[en] Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.
Simmons NB, Cirranello AL. Bat Species of the World: A taxonomic and geographic database. 2023 [cited 10 Jan 2024]. https://doi.org/10.5281/zenodo.8136157
Simmons NB. Order chiroptera. Mammal species of the world: a taxonomic and geographic reference. 2005; 1: 312–529.
Protected Bat Species | UNEP/EUROBATS. [cited 5 Jul 2021]. Available: https://www.eurobats.org/about_eurobats/protected_bat_species.
Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: A review of its drivers. Biol Conserv. 2019; 232: 8–27. https://doi.org/10.1016/j.biocon.2019.01.020
Skendz ić S, Zovko M, Z ivković IP, Les ić V, Lemić D. The Impact of Climate Change on Agricultural Insect Pests. Insects. 2021; 12: 440. https://doi.org/10.3390/insects12050440 PMID: 34066138
Pimentel D, Krummel J, Gallahan D, Hough J, Merrill A, Schreiner I, et al. Benefits and Costs of Pesticide Use in U.S. Food Production. BioScience. 1978; 28: 772–784. https://doi.org/10.2307/1307251
Pimentel D, McLaughlin L, Zepp A, Lakitan B, Kraus T, Kleinman P, et al. Environmental and Economic Effects of Reducing Pesticide Use. BioScience. 1991; 41: 402–409. https://doi.org/10.2307/ 1311747
Pimentel D. Pesticides and Pest Control. In: Peshin R, Dhawan AK, editors. Integrated Pest Management: Innovation-Development Process: Volume 1. Dordrecht: Springer Netherlands; 2009. pp. 83–87. https://doi.org/10.1007/978-1-4020-8992-3_3
Korine C, Niv A, Axelrod M, Dahan T. Species richness and activity of insectivorous bats in cotton fields in semi-arid and mesic Mediterranean agroecosystems. Mamm Biol. 2020; 100: 73–80. https://doi.org/10.1007/s42991-019-00002-z
Maine JJ, Boyles JG. Bats initiate vital agroecological interactions in corn. PNAS. 2015; 112: 12438–12443. https://doi.org/10.1073/pnas.1505413112 PMID: 26371304
Maas B, Karp DS, Bumrungsri S, Darras K, Gonthier D, Huang JC, et al. Bird and bat predation services in tropical forests and agroforestry landscapes. Biol Rev. 2016; 91: 1081–1101. https://doi.org/10.1111/brv.12211 PMID: 26202483
Taylor PJ, Grass I, Alberts AJ, Joubert E, Tscharntke T. Economic value of bat predation services–A review and new estimates from macadamia orchards. Ecosyst Serv. 2018; 30: 372–381.
Puig-Montserrat X, Torre I, López-Baucells A, Guerrieri E, Monti MM, Ràfols-García R, et al. Pest control service provided by bats in Mediterranean rice paddies: linking agroecosystems structure to ecological functions. Mamm Biol. 2015; 80: 237–245. https://doi.org/10.1016/j.mambio.2015.03.008
Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. Ecosystem services provided by bats. Ann N Y Acad Sci. 2011; 1223: 1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x PMID: 21449963
Russo D, Bosso L, Ancillotto L. Novel perspectives on bat insectivory highlight the value of this ecosystem service in farmland: Research frontiers and management implications. Agric Ecosyst Environ. 2018; 266: 31–38. https://doi.org/10.1016/j.agee.2018.07.024
Aihartza J, Vallejo N, Aldasoro M, García-Mudarra JL, Goiti U, Nogueras J, et al. Aerospace-foraging bats eat seasonably across varying habitats. Sci Rep. 2023; 13: 19576. https://doi.org/10.1038/ s41598-023-46939-7 PMID: 37950015
Aizpurua O, Alberdi A. Mapping the pressure of natural predators on pest arthropods. Authorea Preprints. 2020 [cited 31 Aug 2021]. https://doi.org/10.22541/au.158981075.53963117
Baroja U, Garin I, Aihartza J, Arrizabalaga-Escudero A, Vallejo N, Aldasoro M, et al. Pest consumption in a vineyard system by the lesser horseshoe bat (Rhinolophus hipposideros). Jacobs DS, editor. PLoS ONE. 2019; 14: e0219265. https://doi.org/10.1371/journal.pone.0219265 PMID: 31318887
Hughes MJ, Braun de Torrez EC, Ober HK. Big bats binge bad bugs: Variation in crop pest consumption by common bat species. Agric Ecosyst Environ. 2021; 314: 107414. https://doi.org/10.1016/j.agee.2021.107414
FOREST EUROPE, 2020: State of Europe’s Forests 2020. Bratislava: Ministerial Conference on the Protection of Forests in Europe—FOREST EUROPE; 2020. Available: https://foresteurope.org/stateof-europes-forests/.
