[en] Chinese hamster ovary (CHO) cells are characterized by a low glucose catabolic efficiency, resulting in undesirable lactate production. Here, it is hypothesized that such low efficiency is determined by the transport of pyruvate into the mitochondria. The mitochondrial pyruvate carrier (MPC), responsible for introducing pyruvate into the mitochondria, is formed by two subunits, MPC1 and MPC2. Stable CHO cell lines, overexpressing the genes of both subunits, were constructed to facilitate the entry of pyruvate into the mitochondria and its incorporation into oxidative pathways. Significant overexpression of both genes, compared to the basal level of the control cells, was verified, and subcellular localization of both subunits in the mitochondria was confirmed. Kinetic evaluation of the best MPC overexpressing CHO cells showed a reduction of up to 50% in the overall yield of lactate production with respect to the control. An increase in specific growth rate and maximum viable cell concentration, as well as an increase of up to 40% on the maximum concentration of two recombinant model proteins transiently expressed (alkaline phosphatase or a monoclonal antibody), was also observed. Hybrid cybernetic modeling, that considered 89 reactions, 25 extracellular metabolites, and a network of 62 intracellular metabolites, explained that the best MPC overexpression case resulted in an increased metabolic flux across the mitochondrial membrane, activated a more balanced growth, and reduced the Warburg effect without compromising glucose consumption rate and maximum cell concentration. Overall, this study showed that transport of pyruvate into the mitochondria limits the efficiency of glucose oxidation, which can be overcome by a cell engineering approach.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Bulté, Dubhe B ; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
Palomares, Laura A ; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
Parra, Carolina Gómez; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
Martinez Alvarez, Juan Andrés ; Université de Liège - ULiège > Département GxABT > Microbial technologies ; UNAM - Universidad Nacional Autónoma de México [MX] > Instituto de Biotecnologia
Contreras, Martha A; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
Noriega, Lilia G; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
Ramírez, Octavio T ; Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
Language :
English
Title :
Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells.
Publication date :
September 2020
Journal title :
Biotechnology and Bioengineering
ISSN :
0006-3592
eISSN :
1097-0290
Publisher :
John Wiley and Sons Inc, Boschstrabe 12, 69469 Weinheim, Deutschland, United States
CONACYT - Consejo Nacional de Ciencia y Tecnología UNAM - Universidad Nacional Autónoma de México
Funding text :
The authors would like to acknowledge the following individuals for their contribution to this study: Dr. Mabel Rodríguez and Esmeralda Cuevas, MSc, for the plasmids donated for this study, Karina García for the EGFP‐expressing CHO cell line, Dr. Arturo Pimentel and National Laboratory of Microscopy for the support in the imaging analysis, Dr. Armando Trovar and the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán for the collaboration to perform the Seahorse experiments, Vanesa Hernández for technical support and Bernice Sandoval for her support during experiment execution. This project was financed by UNAM‐DGAPA‐PAPIIT IT‐200315, SEP‐CONACyT Ciencia Básica 255445 and CONACYT Infraestructura 280275. DBB was supported for her Ph.D. studies by a CONACYT scholarship. We are grateful to Laboratorios Liomont for providing the CHO‐S cell line used in this work.The authors would like to acknowledge the following individuals for their contribution to this study: Dr. Mabel Rodr?guez and Esmeralda Cuevas, MSc, for the plasmids donated for this study, Karina Garc?a for the EGFP-expressing CHO cell line, Dr. Arturo Pimentel and National Laboratory of Microscopy for the support in the imaging analysis, Dr. Armando Trovar and the Instituto Nacional de Ciencias M?dicas y Nutrici?n Salvador Zubir?n for the collaboration to perform the Seahorse experiments, Vanesa Hern?ndez for technical support and Bernice Sandoval for her support during experiment execution. This project was financed by UNAM-DGAPA-PAPIIT IT-200315, SEP-CONACyT Ciencia B?sica 255445 and CONACYT Infraestructura 280275. DBB was supported for her Ph.D. studies by a CONACYT scholarship. We are grateful to Laboratorios Liomont for providing the CHO-S cell line used in this work.
