[en] [en] BACKGROUND AND AIMS: In laboratory medicine, test results are generally interpreted with 95% reference intervals but correlations between laboratory tests are usually ignored. We aimed to use hospital big data to optimize and personalize laboratory data interpretation, focusing on platelet count.
MATERIAL AND METHODS: Laboratory tests were extracted from the hospital database and exploited by an algorithmic stepwise procedure. For any given laboratory test Y, an "optimized and personalized reference population" was defined by keeping only patients whose laboratory values for all Y-correlated tests fell within their own usual reference intervals, and by partitioning groups by individual-specific variables like sex and age category. The method was applied to platelet count.
RESULTS: Laboratory data were recorded for 28,082 individuals. At the end of the algorithmic process, seven correlated laboratory tests were chosen, resulting in a reference sample of 159 platelet counts. A new 95 % reference interval was constructed [152-334 × 109/L], notably reduced (27.2 %) compared to conventional reference values [150-400 × 109/L]. The reference interval was validated on a sample of 2,129 patients from another downtown laboratory, emphasizing the potential transference of the hospital-derived reference limits.
CONCLUSION: This method offers new perspectives in laboratory data interpretation, especially in patient screening and longitudinal follow-up.
Disciplines :
Human health sciences: Multidisciplinary, general & others
Author, co-author :
Boutin, Ronan; Bio Logbook, 1 rue Julien Videment, 44200 Nantes, France. Electronic address: ronan.boutin@biologbook.fr
Rolland, Jakez; Bio Logbook, 1 rue Julien Videment, 44200 Nantes, France, Nantes University, École Centrale Nantes, CNRS, LS2N, UMR 6004, 1 Rue de la Noë, 44321 Nantes, France. Electronic address: jakez.rolland@biologbook.fr
Codet, Marie; Bio Logbook, 1 rue Julien Videment, 44200 Nantes, France. Electronic address: marie.codet@biologbook.fr
Bézier, Clément ; Bio Logbook, 1 rue Julien Videment, 44200 Nantes, France, University of Western Brittany, INSERM, LBAI, UMR1227, 9 Rue Félix le Dantec, 29200 Brest, France. Electronic address: clement.bezier@biologbook.fr
Maes, Nathalie ; Université de Liège - ULiège > Département des sciences de la santé publique
Kolh, Philippe ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, humaines et pathologiques
Equinet, Leila; Bio Logbook, 1 rue Julien Videment, 44200 Nantes, France. Electronic address: leila.equinet@biologbook.fr
THYS, Marie ; Centre Hospitalier Universitaire de Liège - CHU > > Service des informations médico économiques (SIME)
Moutschen, Michel ; Université de Liège - ULiège > GIGA > GIGA I3 - Immunology & Infectious Diseases
Lamy, Pierre-Jean; Biopathology and Genetics of Cancers, Institute of Medical Analysis IMAGENOME, INOVIE, 90 rue Nicolas Chedeville, 34075 Montpellier, France, Clinical Research Department, Clinique BeauSoleil, Aesio Santé Méditerranée, 149 Rue de la Taillade, 34070 Montpellier, France. Electronic address: pierre-jean.lamy@labosud.fr
Albert, Adelin ; Université de Liège - ULiège > Département des sciences de la santé publique
Language :
English
Title :
Use of hospital big data to optimize and personalize laboratory test interpretation with an application.
Clinical and Laboratory Standards Institute, editor. Defining, establishing and verifying reference intervals in the clinical laboratory: approved guideline. 3. https://clsi.org/standards/products/method-evaluation/documents/ep28/, 2016 (accessed 18 April 2024).
Ozarda, Y., Higgins, V., Adeli, K., Verification of reference intervals in routine clinical laboratories: practical challenges and recommendations. Clin. Chem. Lab. Med. 57 (2019), 30–37, 10.1515/cclm-2018-0059.
Strand, M.F., Fredriksen, P.M., Lindberg, M., Hematology reference intervals in 6–12-year-old children: the health-oriented pedagogical project (HOPP). Scand. J. Clin. Lab. Investig. 82 (2022), 404–409, 10.1080/00365513.2022.2100820.
Bohn, M.K., Higgins, V., Tahmasebi, H., Hall, A., Liu, E., Adeli, K., et al. Complex biological patterns of hematology parameters in childhood necessitating age- and sex-specific reference intervals for evidence-based clinical interpretation. Int. J. Lab. Hematol. 42 (2020), 750–760, 10.1111/ijlh.13306.
