Abstract :
[en] The modeling of industrial processes that involve phase change (e.g., casting, welding or additive manufacturing) is challenging due to their multiscale and multiphysics nature. The coupling of the fluid and solid mechanics is difficult due to the unknown and evolving fluid–solid interface. To deal with the difficulty of the coupling, a unified approach has been developed where fluid and solid regions are represented in the same computational domain and solved by a single solver. The interaction of fluid and solid regions is therefore automatically captured and the material can locally undergo phase transition. This allows to capture the flow in the melt and the thermal stresses in the solid. The solid material model is currently limited to linear elasticity, but it opens the path to more complex material models with plasticity modeling, which already exist in the literature. The proposed method is based on the Particle Finite Element Method (PFEM), which has been shown to accurately handle both fluid and solid mechanics. In this work, we present the key aspects of this novel unified formulation and the treatment of the fluid–solid interface in the PFEM context. The methodology is presented and verified using a set of tests. A laser spot welding example test case demonstrates the potential of combining the unified formulation with the interface treatment and the phase change capabilities and is used for the validation of the present technique.
Scopus citations®
without self-citations
0