Ahn, W. S., & Antoniewicz, M. R. (2011). Metabolic flux analysis of CHO cells at growth and non growth phases using isotopic tracers and mass spectrometry. Metabolic Engineering, 13, 598–609. https://doi.org/10.1016/j.ymben.2011.07.002
Altamirano, C., Berrios, J., Vergara, M., & Becerra, S. (2013). Advances in improving mammalian cells metabolism for recombinant protein production. Electronic Journal of Biotechnology, 16(3), 1–14. https://doi.org/10.2225/vol16-issue3-fulltext-2
Altamirano, C., Illanes, A., Becerra, S., Cairó, J., & Gòdia, F. (2006). Considerations on the lactate consumption by CHO cells in the presence of galactose. Journal of Biotechnology, 125(4), 547–556. https://doi.org/10.1016/j.jbiotec.2006.03.023
Altamirano, C., Paredes, C., Cairó, J., & Gòdia, C. (2000). Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnology Progress, 16(1), 69–75. https://doi.org/10.1021/bp990124j
Bahnemann, J., Kayo, S., Wahrheit, J., Heinzle, E., Pörtner, R., & Zeng, A. P. (2014). In search of an effective cell disruption method to isolate intact mitochondria from Chinese hamster ovary cells. Engineering in Life Science, 14, 161–169. https://doi.org/10.1002/elsc.201200182
Bandaranayake, A. D., & Almo, S. C. (2014). Recent advances in mammalian protein production. FEBS Letters, 588(2), 253–260. https://doi.org/10.1016/j.febslet.2013.11.035
Barnes, L. M., Bentley, C. M., & Dickson, A. (2003). Stability of protein production from recombinant mammalian cells. Biotechnology and Bioengineering, 81(6), 631–638. https://doi.org/10.1002/bit.10517
Bender, T., Pena, G., & Martinou, J. C. (2015). Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. The EMBO Journal, 34(7), 911–924. https://doi.org/10.15252/embj.201490197
Bricker, D. K., Taylor, E. B., Schell, J. C., Orsak, T., Boutron, A., Chen, Y., … Rutter, J. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in Yeast, Drosophila, and humans. Science, 337(6090), 96–100. https://doi.org/10.1126/science.1218099
Butler, M., & Spearman, M. (2014). The choice of mammalian cell host and possibilities for glycosylation engineering. Current Opinion in Biotechnology, 30, 107–112. https://doi.org/10.1016/j.copbio.2014.06.010
Chen, K., Liu, Q., Xie, L., Sharp, P. A., & Wang, D. I. C. (2001). Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production. Biotechnology and Bioengineering, 72(1), 55–61. https://doi.org/10.1002/1097-0290(20010105)72:1<55::aid-bit8>3.0.co;2-4
Claros, M., & Vincens, P. (1996). Computational method to predict mitochondrially imported proteins and their targeting sequences. FEBS Journal, 241, 770–786. https://doi.org/10.1111/j.1432-1033.1996.00779.x
Davis, T. R., Munkenbeck, K., Granados, R. R., & Wood, H. A. (1992). Baculovirus expression of alkaline phosphatase as a reporter gene for evaluation of production, glycosylation and secretion. Biotechnology, 10, 148–150. https://doi.org/10.1038/nbt1092-1148
Fischer, S., Handrick, R., & Otte, K. (2015). The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnology Advances, 33, 1878–1896. https://doi.org/10.1016/j.biotechadv.2015.10.015
Fogolín, M. B., Wagner, R., Etcheverrigaray, M., & Kratje, R. (2004). Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. Journal of Biotechnology, 109, 179–191. https://doi.org/10.1016/j.jbiotec.2003.10.035
Gakh, O., Cavadani, P., & Isaya, G. (2002). Mitochondrial processing peptidases. Biochimica et Biophysica Acta, 1592, 63–77. https://doi.org/10.1016/s0167-4889(02)00265-3
Galleguillos, S. N., Ruckerbauer, D., Gerstl, M. P., Borth, N., Hanscho, M., & Zanghellini, J. (2017). What can mathematical modelling say about CHO metabolism and protein glycosylation? Computational and Structural Biotechnology Journal, 15, 212–221. https://doi.org/10.1016/j.csbj.2017.01.005
