Systematic Framework for Quantitative Assessment of Indoor Air Quality Under Future Climate Scenarios; 2100s Projection of a Belgian Case Study - Supplementary.pdf
IAQ; Climate Change; Quantitative Analysis; CONTAM Model; Future Air Pollution
Abstract :
[en] Alteration of Indoor Air Quality (IAQ) levels in the context of changing climate is correlated with shifting air pollutant emissions, variations in ambient climate, and the mitigation/adaptation strategies applied in buildings to deal with increasing extreme weather events and energy demands. In this study, firstly, a systematic modeling-based framework for the quantitative assessment of the impacts of future building retrofit and climate scenarios on IAQ is presented. After describing the framework, its practical implementation in a demonstrative case study is presented. The proposed framework includes three main parts: i) IAQ measurements, ii) IAQ model design, and iii) future IAQ state evaluation. Regarding the case study, fabricated indoor monitoring devices (O3, CO, NO, NO2, PM2.5, PM10, VOCs, air temperature, relative humidity, and air pressure) based on Low-Cost Sensors were developed, and calibrated with reference analyzers. An indoor measurement campaign was conducted in a naturally ventilated residential building (+2 exhaust fans) in the Wallonia region, south of Belgium (summer of 2021). An IAQ model was designed in the multizone IAQ and ventilation software, CONTAM. The validation and calibration processes were carried out with the aid of experimental data from the indoor measurement campaign. The calibrated IAQ model showed a total conformity of +95% from the average concentration perspective. Finally, predicted future outdoor air pollution and indoor and outdoor climate data of the case study were fed to the IAQ model (basis-year 2021), and indoor contaminant levels under different climate scenarios were quantitatively assessed till 2100.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Rahif, Ramin ; Université de Liège - ULiège > Urban and Environmental Engineering
Falzone, Claudia ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Surveillance de l'environnement
Elnagar, Essam ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Doutreloup, Sébastien ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Lemort, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Thermodynamique appliquée
Attia, Shady ; Université de Liège - ULiège > Département ArGEnCo > Techniques de construction des bâtiments
Romain, Anne-Claude ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Surveillance de l'environnement
Language :
English
Title :
Systematic Framework for Quantitative Assessment of Indoor Air Quality Under Future Climate Scenarios: 2100s Projection of a Belgian Case Study
Vardoulakis, S., Giagloglou, E., Steinle, S., Davis, A., Sleeuwenhoek, A., Galea, K.S., Crawford, J.O., Indoor exposure to selected air pollutants in the home environment: a systematic review. Int. J. Environ. Res. Publ. Health, 17(23), 2020, 8972, 10.3390/2Fijerph17238972.
Fazli, T., Dong, X., Fu, J.S., Stephens, B., Predicting US residential building energy use and indoor pollutant exposures in the mid-21st century. Environ. Sci. Technol. 55:5 (2021), 3219–3228, 10.1021/acs.est.0c06308.
Shrubsole, C., Ridley, I., Biddulph, P., Milner, J., Vardoulakis, S., Ucci, M., Davies, M., Indoor PM2. 5 exposure in London's domestic stock: modelling current and future exposures following energy efficient refurbishment. Atmos. Environ. 62 (2012), 336–343, 10.1016/j.atmosenv.2012.08.047.
Sá, J.P., Alvim-Ferraz, M.C.M., Martins, F.G., Sousa, S.I., Application of the low-cost sensing technology for indoor air quality monitoring: a review. Environ. Technol. Innovat., 2022, 102551, 10.1016/j.eti.2022.102551.
Gonzalez-Martin, J., Kraakman, N.J.R., Perez, C., Lebrero, R., Munoz, R., A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere, 262, 2021, 128376, 10.1016/j.chemosphere.2020.128376.
Moreno-Rangel, A., Sharpe, T., Musau, F., McGill, G., Field evaluation of a low-cost indoor air quality monitor to quantify exposure to pollutants in residential environments. Journal of Sensors and Sensor Systems 7:1 (2018), 373–388, 10.5194/jsss-7-373-2018.
ANSI/ASHRAE Standard 62.1-2022, Ventilation and Acceptable Indoor Air Quality https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2.
Persily, A., Mandin, C., Bahnfleth, W., Sekhar, Ch, Kipen, H., Wargocki, P., Lau, J., Weekes, L., ASHRAE position document on indoor carbon Dioxide. https://www.ashrae.org/file%20library/about/position%20documents/pd_indoorcarbondioxide_2022.pdf, 2022.