Tahmasebi, H., Higgins, V., Bohn, M.K., Hall, A., Adeli, K., CALIPER Hematology Reference Standards (I): Improving Laboratory Test Interpretation in Children (Beckman Coulter DxH 900–Core Laboratory Hematology System). Am. J. Clin. Pathol. 154 (2020), 330–341, 10.1093/ajcp/aqaa059.
Higgins, V., Tahmasebi, H., Bohn, M.K., Hall, A., Adeli, K., CALIPER Hematology Reference Standards (II): Improving Laboratory Test Interpretation in Children (Beckman Coulter DxH 520–Physician Office Hematology System) With Analytical Comparison to the Beckman Coulter DxH 900. Am. J. Clin. Pathol. 154 (2020), 342–352, 10.1093/ajcp/aqaa057.
Segal, J.B., Moliterno, A.R., Platelet counts differ by sex, ethnicity, and age in the United States. Ann. Epidemiol. 16 (2006), 123–130, 10.1016/j.annepidem.2005.06.052.
Bain, B.J., Ethnic and sex differences in the total and differential white cell count and platelet count. J. Clin. Pathol. 49 (1996), 664–666, 10.1136/jcp.49.8.664.
Chen, Z., Dai, X., Cao, J., Tan, X., Chen, S., Yu, M., Reference intervals for coagulation tests in adults with different ABO blood types. J. Clin. Lab. Anal., 36, 2022, e24269.
Y. Ozarda, Reference intervals: current status, recent developments and future considerations, Biochem. Med. 26 (2016) 5–11. 10.11613/BM.2016.001.
Pusparum, M., Ertaylan, G., Thas, O., Individual reference intervals for personalised interpretation of clinical and metabolomics measurements. J. Biomed Inform., 131, 2022, 1532, 10.1016/j.jbi.2022.104111.
Ceriotti, F., Hinzmann, R., Panteghini, M., Reference intervals: the way forward. Ann. Clin. Biochem. 465 (2009), 8–17, 10.1258/acb.2008.008170.
Katayev, A., Balciza, C., Seccombe, D.W., Establishing reference intervals for clinical laboratory test results: is there a better way?. Am. J. Clin. Pathol. 133 (2010), 180–186, 10.1309/AJCPN5BMTSF1CDYP.
Gräsbeck, R., The evolution of the reference value concept. Clin. Chem. Lab. Med. 42 (2004), 692–697, 10.1515/CCLM.2004.118.
Higgins, V., Hooshmand, S., Adeli, K., Principal component and correlation analysis of biochemical and endocrine markers in a healthy pediatric population (CALIPER). Clin. Biochem. 66 (2019), 29–36, 10.1016/j.clinbiochem.2019.02.004.
Grossi, E., Colombo, R., Cavuto, S., Franzini, C., The REALAB project: a new method for the formulation of reference intervals based on current data. Clin. Chem. 51 (2005), 1232–1240, 10.1373/clinchem.2005.047787.
Kouri, T., Kairisto, V., Virtanen, A., Uusipaikka, E., Rajamäki, A., Finneman, H., et al. Reference intervals developed from data for hospitalized patients: computerized method based on combination of laboratory and diagnostic data. Clin. Chem. 40 (1994), 2209–2215, 10.1093/clinchem/40.12.2209.
Aarsand, A.K., Díaz-Garzón, J., Fernandez-Calle, P., Guerra, E., Locatelli, M., Bartlett, W.A., et al. The EuBIVAS: within- and between-subject biological variation data for electrolytes, lipids, urea, uric acid, total protein, total bilirubin, direct bilirubin, and glucose. Clin. Chem. 64 (2018), 1380–1393, 10.1373/clinchem.2018.288415.
ICMJE, Recommendations. https://icmje.org/recommendations/, 2024 (accessed 18 April 2024).
von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vandenbroucke, J.P., Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 370 (2007), 1453–1457, 10.1016/S0140-6736(07)61602-X.
Heidari, S., Babor, T.F., De Castro, P., Tort, S., Curno, M., Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev., 1, 2016, 2, 10.1186/s41073-016-0007-6.
Schüssler-Fiorenza Rose, S.M., Contrepois, K., Moneghetti, K.J., Zhou, W., Mishra, T., Mataraso, S., et al. A longitudinal big data approach for precision health. Nat. Med. 25 (2019), 792–804, 10.1038/s41591-019-0414-6.
