[en] Nanotechnology is an expanding and new technology that prompts production with nanoparticle-based (1-100 nm) organic and inorganic materials. Such a tool has an imperative function in different sectors like bioengineering, pharmaceuticals, electronics, energy, nuclear energy, and fuel, and its applications are helpful for human, animal, plant, and environmental health. In exacting, the nanoparticles are synthesized by top-down and bottom-up approaches through different techniques such as chemical, physical, and biological progress. The characterization is vital and the confirmation of nanoparticle traits is done by various instrumentation analyses like UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, X-ray diffraction, atomic force microscopy, annular dark-field imaging, and intracranial pressure. In addition, probiotics are friendly microbes which while administered in sufficient quantity confer health advantages to the host. Characterization investigation is much more significant to the identification of good probiotics. Similarly, haemolytic activity, acid and bile salt tolerance, autoaggregation, antimicrobial compound production, inhibition of pathogens, enhance the immune system, and more health-beneficial effects on the host. The synergistic effects of nanoparticles and probiotics combined delivery applications are still limited to food, feed, and biomedical applications. However, the mechanisms by which they interact with the immune system and gut microbiota in humans and animals are largely unclear. This review discusses current research advancements to fulfil research gaps and promote the successful improvement of human and animal health.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Vijayaram, Srirengaraj; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
Razafindralambo, Hary ; Université de Liège - ULiège > Département GxABT > Microbial technologies
Sun, Yun Zhang; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, China
Piccione, Giuseppe; Department of Veterinary Sciences, University of Messina, Messina, Italy
Multisanti, Cristiana Roberta; Department of Veterinary Sciences, University of Messina, Messina, Italy
Faggio, Caterina ; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy ; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
Language :
English
Title :
Synergistic interaction of nanoparticles and probiotic delivery: A review.
Abd El-Hack, M. E., Alaidaroos, B. A., Farsi, R. M., Abou-Kassem, D. E., El-Saadony, M. T., Saad, A. M., & Ashour, E. A. (2021). Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals, 11(7), 1878.
Abdel-Latif, H. M., Dawood, M. A., Alagawany, M., Faggio, C., Nowosad, J., & Kucharczyk, D. (2022). Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. Fish & Shellfish Immunology, 122, 115–130. https://doi.org/10.1016/j.fsi.2022.01.039
Alam, H., Khatoon, N., Khan, M. A., Husain, S. A., Saravanan, M., & Sardar, M. (2020). Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. Journal of Cluster Science, 31(5), 1003–1011. https://doi.org/10.1007/s10876-019-01705-6
Al-Enazi, A. M. M., Virk, P., Hindi, A., Awad, M. A., Elobeid, M., & Qindeel, R. (2020). Protective effect of probiotic bacteria and its nanoformulation against cadmium-induced oxidative stress in male Wistar rat. Journal of King Saud University-Science, 32(7), 3045–3051. https://doi.org/10.1016/j.jksus.2020.08.011
Al-Hazmi, N. E., & Naguib, D. M. (2023). Antioxidant and antibacterial activities of nano-probiotics versus free probiotics against gastrointestinal pathogenic bacteria. Indian Journal of Microbiology, 1–12. https://doi.org/10.1007/s12088-023-01140-2
Aliko, V., Multisanti, C. R., Turani, B., & Faggio, C. (2022). Get rid of marine pollution: Bioremediation an innovative, attractive, and successful cleaning strategy. Sustainability, 14(18), 11784. https://doi.org/10.3390/su141811784
Alkushi, A., Abdelfattah-Hassan, A., Eldoumani, H., Elazab, S. T., Mohamed, S. A., Metwally, A. S., & Ibrahim, D. (2022). Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Scientific Reports, 12(1), 1–19. https://doi.org/10.1038/s41598-022-08915-5
Al-Shemmary, A. J., Malallah, H. A., Al-Mashhadi, A. R., Jaber, A. H., & Shaker, Z. B. (2022). Biosynthesis of selenium nanoparticles using probiotic Bacillus clausii and their antibacterial efficacy against multidrug-resistant bacteria (MDR). Journal of Pharmaceutical Negative Results, 7(13), 1011–1019. https://doi.org/10.47750/pnr.2022.13.S07.142
Anandharaj, M., & Sivasankari, B. (2014). Isolation of potential probiotic Lactobacillus oris HMI68 from mother's milk with cholesterol-reducing property. Journal of Bioscience and Bioengineering, 118(2), 153–159. https://doi.org/10.1016/j.jbiosc.2014.01.015
Ankamwar, B., Chaudhary, M., & Sastry, M. (2005). Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 35(1), 19–26. https://doi.org/10.1081/SIM-200047527
Assadpour, E., & Mahdi Jafari, S. (2019). A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition, 59(19), 3129–3151. https://doi.org/10.1080/10408398.2018.1484687
Azmi, N. A. N., Elgharbawy, A. A., Motlagh, S. R., Samsudin, N., & Salleh, H. M. (2019). Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes, 7(9), 617. https://doi.org/10.3390/pr7090617
Babitha, S., & Korrapati, P. S. (2013). Biosynthesis of titanium dioxide nanoparticles using a probiotic from coal fly ash effluent. Materials Research Bulletin, 48(11), 4738–4742. https://doi.org/10.1016/j.materresbull.2013.08.016
Berton, V., Montesi, F., Losasso, C., Facco, D. R., Toffan, A., & Terregino, C. (2014). Study of the interaction between silver nanoparticles and salmonella as revealed by transmission electron microscopy. Journal of Probiotics & Health, 3, 1–5.
