Insulin; Glucose; P2RY1 protein, human; Receptors, Purinergic P2Y1; Humans; Insulin/metabolism; Genomics; Glucose/metabolism; Receptors, Purinergic P2Y1/genetics; Receptors, Purinergic P2Y1/metabolism; Diabetes Mellitus, Type 2/genetics; Diabetes Mellitus, Type 2/metabolism; Islets of Langerhans/metabolism; Diabetes Mellitus, Type 2; Islets of Langerhans; Molecular Biology; Cell Biology
Abstract :
[en] [en] OBJECTIVE: Human functional genomics has proven powerful in discovering drug targets for common metabolic disorders. Through this approach, we investigated the involvement of the purinergic receptor P2RY1 in type 2 diabetes (T2D).
METHODS: P2RY1 was sequenced in 9,266 participants including 4,177 patients with T2D. In vitro analyses were then performed to assess the functional effect of each variant. Expression quantitative trait loci (eQTL) analysis was performed in pancreatic islets from 103 pancreatectomized individuals. The effect of P2RY1 on glucose-stimulated insulin secretion was finally assessed in human pancreatic beta cells (EndoCβH5), and RNA sequencing was performed on these cells.
RESULTS: Sequencing P2YR1 in 9,266 participants revealed 22 rare variants, seven of which were loss-of-function according to our in vitro analyses. Carriers, except one, exhibited impaired glucose control. Our eQTL analysis of human islets identified P2RY1 variants, in a beta-cell enhancer, linked to increased P2RY1 expression and reduced T2D risk, contrasting with variants located in a silent region associated with decreased P2RY1 expression and increased T2D risk. Additionally, a P2RY1-specific agonist increased insulin secretion upon glucose stimulation, while the antagonist led to decreased insulin secretion. RNA-seq highlighted TXNIP as one of the main transcriptomic markers of insulin secretion triggered by P2RY1 agonist.
CONCLUSION: Our findings suggest that P2RY1 inherited or acquired dysfunction increases T2D risk and that P2RY1 activation stimulates insulin secretion. Selective P2RY1 agonists, impermeable to the blood-brain barrier, could serve as potential insulin secretagogues.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Dance, Arnaud; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Fernandes, Justine; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Toussaint, Bénédicte; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Vaillant, Emmanuel; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Boutry, Raphaël; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Baron, Morgane; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Loiselle, Hélène; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Balkau, Beverley; Paris-Saclay University, Paris-Sud University, UVSQ, Center for Research in Epidemiology and Population Health, Inserm U1018 Clinical Epidemiology, Villejuif, France
Charpentier, Guillaume; CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
Franc, Sylvia; CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France, Department of Diabetes, Sud-Francilien Hospital, Paris-Sud University, Corbeil-Essonnes, France
Ibberson, Mark; Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
Marre, Michel; Institut Necker-Enfants Malades, Inserm, Université de Paris, Paris, France, Clinique Ambroise Paré, Neuilly-sur-Seine, France
GERNAY, Marie-Marie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques
Fadeur, Marjorie ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques
Paquot, Nicolas ; Université de Liège - ULiège > Département des sciences cliniques > Diabétologie, nutrition et maladies métaboliques
Vaxillaire, Martine; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Boissel, Mathilde; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Amanzougarene, Souhila; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Derhourhi, Mehdi; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France
Khamis, Amna; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
Froguel, Philippe; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom. Electronic address: philippe.froguel@cnrs.fr
Bonnefond, Amélie; Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France, Université de Lille, Lille, France, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom. Electronic address: amelie.bonnefond@inserm.fr
ERC - European Research Council ANR - French National Research Agency
Funding text :
We thank “France Génomique” consortium (ANR-10-INBS-009). This work was supported by grants from the French National Research Agency (ANR-10-LABX-46 [European Genomics Institute for Diabetes] and ANR-10-EQPX-07-01 [LIGAN-PM]), from the European Research Council ( ERC OπO – 101,043,671, to AB), and from the National Center for Precision Diabetic Medicine – PreciDIAB, which is jointly supported by the French National Agency for Research (ANR-18-IBHU-0001), by the European Union ( FEDER ), by the Hauts-de-France Regional Council and by the European Metropolis of Lille (MEL).
American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care 45:Suppl 1 (2022), S17–S38, 10.2337/dc22-S002.
