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S1. IAQ Measurements of the Case Study  

Considering the selected IAQ indicators O3, CO, NO, NO2, PM2.5, PM10, VOCs, air 

temperature (T), Relative Humidity (RH), and air pressure (P), monitoring devices based on 

LCSs were fabricated. The calibration procedures were carried out both indoors and outdoors 

with the support of reference analyzers. Further information on the calibration procedures can 

be found in our previous study [1]. It should be mentioned that VOCs were not considered 

during the calibration process due to the lack of outdoor data. Afterward, the IAQ measurement 

campaign of the case study house (located in Arlon) was held from the 20th of June to the 31st 

of August 2021, both indoors and outdoors, concurrently. No recalibration of monitoring 

devices was considered during the campaign (over 73 days). 

Also, a comprehensive questionnaire (hourly checklist) was designed to log the occupancy 

pattern (3 adult inhabitants), indoor activities incidence (sleeping, cooking, cleaning, 

showering, smoking), natural ventilation behavior (opening of windows), and 2 exhaust fan 

operations. Royal Meteorological Institute of Belgium afforded the weather data. 

S2. IAQ Models 

In this section, detailed information concerning the IAQ model descriptions, their general 

principles, their involved elements and parameters, their strengths and drawbacks, as well as 

their validation and calibration procedures are presented. 
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S2.1. Mass Balance Models 

Mass balance models are formulated to enable the estimation of pollutant concentrations and 

the influence of sources, sinks, and IAQ control strategies on contaminant levels. These models 

are rooted in the conservation of mass principle [2]. They can be defined over either a single 

zone (compartment/room) or multi-zone ordonnances. In a single-zone model, the entire 

building is characterized as a shoe box model. On the other hand, multi-zone models 

characterize a building through interconnected spaces. The general mass balance equation for 

a well-mixed single zone is expressed as follows [3,4]: 
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in which Vi denotes the zone volume, Ci denotes the indoor pollutant concentration in zone i, 

Ca denotes the outdoor concentration, Pta is the penetration factor for outdoor pollutants entering the 

indoors, Qa,i is the airflow from the outdoors into zone i, Ch is the concentration in the HVAC system, 

Qh,i is the airflow from the HVAC system into zone i, Cj is the concentration in zone j, Qj,i is the airflow 

from zone j into zone i, Qi,a is the airflow from zone i to the outdoors, Qi,h is the airflow from zone i 

into the HVAC system, Qi,j is the airflow from zone i into zone j, Ei denotes the emission source 

term, Si denotes the pollutant removal term (e.g., air cleaners and sinks, etc.). It is important to 

recognize that the emission source and sink terms, might involve extra differential equations 

that define their characteristics. 

A key assumption in various mass balance models is the assumption of well-mixed zones. This 

assumption is held under the following circumstances [3,5]: 

• When time scales are several minutes or longer. 

• When concentrations near significant sources are not of concern. 

• When there are no local flow disruptions near the target zone. 

The intrazonal airflows (airflows among zones themselves, and between zones and the ambient) 

can be influenced by the mechanical and natural ventilation. Some IAQ models (such as 

CONTAM) are capable of calculating various airflows, contingent on adequate data regarding 

door and window openings, temperature differentials, HVAC characteristics, and similar factors. 

In contrast, other models may necessitate the parameterization of input airflow as data.  

Mass balance models are formulated to estimate the average indoor pollutant concentrations. 

In numerous scenarios, this average concentration serves as the focal point. Nonetheless, there 

are instances where the average concentration is not the primary focus. For instance, if the 
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concern is the exposure of an individual utilizing a potent emitting product the mean indoor 

concentration falls short. In such cases, mass balance models may prove insufficient [6,7]. 

S2.2. CFD Models 

Certain scenarios in IAQ modeling require the prediction of punctual (local) concentrations 

rather than average zonal concentrations. In these cases, the mass balance models fail to achieve 

targeted objectives. In such situations, objectives can be better addressed by CFD models. CFD 

models have two significant differences with mass balance models. First, CFD models estimate 

air velocity and contaminant concentration at discrete points within a zone. Secondly, CFD 

models tackle a set of partial differential equations as opposed to the ordinary differential 

equations targeted by mass balance models [8,9]. As a consequence, CFD models are 

computationally more expensive compared to mass balance models. 

CFD models prove particularly valuable for examining airflows and distribution within zones 

[10]. Additionally, emission source and sink models play a crucial role in estimating pollutant 

concentrations using CFD models. If the characterization of the emission source and sink is 

insufficient, concentration estimation will be inaccurate, despite accurate airflow calculations 

[11,12]. The partial differential equations governing fluid flow and concentration are rooted in 

the principles of mass, momentum, and contaminant concentration conservation. The variables 

of interest include velocity components, concentration, and certain turbulence parameters that 

consider turbulent flow effects [7]. These fundamental equations are typically expressed in the 

following manner [13]: 

Conservation of mass: 

0
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Conservation of momentum (x-direction): 
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where u, v, and w are horizontal, lateral and vertical velocities, respectively, ρ is density, p is 

pressure, fx is velocity body force terms, σxx is normal viscous stress, σxy, σxz are tangential 

(shear) viscous stress terms. The CFD concentration formulation is presented in section S2.4.2. 

There are three fundamental CFD approaches typically employed for simulating flow and 

contaminants transport within zones: Finite Difference Method (FDM), Finite Volume Method 

(FVM), and the Finite Element Method (FEM) [13]. CFD solvers can run structured, 

unstructured, or hybrid meshing with 2D (triangle, quadrilateral) or 3D (tetrahedral, 
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hexahedron, etc.) forms with varying densities. Over the past decades, various other methods 

have emerged in scholarly literature, including the Boundary Element Method (BEM), the 

Lagrangian Particle Transport technique (LPT), the Particle-in-Cell method (PIC), and the 

Meshless method (MM) [14-18]. 