Spengler, J.D., Climate change, indoor environments, and health. Indoor Air 22:2 (2012), 89–95, 10.1111/j.1600-0668.2012.00768.x.
Nazaroff, W.W., Exploring the consequences of climate change for indoor air quality. Environ. Res. Lett., 8(1), 2013, 015022 https://stacks.iop.org/ERL/8/015022.
Cornet, M., Duerinck, J., Laes, E., Lodewijks, P., Meynaerts, E., Pestiaux, J., Vermeulen, P., Scenarios for a Low Carbon Belgium by 2050. Federal Public Service Health, Food Chain Safety and Environment: Brussels, Belgium, low-carbon-scenarios-for-be-2050-final-report.Pdf., 2013 climat.be).
Son, Y.S., A review on indoor and outdoor factors affecting the level of particulate matter in classrooms of elementary schools. J. Build. Eng., 106957, 2023, 10.1016/j.jobe.2023.106957.
Amaripadath, D., Paolini, R., Sailor, D.J., Attia, S., Comparative assessment of night ventilation performance in a nearly zero-energy office building during heat waves in Brussels. J. Build. Eng., 78, 2023, 107611, 10.1016/j.jobe.2023.107611.
Abdalla, T.E., Peng, C., Evaluation of housing stock indoor air quality models: a review of data requirements and model performance. J. Build. Eng., 43, 2021, 102846, 10.1016/j.jobe.2021.102846.
Fisk, W.J., Review of some effects of climate change on indoor environmental quality and health and associated no-regrets mitigation measures. Build. Environ. 86 (2015), 70–80, 10.1016/j.buildenv.2014.12.024.
Mansouri, A., Wei, W., Alessandrini, J.M., Mandin, C., Blondeau, P., Impact of climate change on indoor air quality: a review. Int. J. Environ. Res. Publ. Health, 19(23), 2022, 15616, 10.3390/ijerph192315616.
Taylor, J., Mavrogianni, A., Davies, M., Das, P., Shrubsole, C., Biddulph, P., Oikonomou, E., Understanding and mitigating overheating and indoor PM2. 5 risks using coupled temperature and indoor air quality models. Build. Serv. Eng. Res. Tecnol. 36:2 (2015), 275–289, 10.1177/0143624414566474.
Ilacqua, V., Dawson, J., Breen, M., Singer, S., Berg, A., Effects of climate change on residential infiltration and air pollution exposure. J. Expo. Sci. Environ. Epidemiol. 27:1 (2017), 16–23, 10.1038/jes.2015.38.
McWilliams, J., Jung, M., Development of a mathematical air-leakage model from measured data. https://doi.org/10.2172/883786, 2006.
Chang, L., Lee, Y., Kim, C.K., Lee, D.S., Development of a multimedia model (IIAQ-CC) to assess climate change influences on volatile and semi-volatile organic compounds in indoor environments. Build. Environ. 143 (2018), 217–226, 10.1016/j.buildenv.2018.07.009.
Salthammer, T., Schieweck, A., Gu, J., Ameri, S., Uhde, E., Future trends in ambient air pollution and climate in Germany–Implications for the indoor environment. Build. Environ. 143 (2018), 661–670, 10.1016/j.buildenv.2018.07.050.
Salthammer, T., Zhao, J., Schieweck, A., Uhde, E., Hussein, T., Antretter, F., Birmili, W., A holistic modeling framework for estimating the influence of climate change on indoor air quality. Indoor Air, 32(6), 2022, e13039, 10.1111/ina.13039.
Al Assaad, D., Sengupta, A., Breesch, H., A novel quantitative assessment framework of the IAQ resilience performance of buildings: the resilience score metric. Build. Environ., 243, 2023, 110669, 10.1016/j.buildenv.2023.110669.
Rickenbacker, H.J., Collinge, W.O., Hasik, V., Ciranni, A., Smith, I., Colao, P., Bilec, M.M., Development of a framework for indoor air quality assessments in energy conservation districts. Sustain. Cities Soc., 52, 2020, 101831, 10.1016/j.scs.2019.101831.
Sadrizadeh, Sasan, et al. Indoor air quality and health in schools: a critical review for developing the roadmap for the future school environment. J. Build. Eng., 2022, 104908, 10.1016/j.jobe.2022.104908.
