The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis.
[en] Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.
Antony, Mishal ; Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium
Nivelle, Renaud ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Gestion des ressources aquatiques et aquaculture
Lavergne, Arnaud ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Zappia, Jérémie ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Caetano da Silva, Caroline ; Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France
Kumari, Priyanka ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Sojan, Jerry Maria; Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
Degueldre, Christian ; Université de Liège - ULiège > GIGA > GIGA CRC In vivo Imaging - Aging & Memory
Ostertag, Agnes ; Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France
Collet, Corinne; Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France ; UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, F-75019 Paris, France
Cohen-Solal, Martine ; Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France
Plenevaux, Alain ; Université de Liège - ULiège > Département de Psychologie
Henrotin, Yves ; Université de Liège - ULiège > Département des Sciences de l'activité physique et de la réadaptation > Pathologie générale et physiopathologie - Techniques particulières de kinésithérapie
Renn, Jörg ; Université de Liège - ULiège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Muller, Marc ; Université de Liège - ULiège > GIGA > GIGA Cancer - Molecular Angiogenesis Laboratory
The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis.
Publication date :
23 January 2024
Journal title :
Biomolecules
eISSN :
2218-273X
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
H2020 - 766347 - BioMedaqu - Aquaculture meets Biomedicine: Innovation in Skeletal Health research.
Name of the research project :
EU MSCA-ITN project
Funders :
EU - European Union Fondation Arthrose F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
H2020 - 766347
Funding text :
This work was supported by the EU MSCA-ITN project BioMedAqu that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 766347. Further, R.R. received the Jean Henrotin Prize 2021 from the Fondation Arthrose. R.R., J.M.S.,and C.C.dS. were MSCA PhD fellows. M.M. is a “Maître de Recherche au F.N.R.S.”.
Long F. Building strong bones: Molecular regulation of the osteoblast lineage Nat. Rev. Mol. 2012 13 27 38 10.1038/nrm3254 22189423
Komori T. Roles of Runx2 in Skeletal Development Adv. Exp. Med. Biol. 2017 962 83 93 10.1007/978-981-10-3233-2_6 28299652
Nakashima K. Zhou X. Kunkel G. Zhang Z. Deng J.M. Behringer R.R. de Crombrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation Cell 2002 108 17 29 10.1016/S0092-8674(01)00622-5
DeLaurier A. Eames B.F. Blanco-Sanchez B. Peng G. He X. Swartz M.E. Ullmann B. Westerfield M. Kimmel C.B. Zebrafish sp7:EGFP: A transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration Genesis 2010 48 505 511 10.1002/dvg.20639 20506187
Lin X. Patil S. Gao Y.G. Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration Front. Pharmacol. 2020 11 757 10.3389/fphar.2020.00757 32528290
