Abeni, F., Galli, A., Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow. Int. J. Biometeorol. 61 (2017), 417–425 https://doi.org/10.1007/s00484-016-1222-z 27498881.
Banos, G., Shook, G.E., Genotype by environment interaction and genetic correlations among parities for somatic cell count and milk yield. J. Dairy Sci. 73 (1990), 2563–2573 https://doi.org/10.3168/jds.S0022-0302(90)78942-4 2258499.
Becker, C.A., Collier, R.J., Stone, A.E., Invited review: Physiological and behavioral effects of heat stress in dairy cows. J. Dairy Sci. 103 (2020), 6751–6770 https://doi.org/10.3168/jds.2019-17929 32448584.
Carabaño, M.J., Ramón, M., Menéndez-Buxadera, A., Molina, A., Díaz, C., Selecting for heat tolerance. Anim. Front. 9 (2019), 62–68 https://doi.org/10.1093/af/vfy033 32002241.
Cavani, L., Brown, W.E., Parker Gaddis, K.L., Tempelman, R.J., VandeHaar, M.J., White, H.M., Peñagaricano, F., Weigel, K.A., Estimates of genetic parameters for feeding behavior traits and their associations with feed efficiency in Holstein cows. J. Dairy Sci. 105 (2022), 7564–7574 https://doi.org/10.3168/jds.2022-22066 35863925.
Fabris, T.F., Laporta, J., Skibiel, A.L., Corra, F.N., Senn, B.D., Wohlgemuth, S.E., Dahl, G.E., Effect of heat stress during early, late, and entire dry period on dairy cattle. J. Dairy Sci. 102 (2019), 5647–5656 https://doi.org/10.3168/jds.2018-15721 31005317.
FAO, Food and Agriculture Organization of the United Nations (FAO), animal production and health division. Greenhouse gas emissions from the dairy sector-A life cycle assessment. https://www.fao.org/3/k7930e/k7930e00.pdf, 2010. (Accessed 14 March 2024)
Hammami, H., Vandenplas, J., Vanrobays, M.-L., Rekik, B., Bastin, C., Gengler, N., Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J. Dairy Sci. 98 (2015), 4956–4968 https://doi.org/10.3168/jds.2014-9148 25958288.
Hansen, P.J., Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. Anim. Reprod. 16 (2019), 497–507 https://doi.org/10.21451/1984-3143-AR2019-0053 32435293.
Hut, P.R., Scheurwater, J., Nielen, M., van den Broek, J., Hostens, M.M., Heat stress in a temperate climate leads to adapted sensor-based behavioral patterns of dairy cows. J. Dairy Sci. 105 (2022), 6909–6922 https://doi.org/10.3168/jds.2021-21756 35787319.
ICAR, International Committee for Animal Recording (ICAR), dairy cattle milk recording working group. Section 2-Guidelines for dairy cattle milk recording. https://www.icar.org/index.php/icar-recording-guidelines/, 2022. (Accessed 14 March 2024)
Ji, B., Banhazi, T., Perano, K., Ghahramani, A., Bowtell, L., Wang, C., Li, B., A review of measuring, assessing and mitigating heat stress in dairy cattle. Biosyst. Eng. 199 (2020), 4–26 https://doi.org/10.1016/j.biosystemseng.2020.07.009.
Kheirabadi, K., Razmkabir, M., Genetic parameters for daily milk somatic cell score and relationships with yield traits of primiparous Holstein cattle in Iran. J. Anim. Sci. Technol., 58, 2016, 38 https://doi.org/10.1186/s40781-016-0121-5 27800174.
Lassen, J., Løvendahl, P., Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods. J. Dairy Sci. 99 (2016), 1959–1967 https://doi.org/10.3168/jds.2015-10012 26805978.