Jin, J., Daniel, J.L., Kunapuli, S.P., Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273:4 (1998), 2030–2034, 10.1074/jbc.273.4.2030.
Murugappa, S., Kunapuli, S.P., The role of ADP receptors in platelet function. Front Biosci: J Vis Literacy, 11, 2006, 1977, 10.2741/1939 86.
Novak, I., Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 4:3 (2008), 237–253, 10.1007/s11302-007-9087-6.
Balasubramanian, R., de Azua, I.R., Wess, J., Jacobson, K.A., Activation of distinct P2Y receptor subtypes stimulates insulin secretion in MIN6 mouse pancreatic β cells. Biochem Pharmacol 79:9 (2010), 1317–1326, 10.1016/j.bcp.2009.12.026.
Gloyn, A.L., Pearson, E.R., Antcliff, J.F., Proks, P., Bruining, G.J., Slingerland, A.S., et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:18 (2004), 1838–1849, 10.1056/NEJMoa032922.
Bonfanti, D.H., Alcazar, L.P., Arakaki, P.A., Martins, L.T., Agustini, B.C., de Moraes Rego, F.G., et al. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 48:7–8 (2015), 476–482, 10.1016/j.clinbiochem.2014.12.026.
Costanzo, M.C., von Grotthuss, M., Massung, J., Jang, D., Caulkins, L., Koesterer, R., et al. The Type 2 Diabetes Knowledge Portal: an open access genetic resource dedicated to type 2 diabetes and related traits. Cell Metabol 35:4 (2023), 695–710.e6, 10.1016/j.cmet.2023.03.001.
Marcheva, B., Weidemann, B.J., Taguchi, A., Perelis, M., Ramsey, K.M., Newman, M.V., et al., n.d. P2Y1 purinergic receptor identified as a diabetes target in a small-molecule screen to reverse circadian β-cell failure. Elife 11: e75132, Doi: 10.7554/eLife.75132.
Khan, S., Ferdaoussi, M., Bautista, A., Bergeron, V., Smith, N., Poitout, V., et al. A role for PKD1 in insulin secretion downstream of P2Y 1 receptor activation in mouse and human islets. Physiological Reports, 7(19), 2019, 10.14814/phy2.14250.
Smyth, S.S., Woulfe, D.S., Weitz, J.I., Gachet, C., Conley, P.B., Goodman, S.G., et al. G-protein-coupled receptors as signaling targets for antiplatelet therapy. Arterioscler Thromb Vasc Biol 29:4 (2009), 449–457, 10.1161/ATVBAHA.108.176388.
Hechler, B., Cattaneo, M., Gachet, C., The P2 receptors in platelet function. Semin Thromb Hemost 31:2 (2005), 150–161, 10.1055/s-2005-869520.
Voss, A.A., Extracellular ATP inhibits chloride channels in mature mammalian skeletal muscle by activating P2Y1 receptors. J Physiol 587:Pt 23 (2009), 5739–5752, 10.1113/jphysiol.2009.179275.
Abbott, K.L., Loss, J.R., Robida, A.M., Murphy, T.J., Evidence that Galpha(q)-coupled receptor-induced interleukin-6 mRNA in vascular smooth muscle cells involves the nuclear factor of activated T cells. Mol Pharmacol 58:5 (2000), 946–953, 10.1124/mol.58.5.946.
Kawano, S., Otsu, K., Kuruma, A., Shoji, S., Yanagida, E., Muto, Y., et al. ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 39:4 (2006), 313–324, 10.1016/j.ceca.2005.11.008.
Kim, S.-A., Choi, H.S., Ahn, S.-G., Pin1 induces the ADP-induced migration of human dental pulp cells through P2Y1 stabilization. Oncotarget 7:51 (2016), 85381–85392, 10.18632/oncotarget.13377.
Ioannidis, N.M., Rothstein, J.H., Pejaver, V., Middha, S., McDonnell, S.K., Baheti, S., et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99:4 (2016), 877–885, 10.1016/j.ajhg.2016.08.016.
Khamis, A., Canouil, M., Siddiq, A., Crouch, H., Falchi, M., Bulow, M. von., et al. Laser capture microdissection of human pancreatic islets reveals novel eQTLs associated with type 2 diabetes. Mol Metabol 24 (2019), 98–107, 10.1016/j.molmet.2019.03.004.