Ma, N., Aviv, D., Guo, H., Braham, W.W., Measuring the right factors: a review of variables and models for thermal comfort and indoor air quality. Renew. Sustain. Energy Rev., 135, 2021, 110436, 10.1016/j.rser.2020.110436.
Zhang, Y., Hopke, P.K., Mandin, C., (eds.) Handbook of Indoor Air Quality, 2022, Springer, 10.1007/978-981-16-7680-2.
Eftekhari, A., Won, Y., Morrison, G., Ng, N.L., Chemistry of indoor air pollution. Am. Chem. Soc., 2023, 10.1021/acsinfocus.7e7018.
Tsao, Y.C., Vu, T.L., Determining an optimal sensor system for smart buildings with uncertain energy supply and demand. J. Build. Eng., 71, 2023, 106532, 10.1016/j.jobe.2023.106532.
Kang, Y., Aye, L., Ngo, T.D., Zhou, J., Performance evaluation of low-cost air quality sensors: a review. Sci. Total Environ., 2021, 151769, 10.1016/j.scitotenv.2021.151769.
Pei, G., Freihaut, J.D., Rim, D., Long-term application of low-cost sensors for monitoring indoor air quality and particle dynamics in a commercial building. J. Build. Eng., 107774, 2023, 10.1016/j.jobe.2023.107774.
Pereira, P.F., Ramos, N.M., Low-cost Arduino-based temperature, relative humidity and CO2 sensors-An assessment of their suitability for indoor built environments. J. Build. Eng., 60, 2022, 105151, 10.1016/j.jobe.2022.105151.
Zhang, H., Srinivasan, R., A systematic review of air quality sensors, guidelines, and measurement studies for indoor air quality management. Sustainability, 12(21), 2020, 9045, 10.3390/su12219045.
Mahajan, S., Kumar, P., Evaluation of low-cost sensors for quantitative personal exposure monitoring. Sustain. Cities Soc., 57, 2020, 102076, 10.1016/j.scs.2020.102076.
Ainiwaer, S., Chen, Y., Shen, G., Shen, H., Ma, J., Cheng, H., Tao, S., Characterization of the vertical variation in indoor PM2. 5 in an urban apartment in China. Environ. Pollut., 308, 2022, 119652, 10.1016/j.envpol.2022.119652.
Liang, L., Calibrating low-cost sensors for ambient air monitoring: techniques, trends, and challenges. Environ. Res., 197, 2021, 111163, 10.1016/j.envres.2021.111163.
DeSouza, P., Kahn, R., Stockman, T., Obermann, W., Crawford, B., Wang, A., Kinney, P., Calibrating networks of low-cost air quality sensors. Atmos. Meas. Tech. 15:21 (2022), 6309–6328, 10.5194/amt-15-6309-2022.
Haghighat, F., Air infiltration and indoor air quality models—a review. Int. J. Ambient Energy 10:3 (1989), 115–122, 10.1080/01430750.1989.9675130.
Jamriska, M., Modeling of indoor particle concentration. Indoor Environment-Airborne Particles and Settled Dust, 2003, Wiley-VCH, New York, NY, USA, 319–330, 10.1002/9783527610013.
Pepper, D.W., Modeling Indoor Air Pollution. 2009, Imperial College Press.
Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J.C., Mandin, C., Machine learning and statistical models for predicting indoor air quality. Indoor Air 29:5 (2019), 704–726, 10.1111/ina.12580.
IPCC 2014, the core writing team, Climate Change 2014 Synthesis Report, AR5 Synthesis Report - Climate Change 2014. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf.
Gjerstad, Ø., Fløttum, K., From descriptive to normative climate change narratives: theoretical and methodological challenges. Oxford Research Encyclopedia of Climate Science, 2022, 10.1093/acrefore/9780190228620.013.857.
Edwards, P.N., History of climate modeling. Wiley Interdisciplinary Reviews: Clim. Change 2:1 (2011), 128–139, 10.1002/wcc.95.
IPCC. What is a GCM?. https://www.ipcc-data.org/guidelines/pages/gcm_guide.html, 2023 March 2022.
Parametrization (climate modeling), https://en.wikipedia.org/wiki/Parametrization_(climate_modeling), (Accessed March 2022).