Bhargavi, B., Ramachandra, B., Pushpa, B. P., & Prabha, R. (2021). Nanoprobiotics – An innovative trend in probiotic world. International Research Journal of Modernization in Engineering, Technology and Science, 11(3), 1124–1133.
Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Melnychenko, O., & Kharchyshyn, V. (2019). Effects of different dietary selenium sources including probiotics mixture on growth performance, feed utilization and serum biochemical profile of quails. In V., Nadykto (Ed.), Modern development paths of agricultural production (pp. 623–632). Springer. https://doi.org/10.1007/978-3-030-14918-5_61
Brahe, L. K., Le Chatelier, E., Prifti, E., Pons, N., Kennedy, S., Blædel, T., & Larsen, L. H. (2015). Dietary modulation of the gut microbiota – A randomised controlled trial in obese postmenopausal women. British Journal of Nutrition, 114(3), 406–417. https://doi.org/10.1017/S0007114515001786
Cattò, C., Garuglieri, E., Borruso, L., Erba, D., Casiraghi, M. C., Cappitelli, F., & Zanchi, R. (2019). Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model. Environmental Pollution, 245, 754–763. https://doi.org/10.1016/j.envpol.2018.11.019
Chang, X., Chen, Y., Feng, J., Huang, M., & Zhang, J. (2021). Amelioration of Cd-induced bioaccumulation, oxidative stress and immune damage by probiotic Bacillus coagulans in common carp (Cyprinus carpio L.). Aquaculture Reports, 20, 100678. https://doi.org/10.1016/j.aqrep.2021.100678
Chau, C. F., Wu, S. H., & Yen, G. C. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18(5), 269–280. https://doi.org/10.1016/j.tifs.2007.01.007
Chen, L., Pan, D. D., Zhou, J., & Jiang, Y. Z. (2005). Protective effect of selenium-enriched Lactobacillus on CCl4-induced liver injury in mice and its possible mechanisms. World Journal of Gastroenterology, 11, 5795–5800. https://doi.org/10.3748/wjg.v11.i37.5795
Chen, Y., Qiao, L., Song, X., Ma, L., Dou, X., & Xu, C. (2021). Protective effects of selenium nanoparticle-enriched Lactococcus lactis NZ9000 against enterotoxigenic Escherichia coli K88-induced intestinal barrier damage in mice. Applied and Environmental Microbiology, 87(23), e0163621. https://doi.org/10.1128/AEM.01636-21
Chung, W. S. F., Walker, A. W., Louis, P., Parkhill, J., Vermeiren, J., Bosscher, D., & Flint, H. J. (2016). Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology, 14(1), 1–13. https://doi.org/10.1186/s12915-015-0224-3
Das, G., Patra, J. K., Paramithiotis, S., & Shin, H. S. (2019). The sustainability challenge of food and environmental nanotechnology: Current status and imminent perceptions. International Journal of Environmental Research and Public Health, 16, 4848. https://doi.org/10.3390/ijerph16234848
Durazzo, A., Nazhand, A., Lucarini, M., Atanasov, A. G., Souto, E. B., Novellino, E., & Santini, A. (2020). An updated overview on nanonutraceuticals: Focus on nanoprebiotics and nanoprobiotics. International Journal of Molecular Sciences, 21(7), 2285. https://doi.org/10.3390/ijms21072285
Dwivedi, C., Pandey, I., Misra, V., Giulbudagian, M., Jungnickel, H., Laux, P., & Singh, A. V. (2018). The prospective role of nanobiotechnology in food and food packaging products. Integrative Food Nutrition Metab (IFNM), 5, 1–5. https://doi.org/10.15761/IFNM.1000237
Ebrahimnezhad, P., Khavarpour, M., & Khalili, S. (2017). Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. International Journal of Engineering, 30(4), 456–463.