Golabgir, A., Gutierrez, J. M., Hefzi, H., Li, S., Palsson, B. O., Herwig, C., & Lewis, N. E. (2016). Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow. Biotechnology Advances, 34(2016), 621–633. https://doi.org/10.1016/j.biotechadv.2016.02.011
Gupta, S. K., Sharma, A., Kushwaha, H., & Shukla, P. (2017). Over-expression of a codon optimized yeast cytosolic pyruvate carboxylase (PYC2) in CHO cells for an augmented lactate metabolism. Frontiers in Pharmacology, 8(463), 1–11. https://doi.org/10.3389/fphar.2017.00463
Gupta, S. K., Srivastava, S. K., Sharma, A., Nalage, V. H. H., Salvi, D., Kushwaha, H., … Shukla, P. (2017). Metabolic engineering of CHO cells for the development of a robust protein production platform. PLOS One, 12(8), 1–23. https://doi.org/10.1371/journal.pone.0181455
Halestrap, A. P. (1975). The mitochondrial pyruvate carrier kinetics and specificity for substrates and inhibitors. Biochemical Journal, 148, 85–96. https://doi.org/10.1042/bj1480085
Hartley, F., Walker, T., Chung, V., & Morten, K. (2018). Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnology and Bioengineering, 115, 1890–1903. https://doi.org/10.1002/bit.26603
Herzig, S., Raemy, E., Montessuit, S., Veuthey, J., Zamboni, N., Westermann, B., … Martinou, J. C. (2012). Identification and functional expression of the mitochondrial pyruvate carrier. Science, 337, 93–96. https://doi.org/10.1126/science.1218530
Irani, N., Wirth, M., Van den Heuvel, J., & Wagner, R. (1999). Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnology and Bioengineering, 66(4), 238–246. https://doi.org/10.1002/(sici)1097-0290(1999)66:4<238::aid-bit5>3.0.co;2-6
Jeong, D. W., Kim, T. S., Lee, J. W., Kim, T. K., Kim, H. J., Kim, I. H., & Kim, I. Y. (2001). Blocking of acidosis-mediated apoptosis by a reduction of lactate dehydrogenase activity through antisense mRNA expression. Biochemical and Biophysical Research Communications, 289(5), 1141–1149. https://doi.org/10.1006/bbrc.2001.6091
Jun, S. C., Kim, M. S., Baik, J. Y., Hwang, S. O., & Lee, G. M. (2005). Selection strategies for the establishment of recombinant Chinese hamster ovary cell line with dihydrofolate reductase-mediated gene amplification. Applied Microbiology and Biotechnology, 69, 162–169. https://doi.org/10.1007/s00253-005-1972-8
Kelly, P. S., Alarcon, A., Alves, C., & Barron, N. (2018). From media to mitochondria—Rewiring cellular energy metabolism of Chinese hamster ovary cells for the enhanced production of biopharmaceuticals. Current Opinion in Chemical Engineering, 22, 71–80. https://doi.org/10.1016/j.coche.2018.08.009
Kim, N. S., Byun, T. H., & Lee, G. M. (2001). Key determinants in the occurrence of clonal variation in humanized antibody expression of CHO cells during dihydrofolate reductase mediated gene amplification. Biotechnology Progress, 17, 69–75. https://doi.org/10.1021/bp000144h
Kim, S., & Lee, G. (2007). Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin. Applied Microbiology and Biotechnology, 74, 152–159. https://doi.org/10.1007/s00253-006-0654-5
Kim, S. J., & Lee, J. M. (1999). Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnology and Bioengineering, 64(6), 741–749. https://doi.org/10.1002/(SICI)1097-0290(19990920)64:6<741::AID-BIT14>3.0.CO;2-X
Kompala, D. S., Ramkrishna, D., Jansen, N. B., & Tsao, G. T. (1986). Investigation of bacterial growth on mixed substrates: Experimental evaluation of cybernetic models. Biotechnology and Bioengineering, 28, 1044–1055. https://doi.org/10.1002/bit.260280715
Lai, T., Yang, Y., & Kong, S. (2013). Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals, 6, 579–603. https://doi.org/10.3390/ph6050579
Li, S., Gao, X., Peng, R., Zhang, S., Fu, W., & Zou, F. (2016). FISH-based analysis of clonally derived CHO cell populations reveals high probability for transgene integration in a terminal region of chromosome 1 (1q13). PLOS One, 11(9), 1–15. https://doi.org/10.1371/journal.pone.0163893
