protein acetylation; protein phosphorylation; pyruvate kinase; Sheep; Protein Kinases/metabolism; Glycolysis; Bifunctional enzymes; Glycolytic enzyme; Meat proteins; Meat quality; Post-translational modifications; Agricultural and Biological Sciences (all)
Abstract :
[en] Protein post-translational modifications (PTMs) play an essential role in meat quality development. However, the effect of specific PTM sites on meat proteins has not been investigated yet. The characteristics of pyruvate kinase M (PKM) were found to exhibit a close correlation with final meat quality, and thus, serine 99 (S99) and lysine 137 (K137) in PKM were mutated to study their effect on PKM function. The structural and functional properties of five lamb PKM variants, including wild-type PKM (wtPKM), PKM_S99D (S99 phosphorylation), PKM_S99A (PKM S99 dephosphorylation), PKM_K137Q (PKM K137 acetylation), and PKM_K137R (PKM K137 deacetylation), were evaluated. The results showed that the secondary structure, tertiary structure, and polymer formation were affected among different PKM variants. In addition, the glycolytic activity of PKM_K137Q was decreased because of its weakened binding with phosphoenolpyruvate. In the PKM_K137R variant, the actin phosphorylation level exhibited a decrease, suggesting a low kinase activity of PKM_K137R. The results of molecular simulation showed a 42% reduction in the interface area between PKM_K137R and actin, in contrast to wtPKM and actin. These findings are significant for revealing the mechanism of how PTMs regulate PKM function and provide a theoretical foundation for the development of precise meat quality preservation technology.
Disciplines :
Food science
Author, co-author :
Ren, Chi ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Gembloux Agro-Bio Tech ; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Li, Xin ; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Li, Juan; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Huang, Xiaolan; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Bai, Yuqiang; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Schroyen, Martine ; Université de Liège - ULiège > Département GxABT > Animal Sciences (AS)
Hou, Chengli; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Wang, Zhenyu; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Zhang, Dequan ; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
Language :
English
Title :
Acetylation and Phosphorylation Regulate the Role of Pyruvate Kinase as a Glycolytic Enzyme or a Protein Kinase in Lamb.
Schwägele, F.; Haschke, C.; Krauss, G.; Honikel, K. O. Comparative studies of pyruvate kinase from PSE and normal pig muscles. Z. Lebensm.-Unters. Forsch. 1996, 203 ( 1), 14- 20, 10.1007/BF01267763
Huang, C. Y.; Zhang, D. Q.; Blecker, C.; Zhao, Y. X.; Xiang, C.; Wang, Z. Y.; Li, S. B.; Chen, L. Effects of phosphoglycerate kinase 1 and pyruvate kinase M2 on metabolism and physiochemical changes in postmortem muscle. Food Chem.: X 2024, 21, 101125, 10.1016/j.fochx.2024.101125
Yang, B.; Liu, X. Application of proteomics to understand the molecular mechanisms determining meat quality of beef muscles during postmortem aging. PLoS One 2021, 16 ( 3), 0246955, 10.1371/journal.pone.0246955
Huang, C.; Zhang, D.; Wang, Z.; Zhao, Y.; Blecker, C.; Li, S.; Zheng, X.; Chen, L. Validation of protein biological markers of lamb meat quality characteristics based on the different muscle types. Food Chem. 2023, 427, 136739, 10.1016/j.foodchem.2023.136739
Gagaoua, M.; Hughes, J.; Terlouw, E. C.; Warner, R. D.; Purslow, P. P.; Lorenzo, J. M.; Picard, B. Proteomic biomarkers of beef colour. Trends Food Sci. Technol. 2020, 101, 234- 252, 10.1016/j.tifs.2020.05.005