S2.3. Statistical Models 

Projection of IAQ through mechanistic methods is based on comprehension of the fundamental 

mechanisms governing the displacement and transport of indoor air contaminants. As 

mechanistic models demand intricate inputs, securing sufficient information for their operation 

becomes challenging. This becomes even more critical in scenarios such as the study of 

building stocks, and real-world conditions where occupants interact with indoor settings. In 

such instances, statistical (also called numerical or mathematical) models based on 

mathematical approaches and Artificial intelligence (AI) offer an alternative pathway for IAQ 

prediction. 

Machine learning and statistical models have gained substantial traction in outdoor settings for 

estimating atmospheric pollutant concentrations [19,21] and in indoor settings for predicting 

thermal comfort and building energy efficiency [22,24]. Although many statistical models have 

been applied to predict IAQ, research regarding the depth and scope of their applications is 

relatively new [25-30]. 

Statistical models offer the capacity to estimate IAQ through the utilization of questionnaires 

and/or measurements. Important statistical models employed for IAQ predictions include 

Artificial Neural Networks (ANNs), Regression models, and Decision Trees [31]. 

As a popular method in this category, ANNs operate on a network of interconnected nodes or 

neurons [32,33]. They employ an intuitive learning and prediction process making it 

particularly effective for solving non-linear problems. ANNs employ multicomplex 

combinations of weights and functions to transform input variables into predicted outputs, 

eliminating the need for predefined assumptions regarding variable relationships (black box 

modeling) [30,31]. 

Alternatively, Regression models such as Multiple Linear Regression (MLR), Kernel 

regression, and Partial Least Squares (PLS), approximate the relationships between variables. 

Among them, MLR is the main and extensively adopted model to assess the linear links 

between an output (dependent variable) and various inputs (explanatory variables). The MLR 

model basis can be formulated as [31,34]: 
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0 1 1 2 2 ... k ky b b x b x b x = + + + + +  (S4) 

in which for k observations; y denotes the output, xi denotes inputs, b0 denotes the y-intercept 

(constant term), bk represents the regression (slope) coefficients for each input, and ɛ denotes 

the stochastic error (residuals). 

In addition to MLR, alternative regression models such as the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression and stepwise regression might offer more advanced 

exploration and selection of input variables [35]. 

On the other hand, decision trees employ a tree-like structure to model decisions and their 

potential outcomes for data classification or regression. It serves for both classification 

(classification tree) and prediction (regression tree). An ensemble of regression trees 

(aggregation of multiple regression trees) is called Random Forest Regression (RFR). While a 

solitary regression tree may struggle with complex problems and lack of robustness, an RFR 

stands as the most frequently employed decision tree-oriented model [36]. 

Overall, mechanistic models may project a sense of reliability while statistical models offer a 

significant utility of black box (or gray box) understanding. In situations where the specific 

mechanisms or their dynamic variations lack well-established foundations and extensive 

datasets are available, statistical models are more favorable. 

S2.4. Indoor Air Chemistry Models 

The field of Indoor Air Chemistry (IAC) aims to comprehend the elements influencing 

exposure by investigating the chemical processes that take place in the air, aerosol particles, 

and surface reservoirs within indoor settings. Within this field, primary chemical sources 

include emissions originating indoors, or infiltrating from the outdoors. Contrarily, secondary 

sources are related to those by reactive chemistry happening indoors. These sources may be 

involved with permanent (sustained; i.e. from building materials), periodic (episodic; i.e. 

human activities), or transient characteristics. There are five major domains of indoor 

environments influencing indoor chemistry as follows [37]: 

1. Indoor airflow features. Especially those linked to the building structure and interior 

characteristics, including AERs and mixing time (inter/intra-zonal). 

2. Extremely high Surface-Area-to-Volume ratio (SA/V) of indoor spaces. This ratio is 

approximately around 3 m-1 when considering only macroscopic surface areas. This 

value serves as a conservative estimate, acknowledging that at the microscopic scale, 

surfaces may possess porosity or roughness. Additionally, building materials, 
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furnishings, and paintings may feature low viscosity or high porosity, facilitating 

molecular diffusion into them. These surface reservoirs are pivotal in influencing 

nonreactive partitioning processes and reactive chemistry. 

3. Indoor photon fluxes. Particularly in the ultraviolet light range. These fluxes are notably 

lower compared to outdoor conditions. The intensity and spectral composition of light 

indoors are highly influenced by factors such as the efficiency of sunlight transmission 

through the glass, cleanliness of the glass, time of day, type and number of windows, 

distance from the window, ambient cloudiness, and the types of indoor lighting. 

4. Indoor T and RH. In contrast to outdoor environments, indoor T and RH are frequently 

controlled, preventing the wet deposition process (less for kitchen and bathroom while 

using). Even in the absence of HVACs, indoor T and RH variations are relatively lower 

than those experienced outdoors. 

5. The human presence indoors. Occupants’ activities, including cooking and cleaning, 

play a crucial role, but humans also cause direct effects through emissions and 

multiphase chemistry, via their clothing and skin. These impacts can be significant in 

densely populated environments. 

Indoor settings are characterized by low light levels, relatively low concentrations of gas-phase 

oxidants, and limited durations for the reactive processing of gaseous and particulate 

components, owing to air exchange. Nonetheless, significant gas-surface partitioning and 

reactive multiphase chemistry take place within the extensive surface reservoirs present in all 

indoor environments. These interactions are crucial in shaping the composition of indoor 

surfaces as well as the surrounding gases and aerosol particles, thereby influencing human 

chemical exposure. 

Although gas-phase chemistry typically doesn’t play a dominant role in determining the fate 

of most VOCs, it still involves substantial radical cycling and organic nitrate formation [37,38]. 

Additionally, the formation of Secondary Organic Aerosol (SOA) can occur through gas-phase 

oxidation of various precursors, including monoterpenes, unsaturated compounds from skin 

and cooking oils, and cigarette smoke [37]. While indoor SOA is not usually the primary 

component of indoor aerosols, its significance increases under specific conditions, such as 

elevated O3 levels and low AERs. Episodic events with high precursor concentrations, like 

using a terpene-based cleaner or cigarette smoking, can also contribute to the formation of 

ultrafine particles [37,39,40]. Further detailed information about gas-phase and multi-phase 

chemistry (gas-phase autoxidation mechanisms, gas-phase and condensed-phase 
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photochemistry, multiphase thermodynamic partitioning, aerosol partitioning, equilibrium 

partitioning models, surface chemistry, and chemical reactions) are available in two valuable 

recent references of indoor chemistry [37,41]. 