Lipscomb, M. L., Palomares, L. A., Hernández, V., Ramírez, O. T., & Kompala, D. S. (2005). Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells. Biotechnology Progress, 21, 40–49. https://doi.org/10.1021/bp049761m
Liu, L. (2015). Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. Journal of Pharmaceutical Sciences, 104, 1866–1884. https://doi.org/10.1002/jps.24444
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25, 402–408. https://doi.org/10.1006/meth.2001.1262
Martínez, J. A., Bulté, D. B., Contreras, M., Palomares, L. A., & Ramírez, O. T. (2020). Dynamic modeling of CHO cell metabolism using the hybrid cybernetic approach with a novel elementary mode analysis strategy. Frontiers in Bioengineering and Biotechnology, 8, 279. https://doi.org/10.3389/fbioe.2020.00279
Martínez, J. A., Rodríguez, A., Moreno, F., Flores, N., Lara, A. R., Ramírez, O. T., & Bolivar, F. (2018). Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production. BMC Systems Biology, 12(102), 1–15. https://doi.org/10.1186/s12918-018-0632-4
McAtee, A. G., Templeton, N., & Young, J. D. (2014). Role of Chinese hamster ovary central carbon metabolism in controlling the quality of secreted biotherapeutic proteins. Pharmaceutical Bioprocessing, 2(1), 63–74. https://doi.org/10.4155/PBP.13.65
Paredes, C., Prats, E., Cairo, J. J., Azorín, F., Cornudella, L. I., & Gódia, F. (1999). Modification of glucose and glutamine metabolism in hybridoma cells through metabolic engineering. Cytotechnology, 30(1-3), 85–93. https://doi.org/10.1023/A:1008012518961
Pereira, S., Kildegaard, H. F., & Andersen, M. R. (2018). Impact of CHO metabolism on cell growth and protein production: An overview of toxic and inhibiting metabolites and nutrients. Biotechnology Journal, 13, 1700499. https://doi.org/10.1002/biot.201700499
Ramkrishna, D., & Song, H.-S. (2012). Dynamic models of metabolism: Review of the cybernetic approach. Bioengineering, Food, and Natural Products, 58, 986–997. https://doi.org/10.1002/aic.13734
Ruas, J. S., Siqueira-Santos, E. S., Amigo, I., Rodrigues-Silva, E., Kowaltowski, A. J., & Castilho, R. F. (2016). Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLOS One, 11(3), 1–20. https://doi.org/10.1371/journal.pone.0150967
Sanfeliu, A., Paredes, C., Cairó, J. J., & Gòdia, F. (1997). Identification of key patterns in the metabolism of hybridoma cells in culture. Enzyme and Microbial Technology, 21(6), 421–428. https://doi.org/10.1016/S0141-0229(97)00015-X
Schell, J. C., Olson, K. A., Jiang, L., Hawkins, A. J., Van Vranken, J. G., Xie, J., … Rutter, J. (2014). A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Molecular Cell, 56, 400–413. https://doi.org/10.1016/j.molcel.2014.09.026
Sengupta, N., Rose, S. T., & Morgan, J. A. (2011). Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnology and Bioengineering, 108, 82–92. https://doi.org/10.1002/bit.22890
Serrato, J. A., Hernández, V., Estrada-Mondaca, S., Palomares, L. A., & Ramírez, O. T. (2007). Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum-supplemented, serum-free or chemically defined media. Biotechnology and Applied Biochemistry, 47, 113–124. https://doi.org/10.1042/BA20060216
Song, H.-S., & Ramkrishna, D. (2009). Reduction of a set of elementary modes using yield analysis. Biotechnology and Bioengineering, 102, 554–568. https://doi.org/10.1002/bit.22062
Song, H.-S., & Ramkrishna, D. (2012). Prediction of dynamic behavior of mutant strains from limited wild-type data. Metabolic Engineering, 14, 69–80. https://doi.org/10.1016/j.ymben.2012.02.003
Strovas, T. J., McQuaide, S. C., Anderson, J. B., Nandakumar, V., Kalyuzhnaya, M. G., Burgess, L. W., … Lidstrom, M. E. (2010). Direct measurement of oxygen consumption rates from attached and unattached cells in a reversibly sealed, diffusionally isolated sample chamber. Advances in Bioscience and Biotechnology, 5(5), 398–408. https://doi.org/10.4236/abb.2010.15053