Te Pas, M. F.; Kruijt, L.; Pierzchala, M.; Crump, R. E.; Boeren, S.; Keuning, E.; Hoving-Bolink, R.; Hortos, M.; Gispert, M.; Arnau, J. Identification of proteomic biomarkers in M. Longissimus dorsi as potential predictors of pork quality. Meat Sci. 2013, 95 ( 3), 679- 687, 10.1016/j.meatsci.2012.12.015
Gao, X.; Wang, H.; Yang, J. J.; Liu, X.; Liu, Z. R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol. Cell 2012, 45, 598- 609, 10.1016/j.molcel.2012.01.001
Gomord, V.; Faye, L. Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 2004, 7 ( 2), 171- 181, 10.1016/j.pbi.2004.01.015
Lv, L.; Xu, Y. P.; Zhao, D.; Li, F. L.; Wang, W.; Sasaki, N. Y.; Jiang, Y.; Zhou, X.; Li, T. T.; Guan, K. L. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol. Cell 2013, 52 ( 3), 340- 352, 10.1016/j.molcel.2013.09.004
Hitosugi, T.; Kang, S.; Vander Heiden, M. G.; Chung, T. W.; Elf, S.; Lythgoe, K.; Dong, S.; Lonial, S.; Wang, X.; Chen, G. Z. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2009, 2 ( 97), ra73, 10.1126/scisignal.2000431
Li, X.; Zhang, D.; Ren, C.; Bai, Y.; Ijaz, M.; Hou, C.; Chen, L. Effects of protein posttranslational modifications on meat quality: a review. Compr. Rev. Food Sci. Food Saf. 2021, 20 ( 1), 289- 331, 10.1111/1541-4337.12668
Chen, L.; Li, Z.; Everaert, N.; Lametsch, R.; Zhang, D. Quantitative phosphoproteomic analysis of ovine muscle with different postmortem glycolytic rates. Food Chem. 2019, 280, 203- 209, 10.1016/j.foodchem.2018.12.056
Li, Z.; Li, M.; Li, X.; Xin, J.; Wang, Y.; Shen, Q. W.; Zhang, D. Quantitative phosphoproteomic analysis among muscles of different color stability using tandem mass tag labeling. Food Chem. 2018, 249, 8- 15, 10.1016/j.foodchem.2017.12.047
Jiang, S.; Liu, Y.; Shen, Z.; Zhou, B.; Shen, Q. W. Acetylome profiling reveals extensive involvement of lysine acetylation in the conversion of muscle to meat. J. Proteonomics 2019, 205, 103412, 10.1016/j.jprot.2019.103412
Nandi, S.; Razzaghi, M.; Srivastava, D.; Dey, M. Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J. Biol. Chem. 2020, 295 ( 51), 17425- 17440, 10.1074/jbc.RA120.015800
Ren, C.; Song, X. B.; Dong, Y.; Hou, C. L.; Chen, L.; Wang, Z. Y.; Li, X.; Schroyen, M.; Zhang, D. Q. Protein phosphorylation induced by pyruvate kinase M2 inhibited myofibrillar protein degradation in post-mortem muscle. J. Agric. Food Chem. 2023, 71 ( 41), 15280- 15286, 10.1021/acs.jafc.3c03930
Li, K.; Fu, L. J.; Zhao, Y. Y.; Xue, S. W.; Wang, P.; Xu, X. L.; Bai, Y. H. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocolloids 2020, 98, 105275, 10.1016/j.foodhyd.2019.105275
Guerrero-Mendiola, C.; Oria-Hernandez, J.; Ramirez-Silva, L. Kinetics of the thermal inactivation and aggregate formation of rabbit muscle pyruvate kinase in the presence of trehalose. Arch. Biochem. Biophys. 2009, 490 ( 2), 129- 136, 10.1016/j.abb.2009.08.012
Kim, S. C.; Sprung, R.; Chen, Y.; Xu, Y. D.; Ball, H.; Pei, J.; Cheng, T.; Kho, Y.; Xiao, H.; Xiao, L.; Grishin, N. V.; White, M.; Yang, X. J.; Zhao, Y. M. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23 ( 4), 607- 618, 10.1016/j.molcel.2006.06.026
Niu, H.; Wan, L.; Busygina, V.; Kwon, Y.; Allen, J. A.; Li, X.; Kunz, R. C.; Kubota, K.; Wang, B.; Sung, P.; Shokat, K. M.; Gygi, S. P.; Hollingsworth, N. M. Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation. Mol. Cell 2009, 36 ( 3), 393- 404, 10.1016/j.molcel.2009.09.029
Wei, Y.; Zou, Z.; Becker, N.; Anderson, M.; Sumpter, R.; Xiao, G.; Kinch, L.; Koduru, P.; Christudass, C. S.; Veltri, R. W.; Grishin, N. V.; Peyton, M.; Minna, J.; Bhagat, G.; Levine, B. Egfr-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013, 154 ( 6), 1269- 1284, 10.1016/j.cell.2013.08.015
