alcayde, D. 1996, J. Atmos. Terrestrial Phys., 58, 273
Bolton, S. J., Adriani, A., Adumitroaie, V., et al. 2017, Science, 356, 821
Bonfond, B. 2010, J. Geophys. Res.: Space Phys., 115
Bonfond, B., Grodent, D., Gérard, J.-C., et al. 2009, J. Geophys. Res.: Space Phys., 114
Bonfond, B., Gustin, J., Gérard, J.-C., et al. 2015, Ann. Geophys., 33, 1211
Bonfond, B., Gladstone, G. R., Grodent, D., et al. 2017, Geophys. Res. Lett., 44, 4463
Broadfoot, A. L., Belton, M. J. S., Takacs, P. Z., et al. 1979, Science, 204, 979
Clark, G., Mauk, B. H., Haggerty, D., et al. 2017, Geophys. Res. Lett., 44, 8703
Clarke, J. T., Moos, H. W., Atreya, S. K., & Lane, A. L. 1980, ApJ, 241, L179
Clarke, J. T., Ballester, G. E., Trauger, J., et al. 1996, Science, 274, 404
Clarke, J. T., Ballester, G., Trauger, J., et al. 1998, J. Geophys. Res.: Planets, 103, 20217
Connerney, J. E. P., Timmins, S., Oliversen, R. J., et al. 2022, J. Geophys. Res.: Planets, 127, e2021JE007055
Cooper, G., Burton, G. R., & Brion, C. E. 1995, J. Electron Spectrosc. Related Phenomena, 73, 139
Coumans, V., Gérard, J.-C., Hubert, B., & Evans, D. S. 2002, J. Geophys. Res.: Space Phys., 107, SIA 5
Dalgarno, A., Yan, M., & Liu, W. 1999, ApJS, 125, 237
Davies, D. K., Kline, L. E., & Bies, W. E. 1989, J. Appl. Phys., 65, 3311
Davis, M. W., Gladstone, G. R., Greathouse, T. K., et al. 2011, in Radiometric Performance Results of the Juno Ultraviolet Spectrograph (Juno/UVS), eds. H. A. MacEwen, & J. B. Breckinridge (San Diego, California, USA), 814604
Dols, V., Gérard, J. C., Paresce, F., Prangé, R., & Vidal-Madjar, A. 1992, Geophys. Res. Lett., 19, 1803
Dols, V., Gérard, J. C., Clarke, J. T., Gustin, J., & Grodent, D. 2000, Icarus, 147, 251
Elliott, S. S., Gurnett, D. A., Kurth, W. S., et al. 2018, J. Geophys. Res.: Space Phys., 123, 7523
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Gérard, J.-C., & Singh, V. 1982, J. Geophys. Res.: Space Phys., 87, 4525
Gérard, J.-C., Dols, V., Paresce, F., & Prangé, R. 1993, J. Geophys. Res.: Planets, 98, 18793
Gérard, J. C., Grodent, D., Dols, V., et al. 1994, Science, 266, 1675
Gérard, J.-C., Bonfond, B., Grodent, D., et al. 2014, J. Geophys. Res.: Space Phys., 119, 9072
Gladstone, G. R., & Skinner, T. E. 1989, NASA Special Publ., 494, 221
Gladstone, G. R., Persyn, S. C., Eterno, J. S., et al. 2017, Space Sci. Rev., 213, 447
Greathouse, T. K., Gladstone, G. R., Davis, M. W., et al. 2013, in UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII, 8859 (SPIE), 216
Greathouse, T., Gladstone, R., Versteeg, M., et al. 2021, J. Geophys. Res.: Planets, 126, e2021JE006954
Grodent, D. 2015, Space Sci. Rev., 187, 23
Grodent, D., Gladstone, G. R., Gérard, J. C., Dols, V., & Waite, J. H. 1997, Icarus, 128, 306
Grodent, D., Waite, J. H., & Gérard, J.-C. 2001, J. Geophys. Res., 106, 12933
Gronoff, G. 2009, PhD thesis, University of Grenoble, France