Various techniques can model indoor chemical processes. Central to many models for indoor 

chemical processes, is the utilization of mass or concentration balances. These balances can be 

applied in both single- or multizonal well-mixed models to forecast the dynamic changes in 

gas- and particle-phase species over time. The 2 main approaches for indoor chemistry models 

are Box models and CFD models. The box model is the most commonly used for indoor 

chemistry studies since, in essence, a modeler should select between modeling chemical 

complexity with a box model or spatial complexity with other methods. Recently, CFD has 

been applied to simulate certain simple chemical situations that present spatial variation [42]. 

Neither model can fully represent the complexities of indoor chemistry, while each seeks to 

address a unique gap in knowledge. The user must define the models’ parameters accurately to 

acquire the most efficient understanding of the indoor processes [43]. 

S.2.4.1. Box Models 

To model the fate of a generic molecule F, the generation and removal reactions R1 and R2 are 

assumed as follows, respectively: 

G+H→ y
F
F+… (R1) 

F+J→… (R2) 

The reaction between molecules “G” and “H” yields molecule “F”, with the molar yield of yF. 

Additionally, “F” can be removed from the indoor air by reaction with another molecule “J”. 

With respect to R1 and R2, the concentration balance is as [42,44]: 

dCF

dt

 = PF + λCF,out + EF - rFCF - λCF - νd,F

A

V
CF (S5) 

In which Ci is the concentration (ppb) of species i, t is time (h), PF (ppb.h-1) is the formation 

rate of “F” due to gas-phase reactions (in R1), rF (h-1) is the loss rate of “F” (in R2), CF,out (ppb) 

is the outdoor concentration of “F”; λ (h-1) is the AER, EF (ppb.h-1) is the emission rate of “F”, 

𝑣𝑑,𝐹 (m/h) is the deposition velocity of “F” to indoor surfaces; and A (m2) is the surface area 

indoors. The gas-phase chemistry formation and loss rate of “F” in Equation (S5) are defined 

as follows: 
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PF= y
F
kG-HCGCH (S6) 

rF= kF-JC𝐽 (S7) 

In which kG-H and kF-J (ppb-1.h-1) are the biomolecular reaction rate constant between “G & H”, 

and “F & J”. Additional subset models of indoor SOA, inorganic aerosol, and surface chemistry 

are available in the reference of [42]. The developed box model INCHEM-Py v1.2, supports 

complex chemical mechanisms (> 6000 species, > 19000 reactions) [43]. 

S2.4.2. CFD Models 

The fundamental equations of the indoor chemistry CFD model are typically expressed in the 

following manner [13]: 

Species concentration: 

xx yy zz

C C C C C C C
u v w D D D S

t x y z x x y y z z
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+ + + = + + +    

             
 (S8) 

where S denotes source/sink terms, and Dxx, Dyy, and Dzz are the species concentration diffusion 

coefficients. 

 

S2.5. IAQ Model Validation & Calibration 

Answering the question “How accurate is the model prediction?” depends on the model 

objectives and the type of data available for model inputs. The degree of agreement between 

model outputs and actual measurements is primarily influenced by the quality of the emission 

source and sink models. In situations where comprehension of the emission sources, sinks, and 

indoor-outdoor AER is robust, the disagreement between estimated and observed pollutant 

concentrations is rooted in measurement errors. Accordingly, for scenarios that require the 

assessment of a specific source using adequate source and sink models, predicted 

concentrations in a range of ±100% of measured values are expected [3]. 

Error in indoor-outdoor AERs are less crucial compared to those present in the emission source 

and sink models. Notably, predictions made by the IAQ model are minimally affected by 

interzonal airflows [3,45]. 

IAQ Models Validation 

Concerning the mass-balance model validation, Sparks and colleagues proposed a range of 

quantitative criteria for evaluating the overall agreement between model outputs and 

experimental data [46]. Many of those criteria are from the ASTM D5157. The initial criteria 
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involve calculating the absolute value of the average fractional residual between the predicted 

concentration and the measured or observed concentration. Additional quantitative measures 

for gauging the alignment between model predictions and measurements are r (correlation), M 

(regression slope), b (regression intercept), NMSE (normalized mean square error), FB 

(fractional bias), and FS (fractional bias based on variance). A model may meet one or more 

criteria and still be inadequate, or conversely, a model may not satisfy one or more criteria and 

remain adequate for a given task [3,46,47]. 

For the validation of CFD models, in addition to the application of MAE, there are two valuable 

references in which descriptive information about the model validation can be found [48,49], 

however simple comparison between CFD and experimental results is very common in the 

literature [50]. 

On the other hand, the evaluation of statistical models’ accuracy typically involves assessing 

the measured and predicted outputs via various performance metrics and approaches, including 

but not limited to Cross-validation (rotation estimation), Accuracy & Predictive Ability (PA), 

Root Mean Square Error (RMSE), Pearson correlation coefficient (r), coefficient of 

determination (R2), Mean Absolute Percent Error (MAPE), Bayesian Information Criterion 

(BIC), Akaike Information Criterion (AIC), Mean Absolute Error (MAE), and Normalized 

Mean Absolute Error (NMAE) [31]. 

Regarding the validation of indoor chemistry models, due to the enormous heterogeneity of 

indoor spaces, they have to be tested against measurements in a wide range of environments. 

This validation step is required to ensure that model predictions are quantitatively accurate and 

transferable [37,51]. 

IAQ Models Calibration 

Regarding the IAQ model calibration (particularly mass balance and CFD models), this process 

is simply defined as the adjustment of statistical or physical modeling elements to improve the 

agreement of results with experimental data [52,53]. Accordingly, one typical calibration 

approach is the Bayesian calibration using the Markov Chain Monte Carlo (MCMC) technique. 

