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Abstract: The increase in periods of heat waves leads to an increase in heat stress events in dairy cattle leading to welfare, production 
losses and health issues. However, the low frequency of milk recording data makes genetic evaluation for heat tolerance still a challenge. 
A possible solution could be to add behavior data captured through sensors which are recorded permanently, mostly reported on a daily 
basis. The objective of this study was to evaluate the potential gain of adding behavior traits as proxies for genetic evaluation of heat 
tolerance. Behavior traits including activity time (ACT), rumination time (RUM) and eating time (EAT) were recorded for 453 Holstein 
cows equipped with SenseHubTM collars from October 2019 to July 2022 in 6 herd located in the Walloon Region of Belgium. A multi-
trait reaction norm model based on separate temperature and humidity index (THI) thresholds was used. Results showed that behavior 
traits present not only interesting characteristics for genetic evaluation of heat tolerance but also for heat stress detection in farms. Indeed, 
sensors allow to record behavior for all events of heat stress in lactating and nonlactating animals. Moderate heritability values were also 
found for the behavior traits (0.14 for ACT, 0.19 for RUM and 0.12 for EAT) and a high ratio between the general and thermotolerance 
additive genetic variances was obtained. In addition, positive correlations of thermotolerance for ACT and EAT with thermotolerance for 
milk production (fat- and protein-corrected milk) (0.45 and 0.28 respectively) and negative genetic correlations of thermotolerance for 
ACT with somatic cells (somatic cell score (SCS)) (−0.39) were estimated. The genetic correlation matrix allows to explain a high part of 
the variation for the reaction to heat stress of 2 economical traits (fat- and protein-corrected milk (FPCM): 59% and somatic cell score: 
31%) based on behavior data. Based on these results, behavior traits could be used to assess heat stress in nonlactating cattle for which 
the number of genetic evaluations for heat tolerance are still limited.

Heat stress is well known to negatively impact dairy cattle 
production, welfare, and health (Becker et al., 2020). Indeed, 

dairy cows are especially sensitive to heat due to their high meta-
bolic rate (Wang et al., 2020). In the US, it has been predicted 
that temperature elevation by 2050 could lead to a decrease of 1.4 
kg/day/cow of milk production resulting in an economic loss of 
$1.7 billion per year (Mauger et al., 2015; Wankar et al., 2021). A 
proposed solution to alleviate heat stress in a permanent and cumu-
lative way is through genetic selection for thermotolerant animals 
(Garner et al., 2016; Osei-Amponsah et al., 2019). The most direct 
way to measure heat stress is to use body temperature as phenotype 
but routine measurements are especially difficult to be established 
in a large-scale system (Ji et al., 2020). Conversely, production 
performances are available at a large scale through milk recording 
and are thus frequently used to evaluate heat tolerance in dairy 
cattle (Hammami et al., 2015). However, milk recording intervals 
are counted in weeks (ICAR Guidelines, 2022) which drastically 
limits the number of records available during hot days (Carabaño 
et al., 2019). An alternative could be to combine milk recording 
and behavior data collected using sensors. The objective of this 
work was thus to evaluate the potential value of adding behavior 
data for genetic evaluation of heat tolerance in dairy cows.

Behavior data was obtained for 453 Holstein cows distributed 
in 6 herds equipped with SenseHubTM Allflex collars from Oc-
tober 2019 to July 2022 in the Walloon Region of Belgium. The 
used sensors provided daily information for activity time (ACT), 

rumination time (RUM) and eating time (EAT). Milk recording 
information including milk yield, fat percentage, protein percent-
age and somatic cell count (SCC) were obtained for 1,740 Holstein 
cows (which included the 453 cows) from the same 6 herds from 
2015 to 2022 to fit with the meteorological data obtained during 
the same period. Meteorological data included hourly temperature 
(T) (°C) and hourly relative humidity (RH) (%) from the nearest 
weather station of every herd. The hourly temperature-humidity 
index (THI) was calculated following this formula (NRC, 1971):

 THI = ((1.8 × T) + 32) – [(0.55 – 0.0055 × RH) × ((1.8 × 
T) – 26)] (1)

The daily THI was then defined as the mean of the hourly THI of 
the concerned day. To consider the delay between the onset of high 
THI and the cow reaction to heat stress, the mean THI of the day 
and the 3 previous days was then used. Indeed, our preliminary 
investigation showed that this time point presented the highest 
variability with THI.