Apschner A. Schulte-Merker S. Witten P.E. Not all bones are created equal-using zebrafish and other teleost species in osteogenesis research Methods Cell Biol. 2011 105 239 255 10.1016/B978-0-12-381320-6.00010-2 21951533
Hammond C.L. Moro E. Using transgenic reporters to visualize bone and cartilage signaling during development in vivo Front. Endocrinol. 2012 3 91 10.3389/fendo.2012.00091
Le Pabic P. Dranow D.B. Hoyle D.J. Schilling T.F. Zebrafish endochondral growth zones as they relate to human bone size, shape and disease Front. Endocrinol. 2022 13 1060187 10.3389/fendo.2022.1060187
Staal Y.C.M. Meijer J. van der Kris R.J.C. de Bruijn A.C. Boersma A.Y. Gremmer E.R. Zwart E.P. Beekhof P.K. Slob W. van der Ven L.T.M. Head skeleton malformations in zebrafish (Danio rerio) to assess adverse effects of mixtures of compounds Arch. Toxicol. 2018 92 3549 3564 10.1007/s00204-018-2320-y
Schilling T.F. Kimmel C.B. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo Development 1994 120 483 494 10.1242/dev.120.3.483
Paudel S. Gjorcheska S. Bump P. Barske L. Patterning of cartilaginous condensations in the developing facial skeleton Dev. Biol. 2022 486 44 55 10.1016/j.ydbio.2022.03.010 35358504
Tonelli F. Bek J.W. Besio R. De Clercq A. Leoni L. Salmon P. Coucke P.J. Willaert A. Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders Front. Endocrinol. 2020 11 489 10.3389/fendo.2020.00489 32849280
Verreijdt L. Vandervennet E. Sire J.Y. Huysseune A. Developmental differences between cranial bones in the zebrafish (Danio rerio): Some preliminary light and TEM observations Connect. Tissue Res. 2002 43 109 112 10.1080/03008200290001087 12489145
Caetano da Silva C. Ostertag A. Raman R. Muller M. Cohen-Solal M. Collet C. wnt11f2 Zebrafish, an Animal Model for Development and New Insights in Bone Formation Zebrafish 2023 20 1 9 10.1089/zeb.2022.0042 36795617
Dietrich K. Fiedler I.A. Kurzyukova A. Lopez-Delgado A.C. McGowan L.M. Geurtzen K. Hammond C.L. Busse B. Knopf F. Skeletal Biology and Disease Modeling in Zebrafish J. Bone Miner. Res. 2021 36 436 458 10.1002/jbmr.4256 33484578
Li N. Felber K. Elks P. Croucher P. Roehl H.H. Tracking gene expression during zebrafish osteoblast differentiation Dev. Dyn. 2009 238 459 466 10.1002/dvdy.21838 19161246
Nie C.H. Zhang N.A. Chen Y.L. Chen Z.X. Wang G.Y. Li Q. Gao Z.X. A comparative genomic database of skeletogenesis genes: From fish to mammals Comp. Biochem. Physiol. Part. D Genom. Proteom. 2021 38 100796 33676152 10.1016/j.cbd.2021.100796
Niu P. Zhong Z. Wang M. Huang G. Xu S. Hou Y. Yan Y. Wang H. Zinc finger transcription factor Sp7/Osterix acts on bone formation and regulates col10a1a expression in zebrafish Sci. Bull. 2017 62 174 184 10.1016/j.scib.2017.01.009
Fisher S. Jagadeeswaran P. Halpern M.E. Radiographic analysis of zebrafish skeletal defects Dev. Biol. 2003 264 64 76 10.1016/S0012-1606(03)00399-3
Cotti S. Huysseune A. Larionova D. Koppe W. Forlino A. Witten P.E. Compression Fractures and Partial Phenotype Rescue With a Low Phosphorus Diet in the Chihuahua Zebrafish Osteogenesis Imperfecta Model Front. Endocrinol. 2022 13 851879 10.3389/fendo.2022.851879
Bergen D.J.M. Kague E. Hammond C.L. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds Front. Endocrinol. 2019 10 6 10.3389/fendo.2019.00006 30761080