Adachi, S.A., Tomita, H., Methodology of the constraint condition in dynamical downscaling for regional climate evaluation: a review. J. Geophys. Res. Atmos., 125(11), 2020, e2019JD032166, 10.1029/2019JD032166.
Tapiador, F.J., Navarro, A., Moreno, R., Sánchez, J.L., García-Ortega, E., Regional climate models: 30 years of dynamical downscaling. Atmos. Res., 235, 2020, 104785, 10.1016/j.atmosres.2019.104785.
O'Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Van Vuuren, D.P., A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122 (2014), 387–400, 10.1007/s10584-013-0905-2.
Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O'neill, B.C., Fujimori, S., Tavoni, M., The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change 42 (2017), 153–168, 10.1016/j.gloenvcha.2016.05.009.
Rogelj, J., Popp, A., Calvin, K.V., Luderer, G., Emmerling, J., Gernaat, D., Tavoni, M., Scenarios towards limiting global mean temperature increase below 1.5 C. Nat. Clim. Change 8:4 (2018), 325–332, 10.1038/s41558-018-0091-3.
Hausfather, Z., Peters, G.P., Emissions–the ‘business as usual’ story is misleading. Nature 577:7792 (2020), 618–620, 10.1038/d41586-020-00177-3.
Schwalm, C.R., Glendon, S., Duffy, P.B., RCP8. 5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 117:33 (2020), 19656–19657, 10.1073/pnas.2007117117.
Bernard, S.M., Samet, J.M., Grambsch, A., Ebi, K.L., Romieu, I., The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect. 109:suppl 2 (2001), 199–209, 10.1289/ehp.109-1240667.
Watson, A.Y., Bates, R.R., Kennedy, D., Mathematical modeling of the effect of emission sources on atmospheric pollutant concentrations. Air Pollution, the Automobile, and Public Health, 1988, National Academies Press (US https://www.ncbi.nlm.nih.gov/books/n/nap1033/pdf/.
Snoun, H., Krichen, M., Chérif, H., A comprehensive review of Gaussian atmospheric dispersion models: current usage and future perspectives. Euro-Mediterranean Journal for Environmental Integration 8:1 (2023), 219–242, 10.1007/s41207-023-00354-6.
Fernandes, A.P., Rafael, S., Lopes, D., Coelho, S., Borrego, C., Lopes, M., The air pollution modelling system URBAIR: how to use a Gaussian model to accomplish high spatial and temporal resolutions. Air Quality, Atmosphere & Health 14:12 (2021), 1969–1988, 10.1007/s11869-021-01069-9.
Mensink, C., Matthias, V., Air pollution modeling and its application XXVII. Springer Proceedings in Complexity, 2021, 10.1007/978-3-662-63760-9 Berlin, Heidelberg.
Khan, S., Hassan, Q., Review of developments in air quality modelling and air quality dispersion models. J. Environ. Eng. Sci. 16:1 (2020), 1–10, 10.1680/jenes.20.00004.
Cabaneros, S.M., Calautit, J.K., Hughes, B.R., A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Software 119 (2019), 285–304, 10.1016/j.envsoft.2019.06.014.
Balogun, A.L., Tella, A., Baloo, L., Adebisi, N., A review of the inter-correlation of climate change, air pollution and urban sustainability using novel machine learning algorithms and spatial information science. Urban Clim., 40, 2021, 100989, 10.1016/j.uclim.2021.100989.
Masood, A., Ahmad, K., A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: fundamentals, application and performance. J. Clean. Prod., 322, 2021, 129072, 10.1016/j.jclepro.2021.129072.
Setiawan, K.E., Elwirehardja, G.N., Pardamean, B., Systematic literature review on machine learning predictive models for indoor climate in smart solar dryer dome. 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS), 2022, October, IEEE, 1–7, 10.1109/ICORIS56080.2022.10031503.
Suppa, A.R., Ballarini, I., Supporting climate-neutral cities with urban energy modeling: a review of building retrofit scenarios, focused on decision-making, energy and environmental performance, and cost. Sustain. Cities Soc., 104832, 2023, 10.1016/j.scs.2023.104832.
Grassie, D., Dong, J., Schwartz, Y., Karakas, F., Milner, J., Bagkeris, E., Mumovic, D., Dynamic modelling of indoor environmental conditions for future energy retrofit scenarios across the UK school building stock. J. Build. Eng., 63, 2023, 105536, 10.1016/j.jobe.2022.105536.
