ALE formalism; finite element method; steady state
Abstract :
[en] In this paper, the arbitrary Lagrangian Eulerian formalism is used to compute the steady state of a 2D metal cutting operation and a 3D U-shaped cold roll forming process. Compared to the Lagrangian case, this method allows the use of a refined mesh near the tools, leading to an accurate representation of the chip formation (metal cutting) and the bending of the sheet (roll forming) with a limited computational time. The main problem of this kind of simulation is the rezoning of the nodes on the free surfaces of the sheet. A modified iterative isoparametric smoother is used to manage this geometrically complex and CPU expensive task. c 2007 American Institute of Physics.
Disciplines :
Mechanical engineering
Author, co-author :
Boman, Romain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Papeleux, Luc ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Ponthot, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
A General Arbitrary Lagrangian Eulerian Formulation for the Numerical Simulation of 3D forming Processes
Publication date :
17 May 2007
Event name :
NUMIFORM'07 The 9th International Conference on Numerical Methods in Industrial Forming Processes
Event place :
Porto, Portugal
Event date :
17 May 2007
Audience :
International
Journal title :
AIP Conference Proceedings
ISSN :
0094-243X
eISSN :
1551-7616
Publisher :
American Institute of Physics, United States
Special issue title :
Materials Processing and Design; Modeling, Simulation and Applications
Q. Bui, L. Papeleux, R. Boman, J. Ponthot, P. Wouters, R. Kergen, and G. Daolio, "Numerical Simulation of Cold Roll Forming Process," in Proceedings of ESAFORM2005, 2005.
J.-P. Ponthot, Traitement unifié de la Mécanique des Milieux Continus solides en grandes transformations par la méthode des éléments finis (in French), Ph.D. thesis, Université de Liège, Liège, Belgium (1995).
R. Boman, and J.-P, Ponthot, "ALE methods for determining stationary solutions of metal forming processes," in Proceedings of ECCOMAS 2000, Barcelona, Spain, 2000, on CDROM.
R. Boman, and J.-P. Ponthot, Computer Methods in Applied Mechanics and Engineering 193, pp. 4323-4353 (2004).
J. Donea, A. Huerta, J.-P Ponthot, and A. Rodriguez-Ferran, Encyclopedia of Computational Mechanics, Volume 1, Stein, E. and de Borst, R. and Hughes T.J.R., 2004, chap. 14, pp. 413-437.
S. Hyun, and L.-E. Lindgren, Communications in Numerical Methods in Engineering 17, 1-17 (2001).
S. Giuliani, Nuclear Engineering and Design 72, 205-212 (1982).
T. Zhou, and K. Shimada, "An Angle-Based Approach to Two-Dimensional Mesh Smoothing," in 9th International Meshing Roundtable, New Orleans, Louisiana USA, 2000, pp. 373-384.
R. Jones, Journal of Pressure Vessel Technology, Transactions of the American Society of Mechanical Engineerings, 193-199 (1974).
L. Hermann, Journal of the Engineering Division 102, 749-756 (1976).
F. Casadei, J. Donea, and A. Huerta, Arbitrary lagrangian eulerian finite elements in non-linear fast transient continuum mechanics, Tech. Rep. EUR 16327 EN, University of Catalunya, Barcelona, Spain (1995).
A. Huerta, F. Casadei, and J. Donéa, "ALE Stress Update in Transient Plasticity Problems," in International Conference on Computational Plasticity, edited by E. Oñate, and D. Owen, Barcelona, Spain, 1995, pp. 1865-1876.
O. Pantalé, J.-L. Bacaria, O. Dalverny, R. Rakotomalala, and S. Caperaa, Computer Methods in Applied Mechanics and Engineering 193, 4383-4399 (2004).
L. Olovsson, L. Nilsson, and K. Simonsson, Computers and Structures 72, 497-507 (1999).