Maskevich, A. A.; Stsiapura, V. I.; Kuzmitsky, V. A.; Kuznetsova, I. M.; Povarova, O. I.; Uversky, V. N.; Turoverov, K. K. Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J. Proteome Res. 2007, 6, 1392- 1401, 10.1021/pr0605567
Shen, L.; Gan, M.; Chen, L.; Zhao, Y.; Niu, L.; Tang, G.; Jiang, Y.; Zhang, T.; Zhang, S.; Zhu, L. miR-152 targets pyruvate kinase to regulate the glycolytic activity of pig skeletal muscles and affects pork quality. Meat Sci. 2022, 185, 108707, 10.1016/j.meatsci.2021.108707
Chen, X.; Chen, S.; Yu, D. Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int. 2020, 20 ( 1), 523, 10.1186/s12935-020-01612-1
Lu, Z. M.; Hunter, T. Metabolic kinases moonlighting as protein kinases. Trends Biochem. Sci. 2018, 43 ( 4), 301- 310, 10.1016/j.tibs.2018.01.006
He, C. L.; Bian, Y. Y.; Xue, Y.; Liu, Z. X.; Zhou, K. Q.; Yao, C. F.; Lin, Y.; Zou, H. F.; Luo, F. X.; Qu, Y. Y.; Zhao, J. Y.; Ye, M. L.; Zhao, S. M.; Xu, W. Pyruvate kinase M2 activates mTORC1 by phosphorylating AKT1S1. Sci. Rep. 2016, 6, 21524, 10.1038/srep21524
Jin, Z. H.; Wei, Z. H. Molecular simulation for food protein-ligand interactions: A comprehensive review on principles, current applications, and emerging trends. Compr. Rev. Food Sci. Food Saf. 2024, 23, 13208, 10.1111/1541-4337.13280
Lv, L.; Li, D.; Zhao, D.; Lin, R. T.; Chu, Y. J.; Zhang, H.; Zha, Z. Y.; Liu, Y.; Li, Z.; Xu, Y. P.; Wang, G.; Huang, Y. R.; Xiong, Y.; Guan, K. L.; Lei, Q. Y. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 2011, 42 ( 6), 719- 730, 10.1016/j.molcel.2011.04.025
Larsen, T. M.; Benning, M. M.; Wesenberg, G. E.; Rayment, I.; Reed, G. H. Ligand-Induced Domain Movement in Pyruvate Kinase: Structure of the Enzyme from Rabbit Muscle with Mg2+, K+, andl-Phospholactate at 2.7 Å Resolution. Arch. Biochem. Biophys. 1997, 345 ( 2), 199- 206, 10.1006/abbi.1997.0257
Li, F.; Yu, T.; Zhao, Y.; Yu, S. Probing the catalytic allosteric mechanism of rabbit muscle pyruvate kinase by tryptophan fluorescence quenching. Eur. Biophys. J. 2012, 41 ( 7), 607- 614, 10.1007/s00249-012-0828-2
Dang, C. V. PKM2 tyrosine phosphorylation and glutamine metabolism signal a different view of the Warburg effect. Sci. Signal. 2009, 2 ( 97), 75, 10.1126/scisignal.297pe75
Liang, L. J.; Yang, F. Y.; Wang, D.; Zhang, Y. F.; Yu, H.; Wang, Z.; Sun, B. B.; Liu, Y. T.; Wang, G. Z.; Zhou, G. B. CIP2A induces PKM2 tetramer formation and oxidative phosphorylation in non-small cell lung cancer. Cell Discovery 2024, 10, 13, 10.1038/s41421-023-00633-0
Moore, B. Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci. 2004, 9 ( 5), 221- 228, 10.1016/j.tplants.2004.03.005
Park, S. H.; Ozden, O.; Liu, G. X.; Song, H. Y.; Zhu, Y. M.; Yan, Y. F.; Zou, X. H.; Kang, H. J.; Jiang, H. Y.; Principe, D. R. SIRT2-mediated deacetylation and tetramerization of pyruvate kinase directs glycolysis and tumor growth. Cancer Res. 2016, 76 ( 13), 3802- 3812, 10.1158/0008-5472.CAN-15-2498
Apostolidi, M.; Vathiotis, I. A.; Muthusamy, V.; Gaule, P.; Gassaway, B. M.; Rimm, D. L.; Rinehart, J. Targeting pyruvate kinase M2 phosphorylation reverses aggressive cancer phenotypes. Cancer Res. 2021, 81 ( 16), 4346- 4359, 10.1158/0008-5472.CAN-20-4190
Liang, J.; Cao, R. X.; Wang, X. J.; Zhang, Y. J.; Wang, P.; Gao, H.; Li, C.; Yang, F.; Zeng, R.; Wei, P. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Research 2017, 27 ( 3), 329- 351, 10.1038/cr.2016.159
Wooll, J. O.; Friesen, R. H.; White, M. A.; Watowich, S. J.; Fox, R. O.; Lee, J. C.; Czerwinski, E. W. Structural and functional linkages between subunit interfaces in mammalian pyruvate kinase. J. Mol. Biol. 2001, 312 ( 3), 525- 540, 10.1006/jmbi.2001.4978