Cohen, J.G., Tran, A.Q., Rimel, B.J., Cass, I., Walsh, C.S., Karlan, B.Y., et al. Thrombocytosis at secondary cytoreduction for recurrent ovarian cancer predicts suboptimal resection and poor survival. Gynecol. Oncol. 132 (2014), 556–559, 10.1016/j.ygyno.2014.01.003.
Digklia, A., Voutsadakis, I.A., Thrombocytosis as a prognostic marker in stage III and IV serous ovarian cancer. Obstet. Gynecol. Sci. 57 (2014), 457–463, 10.5468/ogs.2014.57.6.457.
Eggemann, H., Ehricke, J., Ignatov, T., Fettke, F., Semczuk, A., Costa, S.D., et al. Platelet count after chemotherapy is a predictor for outcome for ovarian cancer patients. Cancer Invest. 33 (2015), 193–196, 10.3109/07357907.2015.1020384.
Adeli, K., Raizman, J.E., Chen, Y., Higgins, V., Nieuwesteeg, M., Abdelhaleem, M., et al. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian health measures survey. Clin. Chem. 61 (2015), 1075–1086, 10.1373/clinchem.2015.240531.
Biino, G., Santimone, I., Minelli, C., Sorice, R., Frongia, B., Traglia, M., et al. Age- and sex-related variations in platelet count in Italy: a proposal of reference ranges based on 40987 subjects’ DATA. PLOS ONE., 8, 2013, e54289.
Qayyum, R., Snively, B.M., Ziv, E., Nalls, M.A., Liu, Y., Tang, W., et al. A meta-analysis and genome-wide association study of platelet count and mean platelet volume in African Americans. PLOS Genet., 8, 2012, e1002491.
M.B. Kucukay, R. Alanli, Vitamin D replacement effect on platelet counts, J. Coll. Phys. Surg. Pak. 31 (2021) 1064–8. 10.29271/jcpsp.2021.09.1064.
Schlesinger, M., Role of platelets and platelet receptors in cancer metastasis. J. Hematol. Oncol., 11, 2018, 125, 10.1186/s13045-018-0669-2.
Menter, D.G., Tucker, S.C., Kopetz, S., Sood, A.K., Crissman, J.D., Honn, K.V., Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastas. Rev. 33 (2014), 231–269, 10.1007/s10555-014-9498-0.
Kim, M., Chang, H., Yang, H.C., Kim, Y.J., Lee, C.T., Lee, J.H., et al. Preoperative thrombocytosis is a significant unfavorable prognostic factor for patients with resectable non-small cell lung cancer. World. J. Surg. Oncol., 12, 2014, 37, 10.1186/1477-7819-12-37.
Chadha, A.S., Kocak-Uzel, E., Das, P., Minsky, B.D., Delclos, M.E., Mahmood, U., et al. Paraneoplastic thrombocytosis independently predicts poor prognosis in patients with locally advanced pancreatic cancer. Acta Oncol. 54 (2015), 971–978, 10.3109/0284186X.2014.1000466.
Hu, C., Chen, R., Chen, W., Pang, W., Xue, X., Zhu, G., et al. Thrombocytosis is a significant indictor of hypercoagulability, prognosis and recurrence in gastric cancer. Exp. Ther. Med. 8 (2014), 125–132, 10.3892/etm.2014.1699.
Adibi, P., Faghih Imani, E., Talaei, M., Ghanei, M., Population-based platelet reference values for an Iranian population. Int. J. Lab Hematol. 29 (2007), 195–199, 10.1111/j.1751-553X.2006.00843.x.
Menard, D., Mandeng, M.J., Tothy, M.B., Kelembho, E.K., Gresenguet, G., Talarmin, A., Immunohematological reference ranges for adults from the Central African Republic. Clin. Vaccin Immunol. 10 (2003), 443–445, 10.1128/CDLI.10.3.443-445.2003.
Peng, L., Yang, J., Lu, X., Okada, T., Kondo, T., Ruan, C., et al. Effects of biological variations on platelet count in healthy subjects in China. Thromb. Haemost. 91 (2004), 367–372, 10.1160/TH03-05-0276.
Rolland, J., Eveillard, D., Delahaye, B., Boutin, R., Datascape: Exploring heterogeneous dataspace. Sci. Rep., 14, 2024, 7041, 10.1038/s41598-024-52493-7.