[en] Multi-scale simulation of lattices, cellular materials and meta-materials faces the difficulty of handling the local instabilities which correspond to a change of the micro-structure morphology. On the one hand, first order computational homogenisation, which considers a classical continuum at the macro-scale, cannot capture localisation bands. On the other hand, second-order computational homogenisation, which considers a higher order continuum at the macro-scale, introduces a size effect with respect to the Representative Volume Element (RVE) size.
By reformulating second-order computational homogenisation as an equivalent homogenised volume, non-uniform body forces arise at the micro-scale and act as a supplementary volume term over the RVE. Contrarily to the original uniform body forces resulting from an asymptotic homogenization [1], the devised non-uniform body forces arise from the Hill-Mandel condition and are expressed in terms of the micro-scale strain localization tensor, i.e. the relation between the micro-scale and macro-scale deformation gradients [1].
The consistency and accuracy of the approach are illustrated by simulating non-linear elastic meta-materials and elasto-plastic cellular materials under compressive loading.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015.
REFERENCES
[1] V. Monchiet, N. Auffray, J. Yvonnet, Strain-gradient homogenization: A bridge between the asymptotic expansion and quadratic boundary condition methods, Mechanics of Materials 143 (2020) 103309.
[2] L. Wu, S. M. Mustafa, J. Segurado and L. Noels. Second-order computational homogenisation enhanced with non-uniform body forces for non-linear cellular materials and metamaterials. Computer Methods in Applied Mechanics Engineering, 407: 115931, 2023.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering
Author, co-author :
Wu, Ling ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Segurado, Javier; IMDEA Materials
Mustafa, Syed Mohib ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Multi-scale simulation of non-linear cellular- and meta-materials with body-force-enhanced second-order homogenisation
Publication date :
29 May 2024
Event name :
The 19th European Mechanics of Materials Conferences (EMMC19)
Event place :
Madrid, Spain
Event date :
29-31 May 2024
Event number :
19th
Audience :
International
Peer reviewed :
Editorial reviewed
Development Goals :
9. Industry, innovation and infrastructure
European Projects :
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Name of the research project :
MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Funders :
EC - European Commission EU - European Union
Funding number :
862015
Funding text :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.