Charbonnier Y, Barbaro L, Theillout A, Jactel H. Numerical and Functional Responses of Forest Bats to a Major Insect Pest in Pine Plantations. PLoS ONE. 2014; 9: e109488. https://doi.org/10.1371/journal.pone.0109488 PMID: 25285523
Ancillotto L, Rummo R, Agostinetto G, Tommasi N, Garonna AP, de Benedetta F, et al. Bats as suppressors of agroforestry pests in beech forests. For Ecol Manage. 2022; 522: 120467. https://doi.org/10.1016/j.foreco.2022.120467
Beilke EA, O’Keefe JM. Bats reduce insect density and defoliation in temperate forests: An exclusion experiment. Ecology. 2023; 104: e3903. https://doi.org/10.1002/ecy.3903 PMID: 36310413
Forzieri G, Girardello M, Ceccherini G, Spinoni J, Feyen L, Hartmann H, et al. Emergent vulnerability to climate-driven disturbances in European forests. Nat Commun. 2021; 12: 1081. https://doi.org/10.1038/s41467-021-21399-7 PMID: 33623030
Baldacchino F, Muenworn V, Desquesnes M, Desoli F, Charoenviriyaphap T, Duvallet G. Transmission of pathogens by Stomoxys flies (Diptera, Muscidae): a review. Parasite. 2013; 20: 26. https://doi.org/10.1051/parasite/2013026 PMID: 23985165
Patra G, Behera P, Das S, Saikia B, Ghosh S, Biswas P, et al. Stomoxys calcitrans and its importance in livestock: a review. Int j adv agric res. 2018; 6: 30–37.
Ahmad A, Nagaraja TG, Zurek L. Transmission of Escherichia coli O157:H7 to cattle by house flies. Prev Vet Med. 2007; 80: 74–81. https://doi.org/10.1016/j.prevetmed.2007.01.006 PMID: 17306389
Tomberlin JK. Suppression of Stable Flies on Cattle. Agricultural Communications, Texas Cooperative Extension. 2010.
Dekker JJ, Regelink JR, Jansen EA, Brinkmann R, Limpens H. Habitat use by female Geoffroy’s bats (Myotis emarginatus) at its two northernmost maternity roosts and the implications for their conservation. Lutra. 2013; 56: 111–120.
Zahn A, Bauer S, Kriner E, Holzhaider J. Foraging habitats of Myotis emarginatus in Central Europe. Eur J Wildl Res. 2010; 56: 395–400. https://doi.org/10.1007/s10344-009-0331-y
Buckley DJ, Lundy MG, Boston ESM, Scott DD, Gager Y, Prodöhl P, et al. The spatial ecology of the whiskered bat (Myotis mystacinus) at the western extreme of its range provides evidence of regional adaptation. Mamm Biol. 2013; 78: 198–204. https://doi.org/10.1016/j.mambio.2012.06.007
Siemers BM, Kriner E, Kaipf I, Simon M, Greif S. Bats eavesdrop on the sound of copulating flies. Curr Biol. 2012; 22: R563–R564. https://doi.org/10.1016/j.cub.2012.06.030 PMID: 22835788
Pir J, Dietz M. Populationsdichte und Lebensraumnutzung der Wimperfledermaus (Myotis emarginatus Geoffroy, 1806) an ihrer nördlichen Verbreitungsgrenze in Luxemburg. Bull Soc Nat luxemb. 2018; 120: 107–121.