Bayesian calibration involves an iterative procedure wherein uncertainty distributions related 

to the IAQ model parameters are revised in a manner that is consistent with the observed data 

[54,55]. 

Concerning the calibration of statistical models based on machine learning, a typical model 

needs various constraints, weights, or learning rates to effectively assist various data patterns. 

These attributes are termed hyperparameters, and their calibration is essential to enable the 
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model to proficiently address the machine learning task [56]. The process of hyperparameter 

optimization identifies a combination of hyperparameters that results in an optimal model, 

minimizing a predetermined loss function on provided independent data. Cross-validation is 

frequently employed to determine this generalization performance. Other popular approaches 

are Grid search, Random search, Bayesian optimization, Gradient-based optimization, 

Evolutionary optimization (e.g., Genetic Algorithm (GA), etc.), Population Based Training 

(PBT), Early stopping-based, Radial Basis Function (RBF), Spectral methods, and Adaptive 

Moment Estimation (ADAM) optimization [57-59]. 

S3. IAQ Model; Design in CONTAM 

To provide the baseline IAQ model of the case study, an IAQ “poly-contaminant” design of 

the test house was developed in CONTAM. CONTAM has been widely used to study various 

IAQ problems [60,61]. CONTAM enables indoor air multizone modeling, in which the 

building design is represented as a network of zones defined by the airflow paths over various 

zones (i.e., doors, windows, leakages, cracks, HVAC, etc.). The network nodes describe the 

zones concerning variant hydrostatic pressure, continuous temperature, and pollutant 

concentration. CONTAM is capable of the natural ventilation processes by applying the wind 

pressures acting on the exterior of the building, and buoyancy effects induced by temperature 

differences between zones, including the outdoors. In the following, correlated studies with 

CONTAM application in IAQ model design are presented, briefly. 

CONTAM has been dynamically linked with energy analysis software such as EnergyPlus and 

TRNSYS [62,63]. Temenos and colleagues investigated the IAQ of Greek apartments, using the 

CONTAM model [64]. Their study showed that the variation of the baseline levels of the 

CONTAM inputs affects the output results and the modeled health effects. Silva and colleagues, 

evaluated different scenarios of natural ventilation operation and the IAQ at a classroom in 

Portugal, using CONTAM. They performed the validation with the aid of a 24-hour experimental 

dataset [65]. Fine & Touchie, investigated the ventilation system retrofits of high-rise residential 

buildings in Canada using a CONTAM model [66]. Yang and colleagues suggested integrating 

the IAQ model into healthy building design by developing a simulation toolbox, named i-IAQ, 

via MATLAB®. For the implementation of the airflow module, they principally followed the 

simulation setup of CONTAM. They carried out an experimental validation period of one week 

[67]. Na and colleagues, optimized the IAQ and acoustic levels in old schools’ classrooms with 

air purifiers and heat recovery ventilation systems, in South Korea [68]. Alonso and colleagues, 

presented a methodology for the improvement of demand-controlled ventilation using 
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measurements of IAQ parameters with Low-Cost Sensors (LCSs), correlation analysis, and co-

simulation EnergyPlus/CONTAM, in Norway [69]. Sung and colleagues investigated the 

building retrofit, ventilation, and filtration measures for IAQ in a school in South Korea [70]. 

Their CONTAM-based models were calibrated with the measured airflow and contaminant 

transport variables via ASTM D5157. 

Regarding our case study, the floor plan properties were introduced to the software concerning 

the test house characteristics (area: 100m2, volume: 320m3, ceiling height: 3.2m). The envelope 

effective leakage area is defined at a pressure of 4 Pa, exponent of 0.65, and discharge 

coefficient of 1. 

Two exhaust fans with on-off operating modes, one in the bathroom and one in the kitchen, 

were considered in the design by flow rates of 24 L.s-1. In total, 8 zones with 34 airflow paths 

(doors, windows, cracks and leakages, and exhausts) were implemented in the model based on 

the case study geometry. The simulations ran with the use of Outdoor Contaminant files 

(.CTM), Outdoor Weather files (.WTH), and Continuous Value Files (.CVF) for continuous 

indoor temperature, indoor emission rates, natural ventilation activity, and occupancy pattern. 

Figure S1. illustrates the street view of the test house and the corresponding CONTAM 

sketchpad of the first floor. 

 

Figure S1. The test house in Arlon, and the corresponding CONTAM sketchpad of the first floor. 
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Table S1. shows the specified air flow paths in the model. The model parameters of different 

flow path elements were extracted from the ASHRAE 2015 Handbook [71].  

Table S1. Properties of airflow paths in the IAQ model. 

Element Model Summary Formula Model Parameter 

Exterior wall leakage One-way flow using power law Leakage area per unit length 15 cm2/m 

Interior wall leakage One-way flow using power law Leakage area per unit length 20 cm2/m 

Windows Close One-way flow using power law Leakage area per item 2 cm2 

Doors Closed (old) One-way flow using power law Leakage area per item 150 cm2 

Windows Open Two-way flow One opening Cross section area 

Doors Open Two-way flow One opening Cross section area 

 

S3.1. Indoor Emission Rates 

Regarding the indoor emission rates, two approaches were carried out. In the first approach, 

the average indoor emission rates were extracted from the literature and introduced into 

CONTAM to model a random 7-day period among the whole measurement period. In the 

second approach, calculated continuous emission rates were introduced to CONTAM for 

modeling a period of about 3 summer months (73 days). These 2 approaches are described in 

the following. 

S3.1.1. Averaged Indoor Emission Rates from Literature 

In this approach, we employed reported indoor emission rates available in the literature and 

introduced them to the software based on the questionnaire and activity pattern of the occupants 

for one week (18-24 July 2021). Our motive was to obtain acceptable approximates of typical 

indoor emission rates of the activities in our case study. For the VOCs, even though source 

strengths and activity patterns will vary from case to case, an approximate volumetric steady-

state indoor emission rate of 40 µg/m3.h was considered [72,73]. For the PM2.5, PM10, NO2, 

and CO, indoor emission rates were considered following the most common source (cooking 

activity) from comprehensive studies. Regarding the different values reported in the literature, 

the median values among them have been considered, due to the variety of cooking utilities 

and activities (boiling, frying, grilling, toasting, and microwaving), and food ingredients. 