Gray R.S. Wilm T.P. Smith J. Bagnat M. Dale R.M. Topczewski J. Johnson S.L. Solnica-Krezel L. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations Dev. Biol. 2014 386 72 85 10.1016/j.ydbio.2013.11.028 24333517
Kim Y.-I. Lee S. Jung S.-H. Kim H.-T. Choi J.-H. Lee M.-S. You K.-H. Yeo S.-Y. Yoo K.-W. Kwak S. et al. Establishment of a bone-specific col10a1:GFP transgenic zebrafish Mol. Cells 2013 36 145 150 10.1007/s10059-013-0117-7 23852131
Renn J. Buttner A. To T.T. Chan S.J. Winkler C. A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization Dev. Biol. 2013 381 134 143 10.1016/j.ydbio.2013.05.030
Simões B. Conceição N. Viegas C.S.B. Pinto J.P. Gavaia P.J. Hurst L.D. Kelsh R.N. Cancela M.L. Identification of a Promoter Element within the Zebrafish colXα1 Gene Responsive to Runx2 Isoforms Osf2/Cbfa1 and til-1 but not to pebp2αA2 Calcif. Tissue Int. 2006 79 230 244 10.1007/s00223-006-0111-6 17033725
Gudmann N.S. Karsdal M.A. Chapter 10-Type X Collagen Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers Karsdal M.A. Academic Press Cambridge, MA, USA 2016 73 76 10.1016/B978-0-12-809847-9.00010-6
He Y. Siebuhr A.S. Brandt-Hansen N.U. Wang J. Su D. Zheng Q. Simonsen O. Petersen K.K. Arendt-Nielsen L. Eskehave T. et al. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation BMC Musculoskelet. Disord. 2014 15 309 10.1186/1471-2474-15-309
Bateman J.F. Wilson R. Freddi S. Lamandé S.R. Savarirayan R. Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia Human. Mutat. 2005 25 525 534 10.1002/humu.20183 15880705
van der Kraan P.M. van den Berg W.B. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 2012 20 223 232 10.1016/j.joca.2011.12.003
Kwan K.M. Pang M.K. Zhou S. Cowan S.K. Kong R.Y. Pfordte T. Olsen B.R. Sillence D.O. Tam P.P. Cheah K.S. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: Implications for function J. Cell Biol. 1997 136 459 471 10.1083/jcb.136.2.459
Jacenko O. LuValle P.A. Olsen B.R. Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition Nature 1993 365 56 61 10.1038/365056a0
Rutkovskiy A. Stenslokken K.O. Vaage I.J. Osteoblast Differentiation at a Glance Med. Sci. Monit. Basic. Res. 2016 22 95 106 10.12659/MSMBR.901142 27667570
Venkatesh B. Lee A.P. Ravi V. Maurya A.K. Lian M.M. Swann J.B. Ohta Y. Flajnik M.F. Sutoh Y. Kasahara M. et al. Elephant shark genome provides unique insights into gnathostome evolution Nature 2014 505 174 179 10.1038/nature12826 24402279
Ling I.T. Rochard L. Liao E.C. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification Dev. Biol. 2017 421 219 232 10.1016/j.ydbio.2016.11.016 27908786
Mahajan D. Kancharla S. Kolli P. Sharma A.K. Singh S. Kumar S. Mohanty A.K. Jena M.K. Role of Fibulins in Embryonic Stage Development and Their Involvement in Various Diseases Biomolecules 2021 11 685 10.3390/biom11050685 34063320
Kobayashi N. Kostka G. Garbe J.H. Keene D.R. Bächinger H.P. Hanisch F.G. Markova D. Tsuda T. Timpl R. Chu M.L. et al. A comparative analysis of the fibulin protein family. Biochemical characterization, binding interactions, and tissue localization J. Biol. Chem. 2007 282 11805 11816 10.1074/jbc.M611029200
Cooley M.A. Harikrishnan K. Oppel J.A. Miler S.F. Barth J.L. Haycraft C.J. Reddy S.V. Scott Argraves W. Fibulin-1 is required for bone formation and Bmp-2-mediated induction of Osterix Bone 2014 69 30 38 10.1016/j.bone.2014.07.038 25201465