Dietz M, Pir JB, Hillen J. Does the survival of greater horseshoe bats and Geoffroy’s bats in Western Europe depend on traditional cultural landscapes? Biodivers Conserv. 2013; 22: 3007–3025. https://doi.org/10.1007/s10531-013-0567-4
Vincent S, Nemoz M, Aulagnier S. Activity and foraging habitats of Miniopterus schreibersii (Chiroptera: Miniopteridae) in southern France: implications for its conservation. Hystrix. 2010; 22. https://doi.org/10.4404/hystrix-22.1–4524
Downs NC, Cresswell WJ, Reason P, Sutton G, Wells D, Wray S. Sex-specific habitat preferences of foraging and commuting lesser horseshoe bats Rhinolophus hipposideros (Borkhausen, 1797) in lowland England. Acta Chiropt. 2016; 18: 451–465. https://doi.org/10.3161/15081109ACC2016.18.2.012
Norberg UM, Rayner JM. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B Biol Sci. 1987; 316: 335–427.
Alberdi A, Razgour O, Aizpurua O, Novella-Fernandez R, Aihartza J, Budinski I, et al. DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats. Nat Commun. 2020; 11: 1154. https://doi.org/10.1038/s41467-020-14961-2 PMID: 32123172
Vallejo N, Aihartza J, Olasagasti L, Aldasoro M, Goiti U, Garin I. Seasonal shift in the diet of the notched-eared bat (Myotis emarginatus) in the Basque Country: from flies to spiders. Mamm Biol. 2023; 103: 419–431. https://doi.org/10.1007/s42991-023-00353-8
Bourlat S, Koch M, Kirse A, Langen K, Espeland M, Giebner H, et al. Metabarcoding dietary analysis in the insectivorous bat Nyctalus leisleri and implications for conservation. Biodivers Data J. 2023; 11: e111146. https://doi.org/10.3897/BDJ.11.e111146 PMID: 38312339
Racey PA, Entwistle AC. 9—Life-history and Reproductive Strategies of Bats. In: Crichton EG, Krutzsch PH, editors. Reproductive Biology of Bats. London: Academic Press; 2000. pp. 363–414. https://doi.org/10.1016/B978-012195670-7/50010-2
Andriollo T, Michaux JR, Ruedi M. Food for everyone: Differential feeding habits of cryptic bat species inferred from DNA metabarcoding. Mol Ecol. 2021; 30: 4584–4600. https://doi.org/10.1111/mec. 16073 PMID: 34245618
Lee Y-F, McCracken GF. Dietary Variation of Brazilian Free-Tailed Bats Links to Migratory Populations of Pest Insects. J Mammal. 2005; 86: 67–76. https://doi.org/10.1644/1545-1542(2005)086<0067:DVOBFB>2.0.CO;2.
Van der Meij T, Van Strien AJ, Haysom KA, Dekker J, Russ J, Biala K, et al. Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mamm Biol. 2015; 80: 170–177. https://doi.org/10.1016/j.mambio.2014.09.004
Frantz AC, Viglino A, Wilwert E, Cruz A-P, Wittische J, Weigand AM, et al. Conservation by trans-border cooperation: population genetic structure and diversity of geoffroy’s bat (Myotis emarginatus) at its north-western european range edge. Biodivers Conserv. 2022 [cited 2 Feb 2022]. https://doi.org/10.1007/s10531-022-02371-3
Van Vyve C, Smits Q. Mise à jour de la liste rouge des chauves-souris en Wallonie. L’Echo des Rhinos. Sep 2021111: 18–20.