To prevent the dilution effect of a decrease in milk yield on fat 
and protein contents, fat- and protein-corrected milk (FPCM) was 
used instead of milk yield, fat percentage and protein percentage 
separately. FPCM was calculated as following (FAO, 2019):

 FPCM = milk yield × (0.337 + 0.116 × fat percentage + 0.06 × 
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protein percentage) (2)

SCC data were converted to somatic cell score (SCS) using the 
following formula (Wiggans and Shook, 1987):

 SCS = [log2 (SCC/100000)] + 3 with minimum SCS = 0.1 (3)

For the 5 traits (FPCM, SCS, ACT, RUM and EAT) data outside 
the range mean ± 3 standard deviations (SD) were excluded. De-
scriptive statistics are presented in Table 1.

The THI thresholds at which we considered that heat stress starts 
to affect the different traits were estimated following a multi-trait 
model based on the model proposed by McWhorter et al., (2022):

 yijklmnop = THIij + HYik + lactil + (DIM × s)im + agein + aio + peio + 
eijklmnop (4)

with yijklmnop the analyzed trait i (FPCM, SCS, ACT, RUM or EAT), 
THIij the categorical fixed effect for the mean THI of the day and 
the 3 previous days of class j, HYik the categorical fixed effect for 
the herd-year of class k, lactil the categorical fixed effect for the 
lactation number of class l (lactation 1, 2, 3, 4 and 5+), (DIM × s)
im the categorical fixed effect for the combination of the classes of 
day in milk (classes of 30 d of DIM) and the season of calving of 
class m, agein the categorical fixed effect for the age at calving of 
class n (5 classes), aio the additive genetic random effect for animal 
o, peio the permanent environmental random effect for animal o 
and eijklmnop the residual.

The results for the THI effect and the relative THI effect (THI 
effect obtained in equation (4) / phenotypic SD) were then repre-
sented as a function of the THI to set the THI threshold for every 
trait. Polynomials of degree 5 were added to help to determine the 
thresholds (Figure 1). The results show a decrease of the 3 behav-
ior traits with increasing THI. In the literature, Ramón-Moragues 
et al. (2021) obtained a decrease of RUM and EAT but also an 
increase of ACT for heat stressed cows compared with non-heat 
stressed cows. Similarly, Abeni and Galli (2017) showed a lower 
RUM and a slightly higher ACT during a hot day (THI around 80) 
compared with a cooler day (THI around 70). Conversely, Hut et 
al. (2022) showed a decrease of walking time, a slight increase 
of RUM with increasing THI but also a decrease of EAT. On this 
basis, the reduction of EAT during heat stress seems to be accepted 
while the effect of ACT varies a lot with studies. This could be 
due to various factors including the devices used, the population 
studied and the intensity and duration of the heat period.

We chose THI thresholds of 60 for EAT, 64 for FPCM, SCS 
and ACT and 66 for RUM (Figure 1). All thresholds appear at 

similar THI, but behavior data thresholds were clearer than FPCM 
and SCS thresholds. This could be due to the higher frequency of 
behavior data. By looking at the relative THI effect, it seems also 
higher for behavior data but the maximum THI for the behavior 
data (74) was higher than for FPCM and SCS (70). In this way, a 
bigger reaction should probably be visible at higher THI also for 
FPCM and SCS.