Singh U. Sun T. Larsson T. Elliott R.W. Kostka G. Fundele R.H. Expression and functional analysis of fibulin-1 (Fbln1) during normal and abnormal placental development of the mouse Placenta 2006 27 1014 1021 10.1016/j.placenta.2005.10.009
Cooley M.A. Kern C.B. Fresco V.M. Wessels A. Thompson R.P. McQuinn T.C. Twal W.O. Mjaatvedt C.H. Drake C.J. Argraves W.S. Fibulin-1 is required for morphogenesis of neural crest-derived structures Dev. Biol. 2008 319 336 345 10.1016/j.ydbio.2008.04.029
Feitosa N.M. Zhang J. Carney T.J. Metzger M. Korzh V. Bloch W. Hammerschmidt M. Hemicentin 2 and Fibulin 1 are required for epidermal-dermal junction formation and fin mesenchymal cell migration during zebrafish development Dev. Biol. 2012 369 235 248 10.1016/j.ydbio.2012.06.023
Patra C. Diehl F. Ferrazzi F. van Amerongen M.J. Novoyatleva T. Schaefer L. Mühlfeld C. Jungblut B. Engel F.B. Nephronectin regulates atrioventricular canal differentiation via Bmp4-Has2 signaling in zebrafish Development 2011 138 4499 4509 10.1242/dev.067454
Sanchez C. Mazzucchelli G. Lambert C. Comblain F. DePauw E. Henrotin Y. Comparison of secretome from osteoblasts derived from sclerotic versus non-sclerotic subchondral bone in OA: A pilot study PLoS ONE 2018 13 e0194591 10.1371/journal.pone.0194591 29547667
Sojan J.M. Raman R. Muller M. Carnevali O. Renn J. Probiotics Enhance Bone Growth and Rescue BMP Inhibition: New Transgenic Zebrafish Lines to Study Bone Health Int. J. Mol. Sci. 2022 23 4748 10.3390/ijms23094748 35563140
Westerfield M. The Zebrafish Book 5th ed. A Guide for the Laboratory Use of Zebrafish (Danio rerio), Eugene University of Oregon Press Eugene, OR, USA 2007
Ma X. Wang Y.W. Zhang M.Q. Gazdar A.F. DNA methylation data analysis and its application to cancer research Epigenomics 2013 5 301 316 10.2217/epi.13.26 23750645
Ewels P.A. Peltzer A. Fillinger S. Patel H. Alneberg J. Wilm A. Garcia M.U. Di Tommaso P. Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines Nat. Biotechnol. 2020 38 276 278 10.1038/s41587-020-0439-x
Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 2014 15 550 10.1186/s13059-014-0550-8
Gene Ontology Consortium The Gene Ontology resource: Enriching a GOld mine Nucleic Acids Res. 2021 49 D325 D334 10.1093/nar/gkaa1113
Kanehisa M. Sato Y. Kawashima M. KEGG mapping tools for uncovering hidden features in biological data Protein Sci. 2022 31 47 53 10.1002/pro.4172
Doudna J.A. Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 Science 2014 346 1258096 10.1126/science.1258096
Hwang W.Y. Fu Y. Reyon D. Maeder M.L. Tsai S.Q. Sander J.D. Peterson R.T. Yeh J.R. Joung J.K. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol. 2013 31 227 229 10.1038/nbt.2501
Aceto J. Nourizadeh-Lillabadi R. Maree R. Dardenne N. Jeanray N. Wehenkel L. Alestrom P. van Loon J.J. Muller M. Zebrafish bone and general physiology are differently affected by hormones or changes in gravity PLoS ONE 2015 10 e0126928 10.1371/journal.pone.0126928
Aceto J. Nourizadeh-Lillabadi R. Bradamante S. Maier J. Alestrom P. Van Loon J. Muller M. Effects of microgravity simulation on zebrafish transcriptomes and bone physiology; exposure starting at 5 days post-fertilization NPJ Microgravity 2016 2 16010 10.1038/npjmgrav.2016.10 28725727
