Will artificial intelligence revolutionize aerial surveys? A first large-scale semi-automated survey of African wildlife using oblique imagery and deep learning
[en] Large African mammal populations are traditionally estimated using the systematic reconnaissance flights (SRF) with rear-seat observers (RSOs). The oblique-camera-count (OCC) approach, utilizing digital cameras on aircraft sides, proved to provide more reliable population estimates but incurs high manual processing costs. Addressing the urgent need for efficiency, the research explores whether a semi-automated deep learning (SADL) model coupled with OCC improves wildlife population estimates compared to the SRF-RSO method. The study area was the Comoé National Park, in Ivory Coast, spanning 11,488 km2 of savannas and open forests. It was surveyed following both SRF-RSO standards and OCC method. Key species included the elephant, western hartebeest, roan antelope, buffalo, kob, waterbuck and warthog. The deep learning model HerdNet, priorly pre-trained on images from Uganda, was incorporated in the SADL pipeline to process the 190,686 images. It involved three human verification steps to ensure quality of detections and to avoid overestimating counts. The entire pipeline aims to balance efficiency and human effort in wildlife population estimation. RSO and SADL-OCC approaches were compared using the Jolly II analysis and a verification of 200 random RSO observations. Jolly II analysis revealed SADL-OCC estimates significantly higher for small-sized species (kob, warthog) and comparable for other key species. Counting differences were mainly attributed to vegetation obstruction, RSO observations not found in the images, and suspected RSO counting errors. Human effort in the SADL-OCC approach totaled 111 h, representing a significant time savings compared to a fully manual interpretation. Introducing the SADL approach for aerial surveys in Comoé National Park enabled us to address the OCC's time-intensive image interpretation. Achieving a significant reduction in human workload, our method provided population estimates comparable to or better than SRF-RSO counts. Vegetation obstruction was a key factor explaining differences, highlighting the OCC method's limitation in vegetated areas. Method comparisons emphasized SADL-OCC's advantages in spotting isolated, small and static animals, reducing count variance between sample units. Despite limitations, the SADL-OCC approach offers transformative potential, suggesting a shift towards DL-assisted aerial surveys for increased efficiency and affordability, especially using microlight aircraft and drones in future wildlife monitoring initiatives.
Disciplines :
Zoology Environmental sciences & ecology Life sciences: Multidisciplinary, general & others Engineering, computing & technology: Multidisciplinary, general & others
Linchant, Julie ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières
Vincke, Xavier
Lamprey, Richard
Théau, Jérôme
Vermeulen, Cédric ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Foucher, Samuel
Ouattara, Amara
Kouadio, Roger
Lejeune, Philippe ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières
Language :
English
Title :
Will artificial intelligence revolutionize aerial surveys? A first large-scale semi-automated survey of African wildlife using oblique imagery and deep learning
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture KFW - KfW Bankengruppe
Funding number :
BMZ n°2014 68 222; BMZ n°2019 67 199
Funding text :
The work of Alexandre Delplanque was supported under a grant from the Fund for Research Training in Industry and Agriculture (FRIA, F.R.S.-FNRS). This study has been possible with the financial support of the German Financial Cooperation through KfW (BMZ n°2014 68 222/ n°2019 67 199) to the Comoé National Park Biodiversity Protection Project, Phase II. This project was promoted by the OIPR through its North-East Zone Directorate (DZNE), with technical assistance from AHT GROUP GmbH, leader of the consortium with AMBERO Consulting GmbH and the Swiss Center for Scientific Research.
Bröker, K.C.A., Hansen, R.G., Leonard, K.E., Koski, W.R., Heide-Jørgensen, M.P., A comparison of image and observer based aerial surveys of narwhal. Mar. Mamm. Sci. 35:4 (2019), 1253–1279, 10.1111/mms.12586.
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., Biodiversity loss and its impact on humanity. Nature, 486(7401), 2012, 10.1038/nature11148 Article 7401.