Based on the thresholds, a multi-trait reaction norm model was 
then performed based on the model proposed by McWhorter et al., 
(2022):

 yihlmnop = HTDih + lactil + (DIM × s)im + agein + aio + αio[f(THI)] + 
peio + πio[f(THI)] + eihlmnop (5)

with HTDih the categorical fixed effect for the herd test-day of 
class h, αio the slope of the regression on the THI for the random 
additive genetic effect (thermotolerance additive genetic effect) for 
animal o, πio the slope of the regression on the THI for the random 
permanent environmental effect (thermotolerance permanent envi-
ronment effect) for animal o, f(THI) = 0 if THItest-day < THIthreshold 
and f(THI) = THItest-day – THIthreshold if THItest-day ≥ THIthreshold.

All data were prepared in SAS environment (SAS Institute Inc., 
Cary, NC). The (co)variance components estimation and their stan-
dard errors (SE) were estimated with BLUPF90+ programs from 
the BLUPF90 family of programs (Misztal et al., 2014).

Based on the estimated (co)variance, genetic correlations for 
thermotolerance for every trait were estimated and listed in Table 
2.

Genetic correlations for thermotolerance between traits i and j 
were estimated using Pearson correlation formula:

 rα (i, j) = (covα (i, j)) / (√ (σ2
αi σ2

αj)) (6)

with covα (i, j) the covariance for the thermotolerance additive ge-
netic effect between trait i and trait j, σ2

αi the variance for the ther-
motolerance additive genetic effect of trait i and σ2

αj the variance 
for the thermotolerance additive genetic effect of trait j.

The results show a negative genetic correlation for thermotoler-
ance between FPCM and SCS (−0.40) suggesting that by selecting 
cows with a lower decrease of FPCM during heat stress events, 
we are also indirectly selecting cows with a lower increase of SCS 
during heat stress. This was consistent with the general negative 
genetic correlation observed between milk yield and SCS. Indeed, 
animals with higher SCS have the tendency to produce less milk 
(Banos and Shook, 1990). Similarly, by looking at the genetic cor-
relations between behavior data and FPCM (0.45 for ACT and 0.28 
for EAT), we can expect that by selecting cows for a lower decrease 
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Table 1: Descriptive statistics for the studied traits and the THI. ACT: activity time; RUM: rumination time; EAT: eating 
time

Trait (unit) Mean Min Max SD N

FPCM (kg) 27.36 1.48 59.95 8.02 32154
SCS 2.30 0.10 7.78 1.66 31564
ACT (min/24h) 294.23 141.25 449.73 39.01 130867
RUM (min/24h) 580.62 328.00 804.00 68.24 130848
EAT (min/24h) 297.01 49.50 545.00 80.05 131907
THI 49.85 23.94 73.77 9.62 161949
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of ACT and EAT during events of heat stress we also keep cows 
with a lower decrease of production during heat stress. Likewise, 
by selecting cows with a lower drop of ACT during hot days we 
also indirectly would tend to select cows with a lower increase of 
SCS during these days. We also looked at eigenvalues and the as-
sociated eigenvectors. The first eigenvector of the genetic correla-
tion matrix for thermotolerance for the 5 traits represented 42% of 
the variability and the standardized coefficients were 0.42, −0.43, 
0.65, 0.47 and 0.03 respectively for FPCM, SCS, ACT, RUM and 
EAT. As expected, the same direction of variation was observed for 
behavior data and FPCM and an opposite direction of variation was 
found for behavior data and SCS except for EAT that was neutral.

Regarding these results, behavior information could be used to 
predict, at least partially, economical traits like FPCM and SCS 
thermotolerance. To confirm this hypothesis, we estimated the pro-
portion of the variance for thermotolerance for FPCM and SCS that 
could be explained by behavior data using the following formula:

 pi = b [Rα (ACT-RUM-EAT)] b’ where b = [rα (i, ACT-RUM-EAT)]’ 
[Rα (ACT-RUM-EAT)]−1 7)

with Rα (ACT-RUM-EAT) the 3 × 3 additive genetic correlation ma-
trix between the 3 behavior traits (ACT, RUM and EAT) for the 
thermotolerance effects and rα (i, ACT-RUM-EAT) the 3 × 1 correlation 
vector for the thermotolerance additive genetic effect between the 
performance trait i and the 3 behavior traits.