Hur M. Gistelinck C.A. Huber P. Lee J. Thompson M.H. Monstad-Rios A.T. Watson C.J. McMenamin S.K. Willaert A. Parichy D.M. et al. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system eLife 2017 6 e26014 10.7554/eLife.26014 28884682
Watson C.J. Monstad-Rios A.T. Bhimani R.M. Gistelinck C. Willaert A. Coucke P. Hsu Y.H. Kwon R.Y. Phenomics-Based Quantification of CRISPR-Induced Mosaicism in Zebrafish Cell Syst. 2020 10 275 286.e5 10.1016/j.cels.2020.02.007 32191876
Maynard R.L. Downes N. Chapter 3—Introduction to the Skeleton: Bone, Cartilage and Joints Anatomy and Histology of the Laboratory Rat in Toxicology and Biomedical Research Gonzalez P. Academic Press Cambridge, MA, USA Elsevier London, UK 2019 11 22 10.1016/B978-0-12-811837-5.00003-4
Lin Z. Gao C. Ning Y. He X. Wu W. Chen Y.G. The pseudoreceptor BMP and activin membrane-bound inhibitor positively modulates Wnt/beta-catenin signaling J. Biol. Chem. 2008 283 33053 33058 10.1074/jbc.M804039200 18838381
Zhao H.J. Chang H.M. Klausen C. Zhu H. Li Y. Leung P.C.K. Bone morphogenetic protein 2 induces the activation of WNT/β-catenin signaling and human trophoblast invasion through up-regulating BAMBI Cell Signal 2020 67 109489 31786181 10.1016/j.cellsig.2019.109489
Roehl H. Nüsslein-Volhard C. Zebrafish pea3 and erm are general targets of FGF8 signaling Curr. Biol. 2001 11 503 507 10.1016/S0960-9822(01)00143-9
Qi H. Aguiar D.J. Williams S.M. La Pean A. Pan W. Verfaillie C.M. Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells Proc. Natl. Acad. Sci. USA 2003 100 3305 3310 10.1073/pnas.0532693100
Rakar J. Lonnqvist S. Sommar P. Junker J. Kratz G. Interpreted gene expression of human dermal fibroblasts after adipo-, chondro- and osteogenic phenotype shifts Differentiation 2012 84 305 313 10.1016/j.diff.2012.08.003
Bartelt A. Beil F.T. Muller B. Koehne T. Yorgan T.A. Heine M. Yilmaz T. Ruther W. Heeren J. Schinke T. et al. Hepatic lipase is expressed by osteoblasts and modulates bone remodeling in obesity Bone 2014 62 90 98 10.1016/j.bone.2014.01.001
Rendenbach C. Yorgan T.A. Heckt T. Otto B. Baldauf C. Jeschke A. Streichert T. David J.P. Amling M. Schinke T. Effects of extracellular phosphate on gene expression in murine osteoblasts Calcif. Tissue Int. 2014 94 474 483 10.1007/s00223-013-9831-6 24366459
Kim M. Yu Y. Moon J.H. Koh I. Lee J.H. Differential Expression Profiling of Long Noncoding RNA and mRNA during Osteoblast Differentiation in Mouse Int. J. Genom. 2018 2018 7691794 10.1155/2018/7691794 29765976
Grundberg E. Brandstrom H. Lam K.C. Gurd S. Ge B. Harmsen E. Kindmark A. Ljunggren O. Mallmin H. Nilsson O. et al. Systematic assessment of the human osteoblast transcriptome in resting and induced primary cells Physiol. Genom. 2008 33 301 311 10.1152/physiolgenomics.00028.2008 18334548
Hsu W.B. Hsu W.H. Hung J.S. Shen W.J. Hsu R.W. Transcriptome analysis of osteoblasts in an ovariectomized mouse model in response to physical exercise Bone Joint Res. 2018 7 601 608 10.1302/2046-3758.711.BJR-2018-0075.R2 30581558
Moriarity B.S. Otto G.M. Rahrmann E.P. Rathe S.K. Wolf N.K. Weg M.T. Manlove L.A. LaRue R.S. Temiz N.A. Molyneux S.D. et al. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis Nat. Genet. 2015 47 615 624 10.1038/ng.3293 25961939