Caughley, G., Bias in aerial survey. J. Wildl. Manag. 38:4 (1974), 921–933, 10.2307/3800067.
Ceballos, G., Ehrlich, P.R., Mutilation of the tree of life via mass extinction of animal genera. Proc. Natl. Acad. Sci., 120(39), 2023, e2306987120, 10.1073/pnas.2306987120.
CITES-MIKE, Monitoring the Illegal Killing of Elephants: Aerial Survey Standards for the MIKE Programme. Version 3.0. Convention on International Trade in Endangered Species - Monitoring the Illegal Killing of Elephants Programme (CITES-MIKE), Nairobi, Kenya. 2020.
Craig, G.C., Aerial Survey standards for the MIKE Programme. Version 2.0. CITES MIKE programme. 2012.
Delplanque, A., Foucher, S., Lejeune, P., Linchant, J., Théau, J., Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks. Remote Sens. Ecol. Conserv. 8:2 (2022), 166–179, 10.1002/rse2.234.
Delplanque, A., Foucher, S., Théau, J., Bussière, E., Vermeulen, C., Lejeune, P., From crowd to herd counting: how to precisely detect and count African mammals using aerial imagery and deep learning?. ISPRS J. Photogramm. Remote Sens. 197 (2023), 167–180, 10.1016/j.isprsjprs.2023.01.025.
Delplanque, A., Lamprey, R., Foucher, S., Théau, J., Lejeune, P., Surveying wildlife and livestock in Uganda with aerial cameras: deep learning reduces the workload of human interpretation by over 70%. Front. Ecol. Evol., 11, 2023, 10.3389/fevo.2023.1270857.
Eikelboom, J.A.J., Wind, J., van de Ven, E., Kenana, L.M., Schroder, B., de Knegt, H.J., van Langevelde, F., Prins, H.H.T., Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol. Evol. 10:11 (2019), 1875–1887, 10.1111/2041-210X.13277.
Fischer, F., Gross, M., Linsenmair, K.E., Updated list of the larger mammals of the Comoé National Park. Ivory Coast. 66:1 (2002), 83–92, 10.1515/mamm.2002.66.1.83.
Griffin, P.C., Lubow, B.C., Jenkins, K.J., Vales, D.J., Moeller, B.J., Reid, M., Happe, P.J., Mccorquodale, S.M., Tirhi, M.J., Schaberl, J.P., Beirne, K., A hybrid double-observer sightability model for aerial surveys. J. Wildl. Manag. 77:8 (2013), 1532–1544, 10.1002/jwmg.612.
Grimsdell, J.J.R., Westley, S., Low-Level Aerial Survey Techniques. 1981, International Livestock Centre for Africa https://cgspace.cgiar.org/handle/10568/4207.
Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., High-resolution global maps of 21st-century forest cover change. Science 342:6160 (2013), 850–853, 10.1126/science.1244693.
Hennenberg, K.J., Fischer, F., Kouadio, K., Goetze, D., Orthmann, B., Linsenmair, K.E., Jeltsch, F., Porembski, S., Phytomass and fire occurrence along forest–savanna transects in the Comoé National Park, Ivory Coast. J. Trop. Ecol. 22:3 (2006), 303–311, 10.1017/S0266467405003007.
Jachmann, H., Estimating Abundance of African Wildlife: An Aid to Adaptive Management. 2001, Springer Science & Business Media.
Jachmann, H., Comparison of aerial counts with ground counts for large African herbivores. J. Appl. Ecol. 39:5 (2002), 841–852.
Jetz, W., McGeoch, M.A., Guralnick, R., Ferrier, S., Beck, J., Costello, M.J., Fernandez, M., Geller, G.N., Keil, P., Merow, C., Meyer, C., Muller-Karger, F.E., Pereira, H.M., Regan, E.C., Schmeller, D.S., Turak, E., Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol., 3(4), 2019, 10.1038/s41559-019-0826-1 Article 4.