Tavoulari, S., Thangaratnarajah, Ch, Mavridou, V., Harbour, M. E., Martinou, J. C., & Kunji, E. (2019). The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. The EMBO Journal, 38, 1–13. https://doi.org/10.15252/embj.2018100785
Templeton, N., Dean, J., Reddy, P., & Young, J. D. (2013). Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnology and Bioengineering, 110(7), 2013–2024. https://doi.org/10.1002/bit.24858
Templeton, N., & Young, J. D. (2018). Biochemical and metabolic engineering approaches to enhance production of therapeutic proteins in animal cell cultures. Biochemical Engineering Journal, 136, 40–50. https://doi.org/10.1016/j.bej.2018.04.008
Toussaint, C., Henry, O., & Durocher, I. (2016). Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. Journal of Biotechnology, 217, 122–131. https://doi.org/10.1016/j.jbiotec.2015.11.010
Vacanti, N. M., Divakaruni, A. S., Green, C. R., Parker, S. J., Henry, R. R., Ciaraldi, T. P., … Metallo, C. M. (2014). Regulation of substrate utilization by the mitochondrial pyruvate carrier. Molecular Cell, 56(3), 425–435. https://doi.org/10.1016/j.molcel.2014.09.024
Vadvalkar, S. S., Matsuzaki, S., Eyster, C. A., Giorgione, J. R., Bockus, L. B., Kinter, C. S., … Humphries, K. M. (2017). Decreased mitochondrial pyruvate transport activity in the diabetic heart: Role of mitochondrial pyruvate carrier 2 (mpc2) acetylation. The Journal of Biological Chemistry, 292(11), 4423–4433. https://doi.org/10.1074/jbc.M116.753509
Vanderperre, B., Bender, T., Kunji, E. R. S., & Martinou, J.-C. (2015). Mitochondrial pyruvate import and its effects on homeostasis. Current Opinion in Cell Biology, 33, 35–41. https://doi.org/10.1016/j.ceb.2014.10.008
Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033. https://doi.org/10.1126/science.1160809
Wahrheit, J., Niklas, J., & Heinzle, E. (2014). Metabolic control at the cytosol—Mitochondria interface in different growth phases of CHO cells. Metabolic Engineering, 23, 9–21. https://doi.org/10.1016/j.ymben.2014.02.001
Wang, L., Xu, M., Qin, J., Lin, S. C., Lee, H. J., Tsai, S. Y., & Ming-Jer, Tsai (2016). MPC1, a key gene in cancer metabolism, is regulated by COUP-TFII in human prostate cancer. Oncotarget, 7(12), 14673–14683. https://doi.org/10.18632/oncotarget.7405
Wilkens, C., Vishwanathan, N., Baltes, N. J., Lucero, A. T., Hu, W., & Gerdtzen, Z. P. (2019). An LDHa single allele CHO cell mutant exhibits altered metabolic state and enhanced culture performance. Chemical Technology and Biotechnology, 94(5), 1488–1498. https://doi.org/10.1002/jctb.5906
Wilkens, C. A., Altamirano, C., & Gerdtzen, Z. P. (2011). Comparative metabolic analysis of lactate for CHO cells in glucose and galactose. Biotechnology and Bioprocess Engineering, 16(4), 714–724. https://doi.org/10.1186/1753-6561-5-S8-P120
Wilson, C., Bellen, H. J., & Gehring, W. J. (1990). Position effects on eukaryotic gene expression. Annual Review of Cell Biology, 6, 679–714. https://doi.org/10.1146/annurev.cb.06.110190.003335
Xiao, B., Fan, Y., Ye, M., Lv, S., Xu, B., Chai, Y., … Zhu, X. (2018). Downregulation of COUP-TFII inhibits glioblastoma growth via targeting MPC1. Oncology Letters, 15, 9697–9702. https://doi.org/10.3892/ol.2018.8601
Yang, C., Ko, B., Hensley, C. T., Jiang, L., Wasti, A. T., Kim, J., … DeBerardinis, R. J. (2014). Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Molecular Cell, 56(3), 414–424. https://doi.org/10.1016/j.molcel.2014.09.025
Young, J. D. (2014). 13C MFA of recombinant expression hosts. Current Opinion in Biotechnology, 30, 238–245. https://doi.org/10.1016/j.copbio.2014.10.004
Zhou, M., Crawford, Y., Ng, D., Tunga, J., Pynna, A., Meiera, A., … Shen, A. (2011). Decreasing lactate level and increasing antibody production in Chinese hamster ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. Journal of Biotechnology, 153(1–2), 27–34. https://doi.org/10.1016/j.jbiotec.2011.03.003