Wattanachanya L. Wang L. Millard S.M. Lu W.-D. O’Carroll D. Hsiao E.C. Conklin B.R. Nissenson R.A. Assessing the osteoblast transcriptome in a model of enhanced bone formation due to constitutive Gs–G protein signaling in osteoblasts Exp. Cell Res. 2015 333 289 302 10.1016/j.yexcr.2015.02.009
Rawlinson S.C. McKay I.J. Ghuman M. Wellmann C. Ryan P. Prajaneh S. Zaman G. Hughes F.J. Kingsmill V.J. Adult rat bones maintain distinct regionalized expression of markers associated with their development PLoS ONE 2009 4 e8358 10.1371/journal.pone.0008358
Nie C.-H. Wan S.-M. Chen Y.-L. Huysseune A. Wu Y.-M. Zhou J.-J. Hilsdorf A.W.S. Wang W.-M. Witten P.E. Lin Q. et al. Single-cell transcriptomes and runx2b−/− mutants reveal the genetic signatures of intermuscular bone formation in zebrafish Natl. Sci. Rev. 2022 9 nwac152 10.1093/nsr/nwac152
Eames B.F. Amores A. Yan Y.L. Postlethwait J.H. Evolution of the osteoblast: Skeletogenesis in gar and zebrafish BMC Evol. Biol. 2012 12 27 10.1186/1471-2148-12-27
Lin C.-H. Hu H.-J. Hwang P.-P. Molecular Physiology of the Hypocalcemic Action of Fibroblast Growth Factor 23 in Zebrafish (Danio rerio) Endocrinology 2017 158 1347 1358 10.1210/en.2016-1883
Chiba A. Watanabe-Takano H. Terai K. Fukui H. Miyazaki T. Uemura M. Hashimoto H. Hibi M. Fukuhara S. Mochizuki N. Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish Development 2017 144 334 344 10.1242/dev.143354 27993976
Wang J.S. Kamath T. Mazur C.M. Mirzamohammadi F. Rotter D. Hojo H. Castro C.D. Tokavanich N. Patel R. Govea N. et al. Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin Nat. Commun. 2021 12 6271 10.1038/s41467-021-26571-7 34725346
Tian Y. Wang W. Lautrup S. Zhao H. Li X. Law P.W.N. Dinh N.D. Fang E.F. Cheung H.H. Chan W.Y. WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner Syndrome Nat. Commun. 2022 13 5456 10.1038/s41467-022-33012-6 36114168
Sztal T.E. Stainier D.Y.R. Transcriptional adaptation: A mechanism underlying genetic robustness Development 2020 147 dev.186452 10.1242/dev.186452
Russell M.W. Raeker M.O. Geisler S.B. Thomas P.E. Simmons T.A. Bernat J.A. Thorsson T. Innis J.W. Functional analysis of candidate genes in 2q13 deletion syndrome implicates FBLN7 and TMEM87B deficiency in congenital heart defects and FBLN7 in craniofacial malformations Hum. Mol. Genet. 2014 23 4272 4284 10.1093/hmg/ddu144 24694933
Kostka G. Giltay R. Bloch W. Addicks K. Timpl R. Fassler R. Chu M.L. Perinatal lethality and endothelial cell abnormalities in several vessel compartments of fibulin-1-deficient mice Mol. Cell. Biol. 2001 21 7025 7034 10.1128/MCB.21.20.7025-7034.2001 11564885
Albertson R.C. Yelick P.C. Roles for fgf8 signaling in left-right patterning of the visceral organs and craniofacial skeleton Dev. Biol. 2005 283 310 321 10.1016/j.ydbio.2005.04.025
Zbasnik N. Dolan K. Buczkowski S.A. Green R.M. Hallgrímsson B. Marcucio R.S. Moon A.M. Fish J.L. Fgf8 dosage regulates jaw shape and symmetry through pharyngeal-cardiac tissue relationships Dev. Dyn. 2022 251 1711 1727 35618654 10.1002/dvdy.501
Fresco V.M. Kern C.B. Mohammadi M. Twal W.O. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: Effects on embryo survival J. Biol. Chem. 2016 291 18730 18739 27402846 10.1074/jbc.M115.702761