Jolly, G.M., Sampling methods for aerial censuses of wildlife populations. East Afr. Agric. For. J. 34:sup1 (1969), 46–49, 10.1080/00128325.1969.11662347.
Kellenberger, B., Marcos, D., Tuia, D., Detecting mammals in UAV images: best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 216 (2018), 139–153, 10.1016/j.rse.2018.06.028.
Lamprey, R., Ochanda, D., Brett, R., Tumwesigye, C., Douglas-Hamilton, I., Cameras replace human observers in multi-species aerial counts in Murchison falls, Uganda. Remote Sens. Ecol. Conserv. 6:4 (2020), 529–545, 10.1002/rse2.154.
Lamprey, R., Pope, F., Ngene, S., Norton-Griffiths, M., Frederick, H., Okita-Ouma, B., Douglas-Hamilton, I., Comparing an automated high-definition oblique camera system to rear-seat-observers in a wildlife survey in Tsavo, Kenya: taking multi-species aerial counts to the next level. Biol. Conserv., 241, 2020, 108243, 10.1016/j.biocon.2019.108243.
Lamprey, R.H., Keigwin, M., Tumwesigye, C., A high-resolution aerial camera survey of Uganda's Queen Elizabeth Protected Area improves detection of wildlife and delivers a surprisingly high estimate of the elephant population (p. 2023.02.06.525067). bioRxiv. 2023, 10.1101/2023.02.06.525067.
Lethbridge, M., Stead, M., Wells, C., Estimating kangaroo density by aerial survey: a comparison of thermal cameras with human observers. Wildl. Res. 46:8 (2019), 639–648, 10.1071/WR18122.
Lisein, J., Linchant, J., Lejeune, P., Bouché, P., Vermeulen, C., Aerial surveys using an unmanned aerial system (UAS): comparison of different methods for estimating the surface area of sampling strips. Trop. Conserv. Sci. 6:4 (2013), 506–520, 10.1177/194008291300600405.
Naudé, J., Joubert, D., The Aerial Elephant Dataset: A New Public Benchmark for Aerial Object Detection. 2019, 48–55.
Norton-Griffiths, M., Further aspects of bias in aerial census of large mammals. J. Wildl. Manag. 40:2 (1976), 368–371, 10.2307/3800445.
PAEAS, Aerial Survey Standards and Guidelines for the Pan-African Elephant Aerial Survey. 2014, Vulcan Inc.
Peng, J., Wang, D., Liao, X., Shao, Q., Sun, Z., Yue, H., Ye, H., Wild animal survey using UAS imagery and deep learning: modified faster R-CNN for kiang detection in Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 169 (2020), 364–376, 10.1016/j.isprsjprs.2020.08.026.
Tkachenko, M., Malyuk, M., Holmanyuk, A., Liubimov, N., Label Studio: Data labeling software [Computer software]. https://github.com/heartexlabs/label-studio, 2020.
Tuia, D., Kellenberger, B., Beery, S., Costelloe, B.R., Zuffi, S., Risse, B., Mathis, A., Mathis, M.W., van Langevelde, F., Burghardt, T., Kays, R., Klinck, H., Wikelski, M., Couzin, I.D., van Horn, G., Crofoot, M.C., Stewart, C.V., Berger-Wolf, T., Perspectives in machine learning for wildlife conservation. Nat. Commun., 13(1), 2022, 10.1038/s41467-022-27980-y Article 1.
Wal, E.V., Mcloughlin, P.D., Brook, R.K., Spatial and temporal factors influencing sightability of elk. J. Wildl. Manag. 75:6 (2011), 1521–1526.
World Wildlife Fund, Africa: River Network, 15s resolution, 2007—University of Texas Libraries GeoData [Map]. Geological Survey. https://geodata.lib.utexas.edu/catalog/stanford-wf122zm7811, 2007.