To also consider the general additive genetic effect of the behav-
ior traits, the formula was adapted:

 pi = b [Rαa (ACT-RUM-EAT)] b’ where b = [rαa (i, ACT-RUM-EAT)]’ 
[Rαa (ACT-RUM-EAT)]−1 (8)

with Rαa (ACT-RUM-EAT) the 6 × 6 correlation matrix for the thermo-
tolerance additive genetic effect and the general additive genetic 
effect between the 3 behavior traits and rαa (i, ACT-RUM-EAT) the 6 × 
1 correlation vector between the performance trait i for the ther-
motolerance additive genetic effect and the 3 behavior traits for 
the thermotolerance additive genetic effect and the general additive 
genetic effect.

By using the thermotolerance information only as described in 
equation (7), behavior traits explained 51% of the variance of ther-
motolerance for FPCM and 23% for SCS. By adding the general 
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Figure 1. : THI effect estimated with equation (4) and represented as THI effect and relative THI effect (THI effect / phenotypic standard deviation) for the 5 
traits studied. Dotted line: Polynomials of degree 5. Red lines: THI thresholds.

Table 2: Genetic correlations (±standard errors (SE)) for thermotolerance, heritability values at the THI of the thresholds or at the THI maximum 
and the ratio between the general additive genetic variance (σ2

a) and the thermotolerance additive genetic effect (σ2
α). ACT: activity time; RUM: 

rumination time; EAT: eating time

Trait

Genetic correlations for thermotolerance ± SE

 

Heritability ± SE

σ2
α /σ2

a ± SEFPCM SCS ACT RUM THIthreshold THImax

FPCM     0.15 ± 0.02 0.08 ± 0.18 0.006 ± 0.015
SCS −0.40 ± 0.18    0.08 ± 0.02 0.09 ± 0.12 0.010 ± 0.044
ACT 0.45 ± 0.62 −0.39 ± 0.18   0.14 ± 0.06 0.31 ± 0.25 0.023 ± 0.093
RUM −0.02 ± 0.46 −0.10 ± 0.43 0.73 ± 0.66  0.19 ± 0.05 0.17 ± 0.29 0.053 ± 0.021
EAT 0.28 ± 0.70 0.06 ± 0.55 −0.01 ± 0.18 −0.12 ± 0.36 0.12 ± 0.05 0.09 ± 0.21 0.005 ± 0.028
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additive variance for the behavior traits as described in equation 
(8), the percentage of variability explained increased to 59% for 
FPCM and to 31% for SCS.

Based on variance estimations, heritability values for every trait 
(Table 2) were also calculated following Ravagnolo and Misztal 
(2000):

 h2
f(THI) = (σ2

a + f(THI)2σ2
α + 2f(THI)σaα) / (σ2

a + f(THI)2σ2
α + 

2f(THI)σaα + σ2
pe + f(THI)2σ2

π + 2f(THI)σpeπ + σ2
e) (9)

with σ2
a the variance for the general additive genetic effect, σ2

α 
the variance for the thermotolerance additive genetic effect, σaα 
the covariance between the general and the thermotolerance ad-
ditive genetic effects, σ2

pe the variance for the general permanent 
environmental effect, σ2

π the variance for the thermotolerance 
permanent environmental effect, σpeπ the covariance between the 
general and the thermotolerance permanent environmental effects 
and σ2

e the residual variance.
Heritability values were relatively similar at the THI of the 

thresholds and at the maximum THI except for ACT. This could 
be due to the low maximum THI observed in Belgium compared 
with hotter countries. The heritability of SCS was in line with the 
literature for Holstein cows (Kheirabadi and Razmkabir, 2016; 
Tiezzi et al., 2020) while heritability for FPCM was relatively 
low (Lassen and Løvendahl, 2016; Manzanilla Pech et al., 2014). 
Concerning sensor data, not so much information was available 
because they are still rarely used in genetics studies. For activity 
measurement with different devices, heritability values vary from 
0.10 to 0.45 (Poppe et al., 2022; Schöpke, 2014) which included 
the value of 0.19 obtained in this study. For RUM, Moretti et al. 
(2018) obtained higher values (0.31 to 0.36) with similar sensors. 
Finally, for EAT, Cavani et al. (2022) estimated a heritability of 
0.23 for the average daily time at the feeder. In general, the herita-
bility values obtained in this study were lower compared with the 
literature. This could be due to differences among populations, or 
the low number of cows used in our study.