Andreas M, Nad o L, Bendová B, Uhrin M, Maxinová E, Lučan R, et al. Trophic niche and diet composition of the northernmost population of the Mediterranean horseshoe bat (Rhinolophus euryale) with conservation implications. Mamm Res. 2023; 68: 189–202. https://doi.org/10.1007/s13364-023-00674-6
Schumm A, Krull D, Neuweiler G. Echolocation in the notch-eared bat, Myotis emarginatus. Behav Ecol Sociobiol. 1991; 28: 255–261. https://doi.org/10.1007/BF00175098
Flaquer C, Puig-Montserrat X, Burgas A, Russo D. Habitat selection by Geoffroy’s bats (Myotis emarginatus) in a rural Mediterranean landscape: implications for conservation. Acta Chiropt. 2008; 10: 61–67. https://doi.org/10.3161/150811008X331090
Goiti U, Aihartza J, Guiu M, Salsamendi E, Almenar D, Napal M, et al. Geoffroy’s bat, Myotis emarginatus, preys preferentially on spiders in multistratified dense habitats: a study of foraging bats in the Mediterranean. Folia Zool. 2011; 60: 17–24. https://doi.org/10.25225/fozo.v60.i1.a3.2011
Kervyn T, Godin M-C, Jocqué R, Grootaert P, Libois R. Web-building spiders and blood-feeding flies as prey of the notch-eared bat (Myotis emarginatus). Belg J Zool. 2012; 142: 59–67.
Racey P. The energy costs of pregnancy and lactation in heterothermic bats. Reproductive energetics in mammals. 1987; 107–125.
Wilde CJ, Kerr MA, Knight CH, Racey PA. Lactation in vespertilionid bats. London: The Society, 1960–1999.; 1995. pp. 139–150.
Beck A. Fecal analyses of European bat species. Myotis. 1995; 32: 109–119.
Vallejo N, Aihartza J, Goiti U, Arrizabalaga-Escudero A, Flaquer C, Puig X, et al. The diet of the notch-eared bat (Myotis emarginatus) across the Iberian Peninsula analysed by amplicon metabarcoding. Hystrix. 2019; 30: 59–64. https://doi.org/10.4404/hystrix-00189-2019
Steck CE, Brinkmann R. The trophic niche of the Geoffroy’s bat (Myotis emarginatus) in south-western Germany. Acta Chiropt. 2006; 8: 445–450.
Galan M, Pons J-B, Tournayre O, Pierre É, Leuchtmann M, Pontier D, et al. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol Ecol Resour. 2018; 18: 474–489. https://doi.org/10.1111/1755-0998.12749 PMID: 29288544
Krull D, Schumm A, Metzner W, Neuweiler G. Foraging areas and foraging behavior in the notch-eared bat, Myotis emarginatus (Vespertilionidae). Behav Ecol Sociobiol. 1991; 28: 247–253. https://doi.org/10.1007/BF00175097
Bauerova Z. Contribution to the trophic bionomics of Myotis emarginatus. Folia Zool Brno. 1986; 35: 305–310.
Mata VA, da Silva LP, Veríssimo J, Horta P, Raposeira H, McCracken GF, et al. Combining DNA metabarcoding and ecological networks to inform conservation biocontrol by small vertebrate predators. Ecol Appl. 2021; 31: e02457. https://doi.org/10.1002/eap.2457 PMID: 34529299
Arthur L, Lemaire M. Les Chauves-souris de France, Belgique, Luxembourg et Suisse: Troisième édition. Biotope. Muséum national d’Histoire naturelle; 2021.
Richarz K, Krull D, Schumm A. Quartieransprüche und Quartierverhalten einer mitteleuropäischen Wochenstubenkolonie von Myotis emarginatus (Geoffroy, 1806) im Rosenheimer Becken, Oberbayern, mit Hinweisen zu den derzeit bekannten Wochenstubenquartieren dieser Art in der BRD. Myotis. 1989; 27: 111–130.
Radoux J, Bourdouxhe A, Coppée T, De Vroey M, Dufrêne M, Defourny P. A Consistent Land Cover Map Time Series at 2 m Spatial Resolution—The LifeWatch 2006-2015-2018-2019 Dataset for Wallonia. Data. 2023; 8: 13. https://doi.org/10.3390/data8010013
SPW. Bilans communaux. In: Etat de l’Agriculture Wallonne [Internet]. 2021 [cited 14 Jun 2023]. Available: http://etat-agriculture.wallonie.be/cms/render/live/fr/sites/reaw/home/bilans-communaux.html.