Andersen, R.V., Toftum, J., Andersen, K.K., Olesen, B.W., Survey of occupant behaviour and control of indoor environment in Danish dwellings. Energy Build. 41:1 (2009), 11–16, 10.1016/j.enbuild.2008.07.004.
Palani, H., Acosta-Sequeda, J., Karatas, A., Derrible, S., The role of socio-demographic and economic characteristics on energy-related occupant behavior. J. Build. Eng., 75, 2023, 106875, 10.1016/j.jobe.2023.106875.
Tijani, K., Ploix, S., Haas, B., Dugdale, J., Ngo, Q.D., Dynamic Bayesian Networks to simulate occupant behaviours in office buildings related to indoor air quality. arXiv preprint arXiv:1605.05966, 2016, 10.48550/arXiv.1605.05966.
Han, M., May, R., Zhang, X., Wang, X., Pan, S., Yan, D., Xu, L., A review of reinforcement learning methodologies for controlling occupant comfort in buildings. Sustain. Cities Soc., 51, 2019, 101748, 10.1016/j.scs.2019.101748.
Pourkiaei, M., Falzone, C., Romain, A.C., Exploring the Indoor Air Quality in the context of changing climate in residential buildings. Part A: developed measurement devices of low-cost sensors. IAQ 2020: Indoor Environmental Quality Performance Approaches Transitioning from IAQ to IEQ, 2022 https://ashraem.confex.com/ashraem/iaq22/meetingapp.cgi/Paper/31952 https://hdl.handle.net/2268/292661.
ASTM D5157-19. Standard guide for statistical evaluation of indoor air quality models 2019. https://www.astm.org/d5157-19.html, 2019.
Doherty, R.M., Heal, M.R., O'Connor, F.M., Climate change impacts on human health over Europe through its effect on air quality. Environ. Health 16:1 (2017), 33–44, 10.1186/s12940-017-0325-2.
Defra; Department for Environment Food & Rural Affairs, National Statistics Air Quality Statistics in the UK, 1987 to 2021 - Particulate Matter (PM10/PM2.5) Updated 28 April 2022, Concentrations of Particulate Matter (PM10 and PM2.5) - GOV.UK.
Orru, H., Andersson, C., Ebi, K.L., Langner, J., Åström, C., Forsberg, B., Impact of climate change on ozone-related mortality and morbidity in Europe. Eur. Respir. J. 41:2 (2013), 285–294, 10.1183/09031936.00210411.
Deutsch, F., Vankerkom, J., Veldeman, N., Peelaerts, W., Fierens, F., Vanpoucke, Ch, Trimpeneers, E., Vancraeynest, L., Bossuyt, M., Explanatory factors for evolutions in air quality Study commissioned by MIRA. Flanders Environmental Research Report, MIRA, Dec 2010 https://archief-algemeen.omgeving.vlaanderen.be/xmlui/handle/acd/761967.
Ridder, K., Couderé, K., Depoorter, M., Liekens, I., Pourria, X., Steinmetz, D., Vanuytrecht, E., Verhaegen, K., Wouters, H., Evaluation of the Socio-Economic Impact of Climate Change in Belgium Study Commissioned by the National Climate Commission: Final Report., July 2020 2020/RMA/R/2271 https://www.adapt2climate.be/study-evaluation-of-the-socio-economic-impact-of-climate-change-in-belgium/?lang=en.
Jacob, D.J., Winner, D.A., Effect of climate change on air quality. Atmos. Environ. 43:1 (2009), 51–63, 10.1016/j.atmosenv.2008.09.051.
Sá, E., Martins, H., Ferreira, J., Marta-Almeida, M., Rocha, A., Carvalho, A., Borrego, C., Climate change and pollutant emissions impacts on air quality in 2050 over Portugal. Atmos. Environ. 131 (2016), 209–224, 10.1016/j.atmosenv.2016.01.040.
Emmerich, S.J., Dols, W.S., Model validation study of carbon monoxide transport due to portable electric generator operation in an attached garage. Journal of building performance simulation 9:4 (2015), 397–410, 10.1080/19401493.2015.1066447.
Emmerich, S.J., Nabinger, S.J., Measurement and simulation of the IAQ impact of particle air cleaners in a single-zone building. HVAC R Res. 7:3 (2001), 223–244, 10.1080/10789669.2001.10391272.