Correspondingly, the estimated PM2.5, PM10, NO2, and CO emission rates were determined to 

be 1.6, 4.1, 3.1, and 5.3 mg/min, respectively [74-79]. 

S3.1.2. Continuous Emission Rates by Mass-Balance Approach (Calibration) 

To calculate higher resolution continuous emission rates, the method based on the widely used 

mass balance model was employed [80-83]: 
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C(t)=Cb+
λ

(λ+k)V
+ (C(0)+Cb+

G

(λ+k)V
) e-(λ+k)t (S9) 

In which, C(t) is the concentration at time t, Cb is the background concentration, C(0) is the 

initial concentration, G is the emission rate, V is the mixing volume, and (λ+k) is the total decay 

rate due to ventilation, deposition, and coagulation (λ is the ventilation rate and k is the 

deposition rate). With the assumption of a well-mixed decay period and to obtain the emission 

rates over an emission period T, Equation (S9) could be simplified to Equation (S10) [84], as 

follows: 

G=(λ+k)V (
(Cp-Cb)-(C(0)-Cb)e-(λ+k)T

1-e-(λ+k)T
) (S10) 

In which, Cp is the peak concentration at the time tp. Nonetheless, the substantial fluctuations in 

daily indoor-generated pollutant source intensities contradict the presumption of a singular total 

decay rate, applicable to all days. The continuous total decay rate can be quantified as the negative 

slope in the logarithm of the indoor concentration as a function of time [53]: 

(λ+k)=
1

t2-t1
ln

Ct1

Ct2

 (S11) 

To calculate the emission rates of gases, and with the assumption of 𝑡 ≪ 𝜏 (𝜏 is the residence 

time), the “peak estimation approach” presented by Ott and colleagues, was applied [82]: 

maxVC
G

t
  (S12) 

In which, Cmax is the maximum concentration. Finally, calculated indoor emission rates were 

fed to the CONTAM by “.CVF” input files. Table S2. presents the Standard Deviation (SD), 

average, and maximum values of calculated indoor emission rates. 

Table S2. Calculated indoor emission rates by mass-balance approach, SD, Average, and the Maximum  

Emission Rates (mg/min) CO NO2 PM2.5 PM10 

Standard Deviation 6.87 2.11 15.28 31.81 

Average 2.40 1.26 2.96 8.32 

Maximum 121.80 13.92 278.82 565.90 

 

Following the instructions provided by the systematic framework (see Fig. 2), this section is 

dedicated to presenting the outcomes of a total of 21 simulation cases. These cases are the 

combinations of 2 approaches of obtaining emission rates within 7 days, and a single approach 

of obtaining emission rates (more accurate; mass-balance method) within 73 days, for 7 indoor 

contaminants. 
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Figure S2 shows the hourly indoor, and outdoor measured concentrations and indoor 

concentrations results by CONTAM for the kitchen zone (most complex zone) of the test-house, 

during 168 hours (7 days, 18-24 July 2021). Figure S2a presents the CONTAM results while it 

is fed by average event emission rates from the literature, and Figure S2b presents the CONTAM 

results when it is fed by calibrated continuous emission rates derived by the mass-balance 

approach. Figure S3 presents the same parameters as Figure S2 but for 1752 hours (73 days, 20 

June-31 August 2021) with calibrated emission rates. For better presentation purposes in Figure 

S3, the upper concentration range is kept limited for CO, PM2.5, and PM10. However maximum 

incidental records of CO: 150 mg/m3, PM2.5: 400, and PM10: 800 µg/m3 were logged during the 

measurement campaign. 
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Figure S2. Hourly concentration of indoor and outdoor measurements and indoor results by CONTAM (168 

hours = 7 days; 18-24 July 2021) – Case study house, a) Average emission rates b) Calibrated emission rates. 
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Figure S3. Hourly concentration of indoor and outdoor measurements and results by CONTAM (1752 

hours = 73 days; 20 June - 31 August 2021) – Case study house, Calibrated emission rates. The green 

shaded area shows the equivalent time range of Figure S2.  
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The equivalent time range of Figure S2 is highlighted by a green shading in Figure S3. Also, the 

initial concentrations of pollutants were introduced to CONTAM based on the mean outdoor 

concentration of contaminants during the IAQ measurement campaign. As it is recognizable from 

Figure S3., CONTAM simulation results are in high harmony with the measured values over the 

73 days. To statistically examine the model performance and the agreement between model 

results and indoor measurement (see Figure S3.), ASTM D5157-19 was employed (ASTM 

2019). Data characteristics were sufficient to evaluate CONTAM estimates of different zone 

pollutant levels. In contrast to our previous investigations [85], we calculated the NMSE 

parameter based on the definition presented by an exclusive EPA (U.S. Environmental Protection 

Agency) chapter of the McGraw-Hill Indoor Air Quality Handbook [3]. The aforementioned 

definition is as follows: 

2( )

( . )

p o

p o

C C
NMSE

C C

−
=  (S13) 

in which Co represents the measured or observed concentration and Cp represents the predicted 

or modeled concentration. The bar accent denotes averaged values. 

Table S3. presents the results of D5157 evaluation criteria for the model output and observed 

(measured) datasets, both for average emission rates of the literature and calculated continuous 

emission rates. The results falling in the D5157 expected ranges are remarked in green cells. 

Also, corresponding scatter plots are presented in Figure S4. 

Table S3. Results of D5157 evaluation criteria over the modeled and measured datasets.  