SPW. Forêts—État de l’environnement wallon. In: Etat de l’environnement wallon [Internet]. [cited 17 Jan 2024]. Available: http://etat.environnement.wallonie.be/cms/render/live/fr_BE/sites/eew/home/Infographies/forets.html.
Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol Ecol Resour. 2011; 11: 236–244. https://doi.org/10.1111/j.1755-0998.2010.02920.x PMID: 21429129
Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data. Babraham Institute Enterprise; 2010. Available: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011; 17: 10–12. https://doi.org/10.14806/ej.17.1.200
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37: 852–857. https://doi.org/10.1038/s41587-019-0209-9 PMID: 31341288
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13: 581–583. https://doi.org/10.1038/nmeth.3869 PMID: 27214047
O’Rourke DR, Bokulich NA, Jusino MA, MacManes MD, Foster JT. A total crapshoot? Evaluating bioinformatic decisions in animal diet metabarcoding analyses. Ecol Evol. 2020; 10: 9721–9739. https://doi.org/10.1002/ece3.6594 PMID: 33005342
R Developement CoreTeam. R: A language and environment for statistical computing. 2010.
Tournayre O, Leuchtmann M, Filippi-Codaccioni O, Trillat M, Piry S, Pontier D, et al. In silico and empirical evaluation of twelve metabarcoding primer sets for insectivorous diet analyses. Ecol Evol. 2020; 10: 6310–6332. https://doi.org/10.1002/ece3.6362 PMID: 32724515
Corse E, Tougard C, Archambaud-Suard G, Agnèse J-F, Mandeng FDM, Bilong CFB, et al. One-locus-several-primers: A strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies. Ecol Evol. 2019; 9: 4603–4620. https://doi.org/10.1002/ece3.5063 PMID: 31031930
Browett SS, Curran TG, O’Meara DB, Harrington AP, Sales NG, Antwis RE, et al. Primer biases in the molecular assessment of diet in multiple insectivorous mammals. Mamm Biol. 2021; 101: 293–304. https://doi.org/10.1007/s42991-021-00115-4
Bell KL, Burgess KS, Botsch JC, Dobbs EK, Read TD, Brosi BJ. Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. Mol Ecol. 2019; 28: 431–455. https://doi.org/10.1111/mec.14840 PMID: 30118180
Maslo B, Mau RL, Kerwin K, McDonough R, McHale E, Foster JT. Bats provide a critical ecosystem service by consuming a large diversity of agricultural pest insects. Agric Ecosyst Environ. 2022; 324: 107722. https://doi.org/10.1016/j.agee.2021.107722
Deagle BE, Thomas AC, McInnes JC, Clarke LJ, Vesterinen EJ, Clare EL, et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Mol Ecol. 2019; 28: 391–406. https://doi.org/10.1111/mec.14734 PMID: 29858539
Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014; 84: 45–67. https://doi.org/10.1890/13-0133.1
Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016; 7: 1451–1456. https://doi.org/10.1111/2041-210X.12613
Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D. MASS: Support Functions and Datasets for Venables and Ripley’s MASS. 2024. Available: https://cran.r-project.org/web/packages/MASS/index.html.
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008; 50: 346–363. https://doi.org/10.1002/bimj.200810425 PMID: 18481363
Martinez Arbizu P. pairwiseAdonis. 2020. Available: https://github.com/pmartinezarbizu/ pairwiseAdonis.
Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993; 18: 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Uetz GW, Halaj J, Cady AB. Guild structure of spiders in major crops. J Arachnol. 1999; 270–280.
Dunn OJ. Multiple Comparisons among Means. J Am Stat Assoc. 1961; 56: 52–64. https://doi.org/10.1080/01621459.1961.10482090
Kassambara A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2023. Available: https://CRAN.R-project.org/package=rstatix.