Eisler, R. (2000). Handbook of chemical risk assessment: Health hazards to humans, plants, and animals, three volume set.
Emam, A. M., & Dunlap, C. A. (2020). Genomic and phenotypic characterization of Bacillus velezensis AMB-y1, a potential probiotic to control pathogens in aquaculture. Antonie Van Leeuwenhoek, 113(12), 2041–2052. https://doi.org/10.1007/s10482-020-01476-5
Faghfuri, E., Yazdi, M. H., Mahdavi, M., Sepehrizadeh, Z., Faramarzi, M. A., Mavandadnejad, F., & Shahverdi, A. R. (2015). Dose-response relationship study of selenium nanoparticles as an immunostimulatory agent in cancer-bearing mice. Archives of Medical Research, 46(1), 31–37. https://doi.org/10.1016/j.arcmed.2015.01.002
Fardood, S. T., Ramazani, A., & Moradi, S. (2017). A novel green synthesis of nickel oxide nanoparticles using Arabic gum. Chemistry Journal of Moldova, 12(1), 115–118. https://doi.org/10.19261/cjm.2017.383
Food and Agriculture Organization. (2007). FAO technical meeting on prebiotics: Food quality and standards service (AGNS). FAO Technical Meeting Report. FAO.
Forouhar Vajargah, M., Imanpoor, M. R., Shabani, A., Hedayati, A., & Faggio, C. (2019). Effect of long-term exposure of silver nanoparticles on growth indices, hematological and biochemical parameters and gonad histology of male goldfish (Carassius auratus gibelio). Microscopy Research and Technique, 82(7), 1224–1230. https://doi.org/10.1002/jemt.23271
Galletti, A. M. R., Antonetti, C., Marracci, M., Piccinelli, F., & Tellini, B. (2013). Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Applied Surface Science, 280, 610–618. https://doi.org/10.1016/j.apsusc.2013.05.035
Ghafarifarsani, H., Hoseinifar, S. H., Raeeszadeh, M., Vijayaram, S., Rohani, M. F., Van Doan, H., & Sun, Y. Z. (2023). Comparative effect of chemical and green zinc nanoparticles on the growth, hematology, serum biochemical, antioxidant parameters, and immunity in serum and mucus of goldfish, Carassius auratus (Linnaeus, 1758). Biological Trace Element Research, 201(7), 1–15. https://doi.org/10.1007/s12011-023-03753-6
Ghibaudo, F., Gerbino, E., Copello, G. J., Dall'Orto, V. C., & Gómez-Zavaglia, A. (2019). Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria. Colloids and Surfaces B: Biointerfaces, 180, 193–201. https://doi.org/10.1016/j.colsurfb.2019.04.049
Gomaa, E. Z. (2019). Synergistic antibacterial efficiency of bacteriocin and silver nanoparticles produced by probiotic Lactobacillus paracasei against multidrug resistant bacteria. International Journal of Peptide Research and Therapeutics, 25(3), 1113–1125. https://doi.org/10.1007/s10989-018-9759-9
Gupta, R., Jeevaratnam, K., & Fatima, A. (2018). Lactic acid bacteria: Probiotic characteristic, selection criteria, and its role in human health (a review). International Journal of Emerging Technologies and Innovative Research, 5(10), 411–424.