7 days (18-24 July 2021), CONTAM average emission rates 

Acceptable range Measure CO NO NO2 PM2.5 PM10 VOC O3 

r ≥ 0.9 r 0.39 0.48 0.46 0.74 0.8 0.35 0.62 

0.75 ≤ M ≤ 1.25 M 1.90 0.79 0.76 0.96 0.9 0.13 0.81 

b≤0.25(observations) b 3.9≥1.2 5.32≤6.6 3.06≤3.1 0.79≤2.5 3.22≤4.9 50.23≥14.22 10.87≤16.2 

NMSE ≤ 0.25 NMSE 0.09 0.01 0.02 0.11 0.09 0 0.01 

FB ≤ 0.25 FB -0.09 0.01 0.00 -0.04 0.04 -0.01 0.02 

FS ≤ 0.5 FS -1.44 1.06 -0.84 -0.52 -0.31 0.62 0.62 

                                                    73 days (20June-31August 2021), CONTAM calibrated emission rates 

r ≥ 0.9 r 0.74 0.92 0.72 0.75 0.74 0.65 0.55 

0.75 ≤ M ≤ 1.25 M 0.82 0.99 0.41 0.38 0.37 0.6 1.04 

b≤0.25(observations) b 1.04≤1.14 0≤8.13 12.68≥5.03 4.88≥1.93 6.2≥2.97 25.16≥14.22 0.26≤14.97 

NMSE ≤ 0.25 NMSE 0.11 0.01 0.04 0.22 0.13 0 0.04 

FB ≤ 0.25 FB 0.2 –0.01 0.11 0.03 0.25 0.04 0.04 

FS ≤ 0.5 FS 0.33 0.15 –1.1 –1.18 –1.2 –0.15 1.12 
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Figure S4. Scatter plots of the model concentration vs. measured values a) 7 days, 18-24 July 2021 (CONTAM 

averaged emission rates), b) 73 days, 20 June-31 August 2021 (CONTAM calibrated emission rates) 

S4. Future Inputs for the IAQ Model 

In this section, different steps for providing the future data input of the developed IAQ model (basis 

year 2021) are presented. 
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S4.1. Future Outdoor Weather (Meteorology Data) 

The OCCuPANt project [86] partner has provided a historical and forthcoming weather 

database for dynamic building modeling in Belgium via the regional climate model “MAR” 

(Modèle Atmosphérique Régional) version 3.11.4 [87,88]. The database provides 13 weather 

variables including dry bulb temperature at 2m, RH at 2m, global horizontal radiation, diffuse 

solar radiation, direct normal radiation, wind speed at 10m, wind direction, dew point at 2m, 

atmospheric pressure, cloudiness, sky temperature, specific humidity at 2m, and precipitation. 

MAR is a 3D atmospheric model coupled to a one-dimensional (1D) transfer scheme between 

the surface, vegetation, and atmosphere. The spatial resolution of MAR is 5km atop an 

integration domain (120 x 90 grid cells) centered above Belgium as depicted in Figure S5 to 

derive hourly results. The central role of MAR is to downscale a global model or reanalysis to 

obtain weather data at a higher resolution of time (temporal) and space (spatial). This regional 

model simulates the past climate (1980-2020) and also provides various future forecasts and 

associated uncertainties for different scenarios based on SSP5-8.5.  

 

Figure S5. MAR Model topography. 

 

S4.2. Future Outdoor Air Pollution 

Applying representative CTM methods, such as CMAQ and WRF-Chem, are typical methods 

for urban air quality prediction. However, because of unreliable pollutant emission rates, 

complex underlying surface states, and inadequate theoretical groundwork, the calculated 
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results lack estimation accuracy. Although these approaches are helpful analysis of 

atmospheric dispersion, turbulent diffusion, wet and dry deposition, and decay; severe barriers 

to models’ accuracy are still present [89-93]. The origin of error in a CTM is the unreliability 

of temporal variations of emission rates, though the sites of emission sources are normally 

detected. Mesoscale atmospheric interactions (e.g., convection, inversion) and the 

indeterminate wet deposition processes are significant origins of error as well. Also, the 

functionality of CTMs to calculate complex atmospheric photochemical reactions is partial, 

due to a couple of issues; such as unreliability in emission descriptions. Almost all research 

carried out by CTMs relies on hypothesizes or assumptions of main variables like emission 

rates, mixing heights, and cloudiness [89-95]. Also, other studies have been carried out to 

estimate the future impact of climate change on air pollution by land use models. However, 

these approaches are limited with high non-linearity and low accuracy efficiency [96]. 

S4.2.1. Artificial Intelligence 

Deep Learning (DL) approach is a subdivision of Machine Learning (ML). Generally, it is a 

neural network with a more complex design structure. It is best to utilize multi-dimensional 

data efficiently due to its powerful learning ability, strong generalization, and flexible model 

structure. Due to its strong learning capability, powerful generalization, and adjustable 

architecture, it is efficient to be utilized for data with high dimensions. DL networks such as 

Convolutional Neural Networks, Recurrent Neural Networks (RNN), and Long Short-Term 

Memory recurrent networks (LSTM), as well as hybrid architectures, have been employed to 

estimate air pollution with high efficiency competently [19-21,97-99]. Recent studies carrying 

out comparisons between the accuracy performance of CTMs and AI techniques for outdoor 

air pollution prediction also show a better performance of ML and DL in terms of prediction 

accuracy [100]. 

S4.2.2. Deep Air-Quality Forecasting 

Air quality data are high dimensional (with strong nonlinearities). In this regard, air quality 

prediction is an arduous task because of rapid weather variations, pollutant emission 

phenomena, and the presence of numerous influential elements. Additionally, the involved 

parameters in air quality are nonlinear and dynamic; including but not limited to wind speed 

and direction, solar radiation, air temperature, air humidity, as well as the pollutant 

concentrations themselves. All in all, air quality prediction in a complex and highly non-linear 

context is a challenging goal to be spatially and temporally precise. Since these elements are 

inherently interdependent, dealing with interdependencies and utilizing them for prediction 
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from multivariable time series data is not easy. To overcome these challenges, a hybrid deep 

learner algorithm consisting of multiplex 1D Convolutional Neural Networks and a Bi-

directional Long Short-Term Memory recurrent network is developed based on the Deep Air 

Quality Forecasting Framework; DAQFF, in MATLAB software [101]. The CNN-LSTM deep 

network considers both spatial and temporal dependencies of air quality-related time series data 

and is explained more in detail in the following part [98, 99,101,102]. 