The values for the ratio between general additive genetic vari-
ance (σ2

a) and thermotolerance additive genetic variance (σ2
α) were 

also estimated (Table 2). The results showed a higher ratio for ACT 
and RUM compared with FPCM and SCS suggesting that a higher 
part of the genetic variance was associated with thermotolerance 
for these 2 traits.

Based on the results, ACT seems to be the most interesting 
behavior trait. Indeed, it presents the most interesting genetic cor-
relations for thermotolerance with FPCM (0.45) and SCS (−0.39), 
a high ratio between additive genetic variances (0.023) and the 
highest heritability at the maximum THI (0.31). The principal 
component analysis showed the same direction of variation for 
thermotolerance between ACT and FCPM and an opposite direc-
tion of variation between ACT and SCS. In addition, the interest 
of using ACT to evaluate heat tolerance was supported by Poppe 
et al., (2022) who showed that animals with a lower activity drop 
(step count in their case) during disturbances, could be more resil-
ient in general.

Based on the results discussed, behavior data present several 
qualities for genetic evaluation for heat tolerance: (1) positive or 
neutral genetic correlations for thermotolerance with FPCM and 
negative or neutral with SCS allowing to indirectly select for ther-

motolerance of FPCM and SCS by selecting for thermotolerance of 
behavior traits, (2) high ratio between the thermotolerance additive 
genetic effect and the general additive genetic effect, (3) heritabil-
ity values allowing selection for behavior traits including at the 
maximum THI, (4) higher frequency of recording (daily) allowing 
the coverage of all events of heat stress and a better estimation in 
less time as shown by the smoother curves obtained for the THI 
effect in Figure 1. In addition, behavior traits explained 59% of 
the FPCM reaction to THI. In this way, behavior traits that are not 
directly economical traits would allow to predict reactions of eco-
nomical traits to heat. Finally, heat stress genetic evaluation based 
on behavior traits will be extendable to nonlactating animals like 
heifers, bulls, and beef cattle. In this way, in addition to being used 
for heat stress genetic evaluation for dairy cows, sensors could help 
to extend heat stress genetic evaluation systems for heat tolerance 
to all cattle. Indeed, we could expect that nonlactating animals 
with a high modification of behavior traits during heat stress 
events will also have high reduction of performances during heat 
in their subsequent lactations for heifers and dry cows, generate 
offspring’s more susceptible to heat for bulls and present reduced 
growth performances due to heat for beef cattle. Currently, it is 
known that heat stress during the dry period has a negative effect 
on the production for the subsequent lactations (Fabris et al., 2019) 
but no studies in our knowledge highlighted that dry cow more 
susceptible to heat will become lactating cows showing a high drop 
of production during heat waves. Further studies are thus required 
to test these hypotheses.

The biggest current restraint of large-scale use of sensors and 
thus the availability of data for genetic evaluation is their cost. 
However, the first function of sensors is reproductive heat detec-
tion. Based on our results, genetic evaluation for heat tolerance 
should offer an additional purpose for sensor use. In addition, heat 
stress could also directly affect pregnancy rate by decreasing activ-
ity during hot periods. Indeed, the negative impact of heat stress 
on estrus expression including a lower increase of activity during 
reproductive heat could reduce the number of detected estrus and 
thus indirectly reduce the pregnancy rate (Hansen, 2019; Schüller 
et al., 2017). On this basis, cows with a high drop of activity during 
heat stress could also present a reduced pregnancy rate during this 
period.

Finally, behavior data could also be used for heat stress detec-
tion due to its daily recording pattern, its clear THI thresholds and 
its high variation along the THI scale as shown by the relative THI 
effect we reported in this study.
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