Hariri, M., Salehi, R., Feizi, A., Mirlohi, M., Ghiasvand, R., & Habibi, N. (2015). A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: Effects on epigenetics and oxidative stress in patients with type II diabetes. Genes & Nutrition, 10(6), 1–8. https://doi.org/10.1007/s12263-015-0503-1
He, X., Deng, H., & Hwang, H. M. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1–21. https://doi.org/10.1016/j.jfda.2018.12.002
Homma, H., & Shinohara, T. (2004). Effects of probiotic Bacillus cereus toyoi on abdominal fat accumulation in the Japanese quail (Coturnix japonica). Animal Science Journal, 75(1), 37–41. https://doi.org/10.1111/j.1740-0929.2004.00152.x
Hoseinifar, S. H., Shakouri, M., Yousefi, S., Van Doan, H., Shafiei, S., Yousefi, M., & Faggio, C. (2020). Humoral and skin mucosal immune parameters, intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste. Fish & Shellfish Immunology, 100, 171–178. https://doi.org/10.1016/j.fsi.2020.02.067
Hu, C. H., Qian, Z. C., Song, J., Luan, Z. S., & Zuo, A. Y. (2013). Effects of zinc oxide-montmorillonite hybrid on growth performance, intestinal structure, and function of broiler chicken. Poultry Science, 92(1), 143–150. https://doi.org/10.3382/ps.2012-02250
Hu, Q., Wu, M., Fang, C., Cheng, C., Zhao, M., Fang, W., & Tang, G. (2015). Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Letters, 15(4), 2732–2739. https://doi.org/10.1021/acs.nanolett.5b00570
Ibrahem, K. H., Ali, F. A., & Sorchee, S. M. A. (2020). Biosynthesis and characterization with antimicrobial activity of TiO2 nanoparticles using probiotic Bifidobacterium bifidum. Cellular and Molecular Biology, 66(7), 111–117. https://doi.org/10.14715/cmb/2020.66.7.17
Ibrahim, F., Halttunen, T., Tahvonen, R., & Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: Assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52(9), 877–885. https://doi.org/10.1139/w06-043
Impellitteri, F., Multisanti, C. R., Rusanova, P., Piccione, G., Falco, F., & Faggio, C. (2023). Exploring the impact of contaminants of emerging concern on fish and invertebrates physiology in the Mediterranean Sea. Biology, 12(6), 767. https://doi.org/10.3390/biology12060767
Ivey, K. L., Hodgson, J. M., Kerr, D. A., Thompson, P. L., Stojceski, B., & Prince, R. L. (2015). The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutrition, Metabolism, and Cardiovascular Diseases, 25(1), 46–51. https://doi.org/10.1016/j.numecd.2014.07.012
Jeyavani, J., Sibiya, A., Sivakamavalli, J., Divya, M., Preetham, E., Vaseeharan, B., & Faggio, C. (2022). Phytotherapy and combined nanoformulations as a promising disease management in aquaculture: A review. Aquaculture International, 30(2), 1071–1086. https://doi.org/10.1007/s10499-022-00848-0
Kadhim, A. A., Salman, J. A. S., Haider, A. J., Ibraheem, S. A., & ali Kadhim, H. (2019). Effect of zinc oxide nanoparticles biosynthesized by Leuconostoc mesenteroides ssp. dextranicum against bacterial skin infections. In 2019 12th International conference on developments in eSystems engineering (DeSE) (pp. 755–760). IEEE.
Kannan, M., Bojan, N., Swaminathan, J., Zicarelli, G., Hemalatha, D., Zhang, Y., & Faggio, C. (2023). Nanopesticides in agricultural pest management and their environmental risks: A review. International journal of Environmental Science and Technology, 20, 10507–10532. https://doi.org/10.1007/s13762-023-04795-y
Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health benefits of probiotics: A review. International Scholarly Research Notices, 2013, 1–7.
Kerry, R. G., Pradhan, P., Samal, D., Gouda, S., Das, G., Shin, H. S., & Patra, J. K. (2018). Probiotics: The ultimate nutritional supplement. In J. K., Patra, G., Das, & H-S., Shin (Eds.), Microbial biotechnology (pp. 141–152). Springer. https://doi.org/10.1007/978-981-10-7140-9_7
Khajebami, M., & Afsharmanesh, M. (2019). Zinc oxide nanoparticle and probiotic (Bacillus coagulans) on immune responses, some carcass characteristics, and digestive organs weight of broiler chickens. Journal of Animal Science Research, 29(3), 17–30.
Khajeh Bami, M., Afsharmanesh, M., & Ebrahimnejad, H. (2020). Effect of dietary Bacillus coagulans and different forms of zinc on performance, intestinal microbiota, carcass and meat quality of broiler chickens. Probiotics and Antimicrobial Proteins, 12(2), 461–472.