S4.2.2.1. Convolutional Neural Network (CNN) 

A representative CNN consists of 3 layers (see Figure S6): convolutional, activation, and 

pooling layer. Dissimilar to the traditional convolutional network (classic 2D with application 

for images), multiples 1D filters convolved over all time steps of air quality time series data 

(1D-CNNs), are implemented. Also, the ReLU is set as the activation function. To learn 

regional pattern features 3 convolution layers are applied. After functioning 3 convolution 

layers, to alter the high-level expression to a feature vector, and employ a fully connected layer 

to decrease the final output vector dimension, a flattened layer is utilized. At this point, a 

concatenated layer delivers the final output. This enables receiving the regional pattern features 

of single station time series data (as the 1D filter is employed in each convolutional layer, the 

variation of regional pattern features, over time series can be apprehended), as well as 

integration of the probable spatial association features of multiple stations. Besides, the 

regional comprehension and weighted sharing features of the 1D convolutional network 

decrease the parameters for operating with multiplex time series data and lead to higher 

learning performance. Accordingly, with the aid of this approach, the learning takes place for 

more deep representation features of air quality data.  
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Figure S6. 1D-CNN configuration for the current study with 3 Coevolution, 1 Flatten, and 1 Dense layer. 

 

S4.2.2.2. Bi-Directional Long Short-Term Memory Recurrent Network (Bi-LSTM) 

A general LSTM segment consists of a cell with 3 gates (see Figure S7); input, output, and 

forget. The cell recalls values upon optional time intermissions, and the 3 gates control the 

input and output flow of data. Because of this specific memory cell architecture, the LSTM 

arrangement can consider long-term associations of time series data, and prevail over the 

disadvantages of typical recurrent networks (particularly the issue of gradient loss and burst). 

A chain of repeating cells forms the LSTM layer. Also, the tanh can be set for the activation 

function. With the aid of 2 independent hidden layers, a Bi-LSTM network can operate through 
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2 directions with time series data, at the same time. These data are concatenated and fed forward 

to the output layer. Simply put, Bi-LSTM networks are repeatedly functional with time series 

data in 2 directions. 

 

Figure S7. Bi-LSTM cell and network configuration. 

 

S4.2.2.3. Data Preparation and Deep-Learner Network Setup 

The hourly recorded air pollution data of the past 15 years (2006-2021) for the CO, NO2, NO, 

PM2.5, PM10, and O3, from 5 air quality stations in Belgium were collected [103]. VOCs were 

not considered during this study due to the lack of outdoor data. Accordingly, hourly weather 

data for the past 14 years (2008-2021) for the T, P, RH, wind speed (WS) and direction (WD), 

solar irradiance (IR), and precipitation (PR), were gathered [103]. The geographical (spatial) 

locations of the air quality stations (yellow) and weather stations (red) are illustrated in Figure 

S8. Information on the weather and air quality stations and their corresponding datasets are 

presented in Table S4. The primary data were randomly divided into calibration (80%), 

validation (10%), and test (10%) datasets. Also, the data of a whole month in the summer 2020 

was kept blind for presenting the deep-learner network performance. 
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Figure S8. Locations of air quality (yellow) and weather stations (red) in Belgium with their 

corresponding data were employed for DL network training. 

Table S4. Weather and air quality monitoring stations and their corresponding datasets. 

Air Pollution stations Pairs 
Weather stations 

T, P, RH, WS, WD, IR, PR 

Sainte-Ode (NO, NO2, O3, PM2.5, PM10) 

[07/04/2011– 18/02/2022] 

Habay (Arlon) (CO) 

[07/02/2008 – 18/02/2022] 

Pair A 
Sainte-Ode (Arlon) 

[07/02/2008 – 18/02/2022] 

Herstal (NO, NO2, O3, PM2.5, PM10) 

[03/01/2013 – 01/01/2020] 

Liege-Val Benoit (CO) 

[10/05/2011 – 01/01/2020] 

Pair B 
Herstal 

[03/01/2013 – 01/01/2020] 

Liege-Val Benoit (CO, NO, NO2, O3, PM2.5, PM10) 

[10/05/2011 – 01/01/2020] 
Pair C 

Palais des congrès de Liège 

[10/05/2011 - 01/01/2020] 

Engis (NO, NO2, O3, PM2.5, PM10) 

[11/02/2008 – 01/01/2020] 

Liege-Val Benoit (CO) 

[10/05/2011 – 01/01/2020] 

Pair D 
Engis 

[11/02/2008 – 01/01/2020] 

Lodelinsart (NO, NO2, O3, PM2.5, PM10) 

[06/02/08 - 01/01/2020] 
Pair E 

Lodelinsart 

[06/02/2008 - 01/01/2020] 

 

Also, to expedite the convergence of the DL network, and decrease the effect of outliers, a 

features’ normalization step is performed for the raw data, to the range of [0,1] (by max-min 

function). To prevent the over-fitting issue, several methods were employed; such as a dropout 

policy with a probability of 0.3, which is utilized broadly among layers. Moreover, the early 
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stopping approach is applied for high-performance learning, in which a training procedure can 

be interrupted when the validation loss is reduced no more. Correspondingly, mean square error 

(MSE) was employed as the algorithm loss function representative. The hyper-parameters were 

initially regulated by the model performance over the validation dataset, and next, the Adam 

optimizer was applied. The designed CNN-BiLSTM employs singular hidden layers as default, 

consisting of 64 neurons. For spatial and temporal trend feature learning, 3 convolution layers, 

and Bi-LSTM structure with 128 hidden neurons, were applied respectively. The activation 

operator of the output layer is linear and is correspondingly employed for the final prediction. 

Missing features of experimental data are completed by the linear interpolation for single 

missing data points and the average value of the column in which they are placed for the 

remaining missing data points. Several statistical indexes, such as the Mean Absolute Error 

(MAE), the Root Mean Square Error (RMSE), and the Pearson Correlation Coefficient (r) were 

applied to evaluate the performance of the proposed model. Table S5 represents the test error 

analysis of the CNN-BiLSTM model for the single-step prediction in paired weather and air 

quality stations (A-E). Convolutional networks are capable of both recursive or direct forecast 

tactics; where the network proceeds one-step estimation and outputs are being fed as inputs for 

following estimations, and where one model is established for each time-step to be estimated. 