Alberdi A, Aizpurua O, Gilbert MTP, Bohmann K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol Evol. 2018; 9: 134–147. https://doi.org/10.1111/2041-210X. 12849
Clarke LJ, Soubrier J, Weyrich LS, Cooper A. Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Mol Ecol Resour. 2014; 14: 1160–1170. https://doi.org/10.1111/1755-0998.12265 PMID: 24751203
Vamos E, Elbrecht V, Leese F. Short COI markers for freshwater macroinvertebrate metabarcoding. Metabarcoding Metagenom. 2017; 1: e14625. https://doi.org/10.3897/mbmg.1.14625
Aizpurua O, Budinski I, Georgiakakis P, Gopalakrishnan S, Ibañez C, Mata V, et al. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding. Mol Ecol. 2018; 27: 815–825. https://doi.org/10.1111/mec.14474 PMID: 29290102
Sow A, Haran J, Benoit L, Galan M, Brévault T. DNA Metabarcoding as a Tool for Disentangling Food Webs in Agroecosystems. Insects. 2020; 11: 294. https://doi.org/10.3390/insects11050294 PMID: 32403224
Quéméré E, Aucourd M, Troispoux V, Brosse S, Murienne J, Covain R, et al. Unraveling the dietary diversity of Neotropical top predators using scat DNA metabarcoding: A case study on the elusive Giant Otter. Environ DNA. 2021; 3: 889–900. https://doi.org/10.1002/edn3.195
Galan M, Bordes A, Gauthier P, Kane M, Niang Y, Pierre É, et al. The diet of commensal Crocidura olivieri (Soricomorpha: Soricidae): predation on co-existing invasive Mus musculus suggested by DNA metabarcoding data. Mammalia. 2023; 87: 326–334. https://doi.org/10.1515/mammalia-2023-0021
Sow A, Brévault T, Delvare G, Haran J, Benoit L, Cœur d’Acier A, et al. DNA sequencing to help identify crop pests and their natural enemies in agro-ecosystems: The case of the millet head miner Heliocheilus albipunctella (Lepidoptera: Noctuidae) in sub-Saharan Africa. Biol Control. 2018; 121: 199–207. https://doi.org/10.1016/j.biocontrol.2018.03.007
Haran J, Delvare G, Vayssieres J-F, Benoit L, Cruaud P, Rasplus J-Y, et al. Increasing the utility of barcode databases through high-throughput sequencing of amplicons from dried museum specimens, an example on parasitic hymenoptera (Braconidae). Biol Control. 2018; 122: 93–100. https://doi.org/10.1016/j.biocontrol.2018.04.001
Wang B, Li Y, Zhang G, Yang J, Deng C, Hu H, et al. Seasonal variations in the plant diet of the Chinese Monal revealed by fecal DNA metabarcoding analysis. Avian Res. 2022; 13: 100034. https://doi.org/10.1016/j.avrs.2022.100034
Hoenig BD, Trevelline BK, Nuttle T, Porter BA. Dietary DNA metabarcoding reveals seasonal trophic changes among three syntopic freshwater trout species. Freshw Biol. 2021; 66: 509–523. https://doi.org/10.1111/fwb.13656
Siegenthaler A, Wangensteen OS, Benvenuto C, Campos J, Mariani S. DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Mol Ecol. 2019; 28: 232–249. https://doi.org/10.1111/mec.14886 PMID: 30276912
Hacker CE, Hoenig BD, Wu L, Cong W, Yu J, Dai Y, et al. Use of DNA metabarcoding of bird pellets in understanding raptor diet on the Qinghai-Tibetan Plateau of China. Avian Res. 2021; 12: 42. https://doi.org/10.1186/s40657-021-00276-3
Tournayre O, Leuchtmann M, Galan M, Trillat M, Piry S, Pinaud D, et al. eDNA metabarcoding reveals a core and secondary diets of the greater horseshoe bat with strong spatio-temporal plasticity. Environ DNA. 2021; 3: 277–296. https://doi.org/10.1002/edn3.167
da Silva LP, Mata VA, Lopes PB, Pereira P, Jarman SN, Lopes RJ, et al. Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists. Mol Ecol Resour. 2019; 19: 1420–1432. https://doi.org/10.1111/1755-0998.13060 PMID: 31332947
Schulz M. Diet and Foraging Behavior of the Golden-Tipped Bat, Kerivoula Papuensis: A Spider Specialist? J Mammal. 2000; 81: 948–957. https://doi.org/10.1644/1545-1542(2000)081<0948:DAFBOT>2.0.CO;2.