Khajeh Bami, M., Afsharmanesh, M., Salarmoini, M., & Tavakoli, H. (2018). Effect of zinc oxide nanoparticles and Bacillus coagulans as probiotic on growth, histomorphology of intestine, and immune parameters in broiler chickens. Comparative Clinical Pathology, 27(2), 399–406. https://doi.org/10.1007/s12602-019-09558-1
Khan, S. T., Saleem, S., Ahamed, M., & Ahmad, J. (2019). Survival of probiotic bacteria in the presence of food grade nanoparticles from chocolates: An in vitro and in vivo study. Applied Microbiology and Biotechnology, 103(16), 6689–6700. https://doi.org/10.1007/s00253-019-09918-5
Khattab, A. E. N., Darwish, A. M., Othman, S. I., Allam, A. A., & Alqhtani, H. A. (2023). Anti-inflammatory and immunomodulatory potency of selenium-enriched probiotic mutants in mice with induced ulcerative colitis. Biological Trace Element Research, 201, 353–367. https://doi.org/10.1007/s12011-022-03154-1
Kheradmand, E., Rafii, F., Yazdi, M. H., Sepahi, A. A., Shahverdi, A. R., & Oveisi, M. R. (2014). The antimicrobial effects of selenium nanoparticle-enriched probiotics and their fermented broth against Candida albicans. DARU Journal of Pharmaceutical Sciences, 22(1), 1–6. https://doi.org/10.1186/2008-2231-22-48
Klasing, K. C. (1998). Comparative avian nutrition. CAB International.
Mahasneh, A. M., & Mahasneh, S. A. (2017a). Probiotic characterization of lactic acid bacteria isolated from local fermented vegetables (Makdoos). International Journal of Current Microbiology and Applied Sciences, 6, 1673–1686.
Mahasneh, S. A., & Mahasneh, A. M. (2017b). Probiotics: A promising role in dental health. Dentistry Journal, 5(4), 26. https://doi.org/10.3390/dj5040026
Markus, J., Mathiyalagan, R., Kim, Y. J., Abbai, R., Singh, P., Ahn, S., & Yang, D. C. (2016). Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzyme and Microbial Technology, 95, 85–93. https://doi.org/10.1016/j.enzmictec.2016.08.018
Matejčeková, Z., Vlková, E., Liptáková, D., & Valík, Ľ. (2019). Preliminary screening of growth and viability of 10 strains of Bifidobacterium spp.: Effect of media composition. Fermentation, 5(2), 38. https://doi.org/10.3390/fermentation5020038
Mengistu, B. M., Bitsue, H. K., & Huang, K. (2021). The effects of selenium-enriched probiotics on growth performance, oocysts shedding, intestinal cecal lesion scores, antioxidant capacity, and mRNA gene expression in chickens infected with Eimeria tenella. Biological Trace Element Research, 199(1), 278–291. https://doi.org/10.1007/s12011-020-02118-7
Mirjani, R., Faramarzi, M. A., Sharifzadeh, M., Setayesh, N., Khoshayand, M. R., & Shahverdi, A. R. (2015). Biosynthesis of tellurium nanoparticles by Lactobacillus plantarum and the effect of nanoparticle-enriched probiotics on the lipid profiles of mice. IET Nanobiotechnology, 9(5), 300–305. https://doi.org/10.1049/iet-nbt.2014.0057
Mohamadshahi, M., Veissi, M., Haidari, F., Javid, A. Z., Mohammadi, F., & Shirbeigi, E. (2014). Effects of probiotic yogurt consumption on lipid profile in type 2 diabetic patients: A randomized controlled clinical trial. Journal of Research in Medical Sciences, 19(6), 531–536.
Mohammadlou, M., Maghsoudi, H., & Jafarizadeh-Malmiri, H. J. I. F. R. J. (2016). A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. International Food Research Journal, 23(2), 446.
Mohd Yusof, H., Mohamad, R., Zaidan, U. H., & Rahman, N. A. A. (2020). Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microbial Cell Factories, 19(1), 1–17. https://doi.org/10.1186/s12934-020-1279-6
Mohsenpour, R., Mousavi-Sabet, H., Hedayati, A., Rezaei, A., Yalsuyi, A. M., & Faggio, C. (2020). In vitro effects of silver nanoparticles on gills morphology of female Guppy (Poecilia reticulate) after a short-term exposure. Microscopy Research and Technique, 83(12), 1552–1557. https://doi.org/10.1002/jemt.23549
Mojaveri, S. J., Hosseini, S. F., & Gharsallaoui, A. (2020). Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly (vinyl alcohol) hybrid electrospun fiber mats. Carbohydrate Polymers, 241, 116278. https://doi.org/10.1016/j.carbpol.2020.116278
Mokriani, S., Tokmachi, A., & Nojavan, M. (2014). Comparison of anti-tumor properties of the cell walls of Saccharomyces cerevisiae and Saccharomyces boulardi probiotics, individually and in combination with iron nanoparticles on K562 cancer cell line. Basic & Clinical Cancer Research, 6(4), 37–47.