Consecutively, Convolutional networks can be employed to estimate the whole output 

sequence, as a one-step estimation of the whole vector. This is a universal advantage of feed-

forward ANN. Concerning the single-step prediction efficiency of the designed CNN-BiLSTM 

model, the prediction of contaminants over one blind month with untrained inputs was carried 

out. Figure S9 illustrates the hourly prediction performance of CNN-BiLSTM for 31 blind days 

of summer 2020 (no missing data completion) in the target city of Arlon for 5 contaminants 

(CO, NO, NO2, O3, PM2.5, PM10). Computational tasks were conducted on a PC server, with 

the AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz processor, and 16GB of 

memory. 

Table S5. The Error analysis of CNN-BiLSTM model for the single-step prediction among paired 

weather and air quality stations (A-E). 

CNN-BiLSTM 
CO  NO  NO2  O3  PM2.5  PM10  

RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r 

Pair A 0.86 0.05 0.57 17.43 0.42 0.64 80.82 1.94 0.67 443.7 12.9 0.87 148.4 4.65 0.63 251.7 5.94 0.61 

Pair B 0.79 0.01 0.59 16.38 0.38 0.64 79.98 1.88 0.68 435.7 10.2 0.88 132.4 3.12 0.64 249.6 5.88 0.62 

Pair C 0.93 0.06 0.54 19.3 0.56 0.63 82.9 2.18 0.64 466.4 14.9 0.81 152.6 3.19 0.6 263.7 6.17 0.61 

Pair D 0.89 0.15 0.57 21.45 0.52 0.61 86.7 2.09 0.64 491.3 16.1 0.79 166.5 5.3 0.61 286.4 9.36 0.59 

Pair E 0.96 0.17 0.55 23.1 0.62 0.6 92.06 2.18 0.62 501.6 15.7 0.76 184.4 7.04 0.59 311.5 12.1 0.57 
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Six future Typical Meteorological Year (TMY) weather files were selected among our database 

[87], to represent the temporal effects of climate change with 3 different SSP scenarios in 

Arlon. Additionally, for a better comparison with the past, the modeled average TMY of 2001-

2020 period was taken into account, as well. The seven selected TMY weather files are as 

follows: 

• Arlon TMY2001-2020_MAR  

• Arlon TMY2041-2060_SSP2_MAR-BCC 

• Arlon TMY2041-2060_SSP3_MAR-BCC  

• Arlon TMY2041-2060_SSP5_MAR-BCC  

• Arlon TMY2081-2100_SSP2_MAR-BCC  

• Arlon TMY2081-2100_SSP3_MAR-BCC  

• Arlon TMY2081-2100_SSP2_MAR-BCC 

Figure S10, illustrates the box plots of the hourly predictions of outdoor air concentrations, 

derived from deep-learner model, for the city of Arlon, in “2000-2020”, “2050s”, and “2100s” 

: SSPs 2-4.5, 3-7.0, and 5-8.5. 
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Figure S9. Hourly prediction of Arlon’s outdoor pollutant concentrations (CNN-BiLSTM) for 31 test days 

of summer 2020 (untrained input), Arlon. 
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Figure S10. Outdoor pollutant concentrations of Arlon (CNN-BiLSTM) for TMYs: “2000-2020” and 

“2040-2060, 2080-2100: SSPs 2-4.5, 3-7.0, and 5-8.5”, and corresponding statistics. 

 

S4.3 Future Indoor Climate 

For obtaining the future indoor climate; mainly the T and RH, we applied the I/O ratios 

recorded in the case study summer measurement campaign of 2021. These ratios are applied to 

the future outdoor T and RH of the selected TMYs to obtain the corresponding indoor values. 
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S4.4 Future Building Characteristics & Occupants Behavior 

Owing to the focus of our study on indoor emission rates and ambient conditions in the context 

of climate change (weather and air pollution), the building characteristics and occupants’ 

behavior patterns were assumed to be fixed. However, it is noteworthy to mention that there is 

a simple possibility to modify the air tightness and building air leakage information in 

CONTAM (reduction based on defined retrofit scenarios). 

S5. Future IAQ state 

After obtaining all the IAQ model inputs with their future values, we carried out the simulations 

to predict the future IAQ state of the case study house in CONTAM (basis year 2021). Figure 

S11, shows the CONTAM hourly indoor pollutant concentration estimates for CO, NO2, NO, 

PM2.5, PM10 and O3, in “2000-2020”, “2050s”, and “2100s” : SSPs 2-4.5, 3-7.0, and 5-8.5. The 

estimated indoor pollutant concentrations by CONTAM, are derived from an internal 

integrated process of mass balance equations in which, different contributions of indoor and 

outdoor origins are taken into account. 
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Figure S11. Indoor pollutant concentrations of Arlon test-house (CONTAM), for TMYs: “2000-2020” and 

“2040-2060, 2080-2100 : SSPs 2-4.5, 3-7.0, and 5-8.5”, and corresponding statistics. 
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Considering long-term IAQ measurement campaigns with the help of low-cost sensors and 

establishing IAQ databases are crucial for better insight and future studies. The proposed 

hybrid deep-learner algorithm is capable of drawing out and learning the high-dimensional 

spatial and temporal features of air quality data time series in different regions. Our model 

performance is satisfactory since it can adopt regional pattern features by 1D-CNN, and long-

term reliance features by Bi-LSTM. It is also approximated that mean indoor contaminant 

exposures are: 

• Constant for CO (with substantial indoor sources, as indoor and outdoor emissions are 

not varied). 

• Decreased for PM2.5 and NO (those with periodic indoor sources that are naturally 

ventilated with decreased outdoor concentrations). 

• Increased for NO2 (slightly), PM10, and O3 (those with dominant outdoor sources which 

are naturally ventilated with increased outdoor concentrations). 
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