Manzanilla Pech, C.I.V., Veerkamp, R.F., Calus, M.P.L., Zom, R., van Knegsel, A., Pryce, J.E., De Haas, Y., Genetic parameters across lactation for feed intake, fat- and protein-corrected milk, and liveweight in first-parity Holstein cattle. J. Dairy Sci. 97 (2014), 5851–5862 https://doi.org/10.3168/jds.2014-8165 25022692.
Mauger, G., Bauman, Y., Nennich, T., Salathé, E., Impacts of climate change on milk production in the United States. Prof. Geogr. 67 (2015), 121–131 https://doi.org/10.1080/00330124.2014.921017.
McWhorter, T.M., Sargolzaei, M., Sattler, C.G., Utt, M.D., Tsuruta, S., Misztal, I., Lourenco, D., Onset of heat stress and development of genomic predictions for heat tolerance in US Holsteins and Jerseys. Veerkamp, R.F., de Haas, Y., (eds.) Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP), 2022, Wageningen Academic Publishers, 2883–2886 https://doi.org/10.3920/978-90-8686-940-4_699.
Misztal, I., Tsuruta, S., Lourenco, D., Aguilar, I., Legarra, A., Vitezica, Z., Manual for BLUPF90 family of programs. 2014, University of Georgia, Athens, GA.
Moretti, R., de Rezende, M.P.G., Biffani, S., Bozzi, R., Heritability and genetic correlations between rumination time and production traits in Holstein dairy cows during different lactation phases. J. Anim. Breed. Genet. 135 (2018), 293–299 https://doi.org/10.1111/jbg.12346.
NRC, A Guide to Environmental Research on Animals. 1971, Natl. Acad. Sci., Washington, DC.
Osei-Amponsah, R., Chauhan, S.S., Leury, B.J., Cheng, L., Cullen, B., Clarke, I.J., Dunshea, F.R., Genetic selection for thermotolerance in ruminants. Animals (Basel), 9, 2019, 948 https://doi.org/10.3390/ani9110948 31717903.
Poppe, M., Mulder, H.A., van Pelt, M.L., Mullaart, E., Hogeveen, H., Veerkamp, R.F., Development of resilience indicator traits based on daily step count data for dairy cattle breeding. Genet. Sel. Evol., 54, 2022, 21 https://doi.org/10.1186/s12711-022-00713-x 35287581.
Ramón-Moragues, A., Carulla, P., Mínguez, C., Villagrá, A., Estellés, F., Dairy cows activity under heat stress: A case study in Spain. Animals (Basel), 11, 2021, 2305 https://doi.org/10.3390/ani11082305 34438762.
Ravagnolo, O., Misztal, I., Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 83 (2000), 2126–2130 https://doi.org/10.3168/jds.S0022-0302(00)75095-8 11003247.
Schöpke, K., Use of accelerometer data for genetic evaluation in dairy cattle. Interbull Bull. 48 (2014), 68–72.
Schüller, L.K., Michaelis, I., Heuwieser, W., Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows. Theriogenology 102 (2017), 48–53 https://doi.org/10.1016/j.theriogenology.2017.07.004 28743027.
Tiezzi, F., Maisano, A.M., Chessa, S., Luini, M., Biffani, S., Heritability of teat condition in Italian Holstein Friesian and its relationship with milk production and somatic cell score. Animals (Basel), 10, 2020, 2271 https://doi.org/10.3390/ani10122271 33276452.
Wang, J., Li, J., Wang, F., Xiao, J., Wang, Y., Yang, H., Li, S., Cao, Z., Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol., 11, 2020, 79 https://doi.org/10.1186/s40104-020-00485-8 32789013.
Wankar, A.K., Rindhe, S.N., Doijad, N.S., Heat stress in dairy animals and current milk production trends, economics, and future perspectives: The global scenario. Trop. Anim. Health Prod., 53, 2021, 70 https://doi.org/10.1007/s11250-020-02541-x 33398462.
Wiggans, G.R., Shook, G.E., A lactation measure of somatic cell count. J. Dairy Sci. 70 (1987), 2666–2672 https://doi.org/10.3168/jds.S0022-0302(87)80337-5 3448115.