Morshedi, V., Bojarski, B., Hamedi, S., Torahi, H., Hashemi, G., & Faggio, C. (2021). Effects of dietary bovine lactoferrin on growth performance and immuno-physiological responses of Asian sea bass (Lates calcarifer) fingerlings. Probiotics and Antimicrobial Proteins, 13(6), 1790–1797. https://doi.org/10.1007/s12602-021-09805-4
Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8(7), 543–557. https://doi.org/10.1038/nmat2442
Pandya, D. (2016). Benefits of probiotics in oral cavity – A detailed review.
Pophaly, S. D., Singh, P., Kumar, H., Tomar, S. K., & Singh, R. (2014). Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends in Food Science & Technology, 39(2), 135–145. https://doi.org/10.1016/j.tifs.2014.07.006
Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces, 82(1), 152–159. https://doi.org/10.1016/j.colsurfb.2010.08.036
Puniya, M., Ravinder Kumar, M., Panwar, H., Kumar, N., & Ramneek, A. K. P. (2016). Screening of lactic acid bacteria of different origin for their probiotic potential. Journal of Food Processes and Technology, 7(1), 545.
Rajoka, M. S. R., Mehwish, H. M., Zhang, H., Ashraf, M., Fang, H., Zeng, X., & He, Z. (2020). Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186, 110734. https://doi.org/10.1016/j.colsurfb.2019.110734
Ramezani, F., Ramezani, M., & Talebi, S. (2010). Mechanistic aspects of biosynthesis of nanoparticles by several microbes. Nano, 10(12–14), 1–7.
Rashidian, G., Alouche, R. M., Hosseinzadeh, F., Chupani, L., Stejskal, V., Samadikhah, H., Multisanti, C. R., & Faggio, C. (2023). Long-term exposure to small-sized silica nanoparticles (SiO2-NPs) induces oxidative stress and impairs reproductive performance in adult zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 273, 109715. https://doi.org/10.1016/j.cbpc.2023.109715
Rashidian, G., Lazado, C. C., Mahboub, H. H., Mohammadi-Aloucheh, R., Prokić, M. D., Nada, H. S., & Faggio, C. (2021). Chemically and green synthesized ZnO nanoparticles alter key immunological molecules in common carp (Cyprinus carpio) skin mucus. International Journal of Molecular Sciences, 22(6), 3270. https://doi.org/10.3390/ijms22063270
Ringø, E. (2020). Probiotics in shellfish aquaculture. Aquaculture and Fisheries, 5(1), 1–27.
Rohman, A., & Man, Y. C. (2010). Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Research International, 43(3), 886–892. https://doi.org/10.1016/j.foodres.2009.12.006
Roškar, I., Švigelj, K., Štempelj, M., Volfand, J., Štabuc, B., Malovrh, Š., & Rogelj, I. (2017). Effects of a probiotic product containing Bifidobacterium animalis subsp. animalis IM386 and Lactobacillus plantarum MP2026 in lactose intolerant individuals: Randomized, placebo-controlled clinical trial. Journal of Functional Foods, 35, 1–8. https://doi.org/10.1016/j.jff.2017.05.020
Saleh, A. A. (2014). Effect of dietary mixture of aspergillus probiotic and selenium nano-particles on growth, nutrient digestibilities, selected blood parameters and muscle fatty acid profile in broiler chickens. Animal Science Papers and Reports, 32(1), 65–79.
Salman, J. A. S., Kadhim, A. A., & Haider, A. J. (2018). Biosynthesis, characterization and antibacterial effect of ZnO nanoparticles synthesized by Lactobacillus spp. Journal of Global Pharma Technology, 10(3), 348–355.
Saratale, R. G., Karuppusamy, I., Saratale, G. D., Pugazhendhi, A., Kumar, G., Park, Y., & Shin, H. S. (2018). A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids and Surfaces B: Biointerfaces, 170, 20–35. https://doi.org/10.1016/j.colsurfb.2018.05.045
Sayed-ElAhl, R. M. H., Hassan, A. A., Mansour, M. K., Abdelmoteleb, A. M. M., & El-Hamaky, A. M. A. (2022). Controlling immunomodulation effects of deoxynivalenol mycotoxins by NanoZinc oxide and probiotic in broiler chickens. Journal of World's Poultry Research, 12(3), 133–141.