Burles DW, Brigham RM, Ring RA, Reimchen TE. Diet of two insectivorous bats, Myotis lucifugus and Myotis keenii, in relation to arthropod abundance in a temperate Pacific Northwest rainforest environment. Can J Zool. 2008; 86: 1367–1375. https://doi.org/10.1139/Z08-125
Shiel C, McAney C, Sullivan C. Identification of arthropod fragments in bat droppings. The Mammal Society. 1997.
Blazek J, Konečný A, Bartonička T. Bat aggregational response to pest caterpillar emergence. Sci Rep. 2021; 11. https://doi.org/10.1038/s41598-021-93104-z PMID: 34211071
Hails CJ. A Comparison of Tropical and Temperate Aerial Insect Abundance. Biotropica. 1982; 14: 310–313. https://doi.org/10.2307/2388092
Presetnik P, Aulagnier S. The diet of Schreiber’s bent-winged bat, Miniopterus schreibersii (Chiroptera: Miniopteridae), in northeastern Slovenia (Central Europe). Mammalia. 2013; 77: 297–305. https://doi.org/10.1515/mammalia-2012-0033
Anthony ELP, Kunz TH. Feeding Strategies of the Little Brown Bat, Myotis Lucifugus, in Southern New Hampshire. Ecology. 1977; 58: 775–786. https://doi.org/10.2307/1936213
Heim O, Lorenz L, Kramer-Schadt S, Jung K, Voigt CC, Eccard JA. Landscape and scale-dependent spatial niches of bats foraging above intensively used arable fields. Ecol Process. 2017; 6: 24. https://doi.org/10.1186/s13717-017-0091-7
de Jong J, Ahlén I. Factors affecting the distribution pattern of bats in Uppland, central Sweden. Ecography. 1991; 14: 92–96. https://doi.org/10.1111/j.1600-0587.1991.tb00638.x
Goiti U, Aihartza JR, Almenar D, Salsamendi E, Garin I. Seasonal foraging by Rhinolophus euryale (Rhinolophidae) in an Atlantic rural landscape in northern Iberian Peninsula. Acta Chiropt. 2006; 8: 141–155. https://doi.org/10.3161/150811006777070776
Ancillotto L, Falanga A, Agostinetto G, Tommasi N, Garonna AP, de Benedetta F, et al. Predator-prey traits and foraging habitat shape the diet of a common insectivorous bat. Acta Oecol. 2023; 118: 103890. https://doi.org/10.1016/j.actao.2023.103890
Brinkmann R, Hensle E, Steck C. Untersuchungen zu Quartieren und Jagdhabitaten der Freiburger Wimperfledermauskolonie als Grundlage für Schutz-und Entwicklungsmaßnahmen. Freiburg, Germany: Landesanhalt für Umweltschutz; 2001 pp. 129–143.
Baldissera R, Ganade G, Benedet Fontoura S. Web spider community response along an edge between pasture and Araucaria forest. Biol Conserv. 2004; 118: 403–409. https://doi.org/10.1016/j.biocon.2003.09.017
Arrizabalaga-Escudero A, Merckx T, García-Baquero G, Wahlberg N, Aizpurua O, Garin I, et al. Trait-based functional dietary analysis provides a better insight into the foraging ecology of bats. J Anim Ecol. 2019; 88: 1587–1600. https://doi.org/10.1111/1365-2656.13055 PMID: 31310329
Eigenbrode SD, Bosque-Pérez NA, Davis TS. Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. Annu Rev Entomol. 2018; 63: 169–191. https://doi.org/10.1146/annurev-ento-020117-043119 PMID: 28968147
Issa R. Musca domestica acts as transport vector hosts. Bull Natl Res Cent. 2019; 43: 73. https://doi.org/10.1186/s42269-019-0111-0
Meiswinkel R, Rijn PA, Leijs P, Goffredo M. Potential new Culicoides vector of bluetongue virus in northern Europe. Vet Rec. 2007; 161: 564–5. https://doi.org/10.1136/vr.161.16.564 PMID: 17951565