Wigger, L., Barovic, M., Brunner, A.-D., Marzetta, F., Schöniger, E., Mehl, F., et al. Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nat Metab 3:7 (2021), 1017–1031, 10.1038/s42255-021-00420-9.
Nica, A.C., Ongen, H., Irminger, J.-C., Bosco, D., Berney, T., Antonarakis, S.E., et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res 23:9 (2013), 1554–1562, 10.1101/gr.150706.112.
Blodgett, D.M., Nowosielska, A., Afik, S., Pechhold, S., Cura, A.J., Kennedy, N.J., et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64:9 (2015), 3172–3181, 10.2337/db15-0039.
Blanchi, B., Taurand, M., Colace, C., Thomaidou, S., Audeoud, C., Fantuzzi, F., et al. EndoC-βH5 cells are storable and ready-to-use human pancreatic beta cells with physiological insulin secretion. Mol Metabol, 76, 2023, 101772, 10.1016/j.molmet.2023.101772.
Junn, E., Han, S.H., Im, J.Y., Yang, Y., Cho, E.W., Um, H.D., et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol 164:12 (2000), 6287–6295, 10.4049/jimmunol.164.12.6287.
J, Y., Y, M., H, T., H, M., T, I., Anti-inflammatory thioredoxin family proteins for medicare, healthcare and aging care. Nutrients, 9(10), 2017, 10.3390/nu9101081.
Zhou, R., Tardivel, A., Thorens, B., Choi, I., Tschopp, J., Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:2 (2010), 136–140, 10.1038/ni.1831.
Ma, M., O, B., Cr, K., Metabolic syndrome: is Nlrp3 inflammasome a trigger or a target of insulin resistance?. Circ Res, 108(10), 2011, 10.1161/RES.0b013e318220b57b.
Chen, J., Hui, S.T., Couto, F.M., Mungrue, I.N., Davis, D.B., Attie, A.D., et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB (Fed Am Soc Exp Biol) J: Official Publication of the Federation of American Societies for Experimental Biology 22:10 (2008), 3581–3594, 10.1096/fj.08-111690.
Léon, C., Freund, M., Latchoumanin, O., Farret, A., Petit, P., Cazenave, J.-P., et al. The P2Y1 receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal 1:2 (2005), 145–151, 10.1007/s11302-005-6209-x.
Mesto, N., Bailbe, D., Eskandar, M., Pommier, G., Gil, S., Tolu, S., et al. Involvement of P2Y signaling in the restoration of glucose-induced insulin exocytosis in pancreatic β cells exposed to glucotoxicity. J Cell Physiol 237:1 (2022), 881–896, 10.1002/jcp.30564.
Todd, J.N., Poon, W., Lyssenko, V., Groop, L., Nichols, B., Wilmot, M., et al. Variation in glucose homeostasis traits associated with P2RX7 polymorphisms in mice and humans. J Clin Endocrinol Metabol 100:5 (2015), E688–E696, 10.1210/jc.2014-4160.
Yang, D., Zhou, Q., Labroska, V., Qin, S., Darbalaei, S., Wu, Y., et al. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Targeted Ther, 6(1), 2021, 7, 10.1038/s41392-020-00435-w.
Folon, L., Baron, M., Toussaint, B., Vaillant, E., Boissel, M., Scherrer, V., et al. Contribution of heterozygous PCSK1 variants to obesity and implications for precision medicine: a case-control study. The Lancet. Diabetes & Endocrinology 11:3 (2023), 182–190, 10.1016/S2213-8587(22)00392-8.
American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care 42:Suppl 1 (2019), S13–S28, 10.2337/dc19-S002.
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, 10(1), 2019, 1523, 10.1038/s41467-019-09234-6.
Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., et al. Integrative genomics viewer. Nat Biotechnol 29:1 (2011), 24–26, 10.1038/nbt.1754.
Ongen, H., Buil, A., Brown, A.A., Dermitzakis, E.T., Delaneau, O., Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32:10 (2016), 1479–1485, 10.1093/bioinformatics/btv722.
Lawlor, N., Márquez, E.J., Orchard, P., Narisu, N., Shamim, M.S., Thibodeau, A., et al. Multiomic profiling identifies cis-regulatory networks underlying human pancreatic β cell identity and function. Cell Rep 26:3 (2019), 788–801.e6, 10.1016/j.celrep.2018.12.083.