Scavuzzi, B. M., Henrique, F. C., Miglioranza, L. H. S., Simão, A. N. C., & Dichi, I. (2014). Impact of prebiotics, probiotics and synbiotics on components of the metabolic syndrome. Annuls of Nutritional Disorders & Therapy, 1, 1009.
Selvarajan, E., & Mohanasrinivasan, V. (2013). Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Materials Letters, 112, 180–182. https://doi.org/10.1016/j.matlet.2013.09.020
Shang, X., Xu, W., Zhao, Z., Luo, L., Zhang, Q., Li, M., & Geng, L. (2022). Effects of exposure to cadmium (Cd) and selenium-enriched Lactobacillus plantarum in Luciobarbus capito: Bioaccumulation, antioxidant responses and intestinal microflora. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 257, 109352. https://doi.org/10.1016/j.cbpc.2022.109352
Shanthi, S., Jayaseelan, B. D., Velusamy, P., Vijayakumar, S., Chih, C. T., & Vaseeharan, B. (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis, 93, 70–77. https://doi.org/10.1016/j.micpath.2016.01.014
Sharma, S., Sharma, N., & Kaushal, N. (2022). Comparative account of biogenic synthesis of silver nanoparticles using probiotics and their antimicrobial activity against challenging pathogens. BioNanoScience, 12(3), 833–840. https://doi.org/10.1007/s12668-022-01004-x
Shen, Q., Zhang, B., Xu, R., Wang, Y., Ding, X., & Li, P. (2010). Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe, 16, 380–386. https://doi.org/10.1016/j.anaerobe.2010.06.006
Sivaramasamy, E., Zhiwei, W., Li, F., & Xiang, J. J. J. N. N. (2016). Enhancement of vibriosis resistance in Litopenaeus vannamei by supplementation of biomastered silver nanoparticles by Bacillus subtilis. Journal of Nanomedicine & Nanotechnology, 7(352), 2. https://doi.org/10.4172/2157-7439.1000352
Spyridopoulou, K., Tryfonopoulou, E., Aindelis, G., Ypsilantis, P., Sarafidis, C., Kalogirou, O., & Chlichlia, K. (2021). Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. Nanoscale Advances, 3(9), 2516–2528. https://doi.org/10.1039/D0NA00984A
Tikariha, S., Singh, S., Banerjee, S., & Vidyarthi, A. S. (2012). Biosynthesis of gold nanoparticles, scope and application: A review. International Journal of Pharmaceutical Sciences and Research, 3(6), 1603.
Tonucci, L. B., Dos Santos, K. M. O., de Oliveira, L. L., Ribeiro, S. M. R., & Martino, H. S. D. (2017). Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study. Clinical Nutrition, 36(1), 85–92. https://doi.org/10.1016/j.clnu.2015.11.011
Tsai, Y. H., Mao, S. Y., Li, M. Z., Huang, J. T., & Lien, T. F. (2016). Effects of nanosize zinc oxide on zinc retention, eggshell quality, immune response and serum parameters of aged laying hens. Animal Feed Science and Technology, 213, 99–107. https://doi.org/10.1016/j.anifeedsci.2016.01.009
Ustundag, G. H., Altuntas, H., Soysal, Y. D., & Kokturk, F. (2017). The effects of synbiotic “Bifidobacterium lactis B94 plus inulin” addition on standard triple therapy of Helicobacter pylori eradication in children. Canadian Journal of Gastroenterology and Hepatology, 2017, 1–6. https://doi.org/10.1155/2017/8130596
Vasantharaj, S., Shivakumar, P., Sathiyavimal, S., Senthilkumar, P., Vijayaram, S., Shanmugavel, M., & Pugazhendhi, A. (2023). Antibacterial activity and photocatalytic dye degradation of copper oxide nanoparticles (CuONPs) using Justicia gendarussa. Applied Nanoscience, 13(3), 2295–2302. https://doi.org/10.1007/s13204-021-01939-9
Vicas, S. I., Laslo, V., Timar, A. V., Balta, C., Herman, H., Ciceu, A., & Hermenean, A. (2021a). Nano selenium—Enriched probiotics as functional food products against cadmium liver toxicity. Materials, 14(9), 2257. https://doi.org/10.3390/ma14092257
Vicas, S. I., Laslo, V., Timar, A. V., Balta, C., Herman, H., Ciceu, A., & Hermenean, A. (2021b). Functional food product based on nanoselenium-enriched Lactobacillus casei against cadmium kidney toxicity. Applied Sciences, 11(9), 4220. https://doi.org/10.3390/app11094220
Vijayaram, S., & Kannan, S. (2018). Probiotics: The marvelous factor and health benefits. Biomedical And Biotechnology Research Journal, 2(1), 1–8. https://doi.org/10.4103/bbrj.bbrj_87_17
Vijayaram, S., Tsigkou, K., Zuorro, A., Sun, Y. Z., Rabetafika, H., & Razafindralambo, H. (2023). Inorganic nanoparticles for use in aquaculture. Reviews in Aquaculture, 15, 1600–1617. https://doi.org/10.1111/raq.12803
Wang, H., Zhang, J., & Yu, H. (2007). Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biology and Medicine, 42(10), 1524–1533. https://doi.org/10.1016/j.freeradbiomed.2007.02.013
Wang, X., Lee, S. Y., Akter, S., & Huq, M. A. (2022). Probiotic-mediated biosynthesis of silver nanoparticles and their antibacterial applications against pathogenic strains of Escherichia coli O157: H7. Polymers, 14(9), 1834. https://doi.org/10.3390/polym14091834
Xu, C., Guo, Y., Qiao, L., Ma, L., Cheng, Y., & Roman, A. (2018). Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Frontiers in Microbiology, 9, 1129. https://doi.org/10.3389/fmicb.2018.01129
Xu, C., Qiao, L., Ma, L., Guo, Y., Dou, X., Yan, S., & Roman, A. (2019). Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. International Journal of Nanomedicine, 14, 4491–4502.
Yanez-Lemus, F., Moraga, R., Smith, C. T., Aguayo, P., Sánchez-Alonzo, K., García-Cancino, A., & Campos, V. L. (2022). Selenium nanoparticle-enriched and potential probiotic, Lactiplantibacillus plantarum S14 strain, a diet supplement beneficial for rainbow trout. Biology, 11(10), 1523. https://doi.org/10.3390/biology11101523
Yang, H. L., Sun, Y. Z., Hu, X., Ye, J. D., Lu, K. L., Hu, L. H., & Zhang, J. J. (2019). Bacillus pumilus SE5 originated PG and LTA tuned the intestinal TLRs/MyD88 signaling and microbiota in grouper (Epinephelus coioides). Fish & Shellfish Immunology, 88, 266–271.
Yao, M., Li, B., Ye, H., Huang, W., Luo, Q., Xiao, H., McClements, D. J., & Li, L. (2018). Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocolloids, 83, 246–252. https://doi.org/10.1016/j.foodhyd.2018.05.024
Yazdi, M. H., Mahdavi, M., Kheradmand, E., & Shahverdi, A. R. (2012). The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittel-Forschung, 62(11), 525–531.
Yazdi, M. H., Mahdavi, M., Setayesh, N., Esfandyar, M., & Shahverdi, A. R. (2013). Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU Journal of Pharmaceutical Sciences, 21(1), 1–9.
Zaineldin, A. I., Hegazi, S., Koshio, S., Ishikawa, M., Dawood, M. A., Dossou, S., Yukun, Z., & Mzengereza, K. (2021). Singular effects of Bacillus subtilis C-3102 or Saccharomyces cerevisiae type 1 on the growth, gut morphology, immunity, and stress resistance of red sea bream (Pagrus major). Annals of Animal Science, 21(2), 589–608. https://doi.org/10.2478/aoas-2020-0075
Zhang, J., Wang, X., & Xu, T. (2008). Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with se-methylselenocysteine in mice. Toxicological Sciences, 101(1), 22–31.
Zhang, M., Zhang, K., De Gusseme, B., Verstraete, W., & Field, R. (2014). The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling, 30(3), 347–357. https://doi.org/10.1080/08927014.2013.873419
Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/10.3390/ijms17091534
Zheng, L., Hu, Y., He, X., Zhao, Y., & Xu, H. (2020). Isolation of swine-derived Lactobacillus plantarum and its synergistic antimicrobial and health-promoting properties with ZnO nanoparticles. Journal of Applied Microbiology, 128(6), 1764–1775. https://doi.org/10.1111/jam.14605
Ziaei-Nejad, S., Salehi, L. M., Ghaednia, B., Johari, S. A., & Aberomand, A. (2015). In vitro antagonistic properties of copper nanoparticles and probiotic Bacillus subtilis against pathogenic luminescent Vibrio harveyi. Aquaculture, Aquarium, Conservation & Legislation, 8(3), 445–452.